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Abstract

Selection and forecasting are integral to econometric modelling and this thesis addresses
both issues, with an application to UK inflation. Two automatic model selection algo-
rithms, PcGets and RETINA, are evaluated on time-series and cross-section data. PcGets
aims to select an undominated, congruent model of the phenomena of interest, whereas
RETINA selects a parsimonious set of regressors that have predictive ability. Monte
Carlo simulation results assess the null and non-null rejection frequencies of the algo-
rithms in the presence of nonlinear functions. Both algorithms have the same properties
as those for linear models under orthogonality, but collinearity increases null rejection
frequencies and reduces non-null rejection frequencies. Simple operational rules that
‘double de-mean’ all functions are proposed to mitigate that problem.

A nonlinear model selection strategy is proposed, that commences with a new test for
nonlinearity, specifies the general model using polynomial functions as approximations,
and undertakes a general-to-specific reduction using a multi-stage procedure. Nonlin-
earity poses a number of problems, including collinearity generated by nonlinear trans-
formations, extreme observations leading to non-normal (fat-tailed) distributions, and
often more variables than observations from general expansions approximating the non-
linearity, yet one must avoid excess retention of irrelevant variables. Solutions to all of
these problems are proposed. A successful algorithm requires the synthesis of all of these
developments to be implemented, as exclusion of one component of the algorithm can
lead to severely erroneous conclusions.

A model of inflation is built in which many determinants of inflation play a role in
its explanation. The single cause explanation of inflation is refuted, along with a generic
business cycle explanation. As forecast failure is prevalent, with naive devices often
outperforming econometric models, a forecast competition is undertaken for UK annual
and quarterly inflation, in which equilibrium correction models are compared to various
forecasting rules. Robust forecasting devices prove useful in forecasting macroeconomic
time-series, and they often outperform econometric models, both when there are struc-
tural breaks in the data and when the underlying process appears to be stable but with
breaks in the explanatory variables. Increasing the information set does lead to improve-
ments in forecasting performance suggesting that disaggregation can yield benefits. It
is observed that much of the forecast error in the structural models is driven by the
deterministic terms. Breaks in the mean of the cointegrating vector or the growth rate
of the system will cause forecast ‘failure’, and results show how sensitive forecasts are to
errors in these terms.

JEL classification: C22; C32; C51; C53; C87.

Keywords: Econometric methodology; Model selection; Nonlinear models; Nonlinearity
testing; Collinearity; Inflation modelling; Robust forecasting; Inflation forecasting.
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Introduction

Forecasting is integral to economic policy and yet macroeconomic forecasting has expe-

rienced many episodes of serious predictive failure. It is evident that the economy is

non-stationary and subject to numerous structural breaks, data are contaminated with

measurement errors and models are mis-specified, but empirical econometric models tend

not to account for these problems. Often, forecasting models are developed assuming the

underlying data generating process (DGP) is stationary and the DGP coincides with the

econometric model. While forecasting theory is well established for such a scenario (see

Granger and Newbold, 1986) it is of little practical use in applied work. A new theo-

retical framework for forecasting has been developed by Clements and Hendry (1998b,

1999), which allows for both mis-specified models and non-stationarities including struc-

tural change. This thesis aims to address the dual issues of model specification and

non-stationarity in a pragmatic way, assessing their generic implications and providing

practical solutions to the forecasting conundrum.

The assessment of forecasting models requires a constructive and germane application,

and we focus on UK inflation. Inflation forecasting is fundamental to macroeconomic

policy, given that it is the sole target of monetary policy in the UK, and the move

towards an inflation targeting regime has put pressure on inflation forecasting models

to deliver timely, unbiased and efficient forecasts of future inflation. However, forecast

failure is prevalent, with naive devices often outperforming the dominant congruent in-

sample model in forecasting competitions.1 This is because structural change is endemic

in any economy. Even during relatively quiescent periods, unanticipated shifts occur

frequently and are a major source of forecast failure. We investigate the use of robust

1The dominant congruent in-sample model refers to a model that is coherent with the available ev-
idence, assessed by a range of mis-specification tests, and is dominant in the sense that it encompasses
other model specifications, (see Hendry, 1995, p.365). The dominant congruent in-sample model can be
viewed as the ‘best’ in-sample econometric model built given the current level of knowledge and empirical
evidence.
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forecasting devices to improve forecasts of UK inflation.

The theme that underpins all chapters of the thesis is model selection. The devel-

opment of any econometric model requires model selection rules of some form, because

economic processes are extremely complex and the underlying DGP is unknown. Model

selection is difficult because all tests have interdependent distributions that are altered by

every modelling decision. Furthermore, different model selection rules may be required

for in-sample modelling and for forecasting. Our focus is on general-to-specific (Gets)

model selection, which has a strong theoretical motivation in the theory of reduction. The

automatic model selection algorithm, PcGets, is utilised in all four substantive chapters,

demonstrating our belief that automatic Gets selection tools are integral to modelling

and forecasting in a non-stationary world.

The thesis is broadly divided into two related parts that each address modelling

and forecasting when the DGP is evolutionary, non-stationary, and unknown to the

econometrician. These include specification, in which the model may not coincide with

the DGP, and non-stationarity, in which the DGP is not constant, but is instead evolving

over time and is subject to intermittent structural breaks. We further partition both parts

of the thesis into two subcategories, which include model selection and model evaluation.

Table 1 outlines the underlying structure of the thesis. In [I.a.] we consider techniques to

select econometric models for forecasting purposes and examine the performance of two

automatic econometric model selection algorithms, PcGets and RETINA, in selecting

forecasting models. In [I.b.] we outline a general-to-specific selection algorithm for

selecting nonlinear models, developing a test of functional form and proposing strategies

to overcome collinearity, non-normality, and selection with a large number of regressors.

Section [II.a.] builds a model of UK inflation within the linear Gets framework, and

[II.b.] examines the use of robust forecasting devices in forecasting UK inflation.

The structure of the thesis is as follows. Chapter 2 examines the selection of fore-

casting models using automatic econometric model selection techniques. Despite the

controversy surrounding many model selection strategies, and the multitude of diverse

approaches in the literature, automatic model selection procedures are fast becoming one

2
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I. Specification
a. Model selection
b. Model evaluation

II. Non-stationarity
a. Model selection
b. Model evaluation

Table 1: Thesis structure

of the dominant methods of model building. To date, the focus has primarily concen-

trated on developing in-sample models, and this chapter considers the use of automatic

algorithms when building forecasting models. We compare PcGets and RETINA, as-

sessing their selection properties and forecasting performance on both cross-section and

time-series data, as well as Monte Carlo evidence. PcGets is based on a Gets search

strategy, starting with a general model capturing the underlying characteristics of the

data and testing downwards, ensuring validity of the reductions at each stage to result

in a congruent, parsimonious, undominated model. RETINA differs from PcGets in that

the Gets methodology is not its main tenet. The program generates many transforma-

tions capturing both nonlinearities and interaction terms, and then adds variables into

the model depending on a given criterion. RETINA aims to identify a set of variables

that are likely to be relevant for predicting out-of-sample.

The RETINA selection algorithm raises the question of model selection when there

are more variables than observations. The set of nonlinear functions generated can result

in a very large set of potential regressors over which to search, and it is not uncommon

for there to be more potential regressors than observations, particularly with sample sizes

available in macroeconomic time-series data. We extend work by Hendry and Krolzig

(2003a) to establish the small sample properties of selection with more variables than

observations. A substantive, but mainly hidden, component of the thesis has been the

development of computer code to undertake many of the calculations, embed RETINA

in a simulation algorithm, and undertake many new simulation studies.

As RETINA selects models from a set of nonlinear regressors and PcGets can easily

be generalised to select corresponding nonlinear models, as well as the conjecture that the

DGP is indeed nonlinear (see Granger and Teräsvirta, 1993, p.1), Chapter 3 considers

3
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selection of nonlinear models. A comprehensive selection strategy is developed, that

commences with a test of functional form, generates a nonlinear unrestricted model, and

then applies a multi-stage procedure to select, using tighter significance levels for the

nonlinear functions.

A test of functional form is developed that is similar to the test for heteroskedasticity

proposed by White (1980), where the heteroskedastic-consistent covariance matrix esti-

mator will differ from the conventional formula when the squares and cross-products of

the regressors would be significant if added to the model. There are three main drawbacks

of a test such as White’s: first, its high dimensionality; secondly, the potentially high level

of collinearity between products of regressors; and third, the possibility that the second

derivative is not the source of the important departure from linearity, which may depend

on asymmetry or skewness and be better reflected in the third derivative. To rectify these

potential drawbacks, our test forms a composite function of all product terms of the re-

gressors, based on weights given by the eigenvalues of the variance-covariance matrix.

Thus, for fixed regressors the test is an exact F-test with n degrees of freedom (where

n is the number of regressors) on the standardised, mutually orthogonal combinations

of squares and cross-products of the original data matrix, solving the problems of high

dimensionality and collinearity. The test will not have power if the second derivative

is zero but higher orders are non-zero, but in this case, cubic terms of the composite

function could be included as well, yielding an F-test with 2n degrees of freedom. The

test is a useful component of the selection strategy for nonlinear models, and is easily

embedded into an automatic Gets framework.

If evidence of nonlinearity is found, but the functional form is unknown, an ap-

proximation is needed. We consider polynomial functions as they approximate a range

of DGPs, including smooth transition models, which nest aspects of Markov-switching

models, bilinear models and neural networks. Rigorous mis-specification testing is under-

taken to ensure the local data generating process (LDGP) is nested within the polynomial

approximating class. As the selected nonlinear model should nest its linear counterpart,

the reduction to a linear model can be tested.
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The chapter also addresses a number of concerns with selecting nonlinear models.

First, collinearity may be problematic because a high degree of correlation can be gener-

ated between the original linear variable and the corresponding nonlinear transformation.

The information content of an extra highly collinear variable is very small but it disrupts

existing information attribution. Simple operational rules are developed to transform

the model to a more orthogonal form prior to selection. Second, we address the problem

of extreme observations. Fat-tailed distributions are problematic for any model selection

procedure because the assumption of normality is often inbuilt for the critical values

used by model selection procedures. The problem is accentuated when nonlinear func-

tions ‘line up’ with extreme observations, leading to nonlinear functions being retained

too often. We propose the solution of removing extreme observations using indicator

saturation techniques, developed by Hendry, Johansen and Santos (2004), to ensure near

normality for inference. Finally, we consider the significance levels used for selecting mod-

els. While it is commonly thought that parsimony is crucial for successful forecasting

models, we reject this claim, asserting instead that robustness is the essential criterion.

Hendry and Hubrich (2006) provide evidence that large models are preferable for fore-

casting, with variables contributing to the forecast if the non-centrality of the t2-statistic

from the DGP is greater than unity. On the other hand, retention of irrelevant nonlin-

ear functions is problematic for forecasting, leading to a loss in robustness. We propose

the use of a ‘super-conservative’ strategy for the selection of nonlinear functions while

retaining standard significance levels for the linear functions, and outline a method for

implementation of that strategy.

Chapters 4 and 5 focus on section II, examining issues of non-stationarity using

an inflation forecasting application. Non-stationarity not only refers to non-constant

moments, but also to intermittent shifts and structural breaks. Chapter 4 builds a

model of inflation using the single-equation Gets framework of PcGets. Measures of

excess demand for both goods and services and labour are developed. As the output

gap is a latent variable, it is difficult to obtain an accurate estimate of excess demand

pressures. Our preference is to develop a measure based on the production approach,
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as this has the most rigorous theoretical foundation. Concerns over measurement errors

led to the development of a dynamic production function measure, in which total factor

productivity (TFP) is modelled as a random walk with drift. However, the resulting

trend estimates are too volatile, and hence a Solow residual framework is used, in which

TFP is captured by a segmented linear trend. A congruent model of quarterly UK

inflation is developed, based on excess demands from all sectors of the economy captured

by equilibrium correction terms. Most extant theories of inflation play a role in its

determination, including unit labour costs, import prices, producer prices, exchange rates,

foreign prices and excess demands for both goods and labour. Furthermore, evidence for

a generic ‘business cycle’ factor driving inflation is limited: a business cycle component

derived using principal components analysis does not negate the individual variables

included, and very few principal components are retained. The lack of interpretability

and non-robustness to changes in the information set limit the use of a broad cyclical

factor.

Chapter 5 examines the forecast performance of various inflation models. A vector

equilibrium correction model of inflation is built based on various input prices and con-

ditioning on excess demand, to generate dynamic forecasts. The forecast performance

of both econometric models, including the single-equation model developed in Chapter

4 and the multi-equation model developed in this chapter, are examined against various

robust forecasting devices, including two alternative differenced equilibrium correction

models, a differenced VAR based on a 5−year rolling average growth rate, a random

walk, an autoregressive model, a smoothed difference model, and a pooled forecast. Ro-

bust forecasting devices do prove useful in forecasting macroeconomic time-series, and

they often outperform the dominant congruent in-sample models, both when there are

structural breaks in the data and when the underlying process appears to be stationary

but with breaks in the explanatory variables. We observe that much of the forecast error

in the structural models is driven by the deterministic terms. Breaks in the mean of

the cointegrating vector or the growth rate of the system will cause forecast ‘failure’ and

results show how sensitive forecasts are to errors in these terms.
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The chapter also investigates an empirical application of the theory of predictability

(see Clements and Hendry, 2005a). Predictability is relative to the information set that

is used, and forecasting from a reduced, but proper, information set should produce less

accurate but unbiased predictions. Temporal disaggregation cannot lower predictability,

and so as lower frequency data is a subset of higher frequency data, more accurate

predictions of annual inflation should be obtained using quarterly data as opposed to

annual data, although both forecasts should be unbiased. We find that increasing the

information set by disaggregation within the time dimension can yield benefits. Increasing

the frequency of data should lead to a faster reaction to observed structural breaks,

implying that a shift towards robust forecasting methods could be implemented before

substantial and prolonged forecast failure is realised. Conversely, measurement errors

may have a more substantial impact at the forecast origin for higher frequency data. We

have abstracted from measurement error in this thesis but observe that it is an important

component of econometric modelling and forecasting, and we leave the topic for future

research.

The Epilogue concludes the thesis, drawing together the research from the substantive

chapters to provide a coherent and feasible approach to building econometric models for

forecasting. We have shown that automatic model selection algorithms are integral to

building econometric models, and have demonstrated the viability of generalising PcGets

to select nonlinear models. The discipline is rapidly focusing on the use of nonlinear

models for forecasting, and we have addressed concerns that may arise when forecasting

with nonlinear models. Furthermore, we assessed the evidence for using robust forecasting

devices and found that ‘non-optimal’ models may well deliver forecasting gains. This

thesis aims to make some progress towards explaining the prevalence of forecast failures,

and to provide solutions that may help to overcome these problems.
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Chapter 1

A Survey of the Literature

1.1 Introduction

This chapter provides a literature review of the fields of model selection and forecasting.

There is a substantial literature concerned with the selection of in-sample models, and

an equivalently exhaustive literature regarding forecasting from a postulated forecasting

model. The literature examining the selection of a model for the purpose of forecasting

is perhaps more sparse, but has a long history stemming from model selection based

on information criteria.1 One potential explanation is that in-sample selection criteria is

often thought to be sufficient for forecasting models. This is due to the prevalent assump-

tion that the optimal forecasting model is the dominant in-sample model. Conventional

forecast theory, commencing from the seminal works of Box and Jenkins (1970) and

Klein (1971), is based on this premise. Granger and Newbold (1986) prove that under

assumptions of stationarity and the correct model (i.e. the model and DGP coincide),

the best in-sample model is the best out-of-sample model, hence delivering the lowest

mean square forecast error (MSFE) matrix.

The assumptions required for conventional forecasting theory to hold are restrictive

and unrealistic. The world is non-stationary, experiencing both stochastic unit roots and

unanticipated structural breaks. Furthermore, the underlying DGP is extremely com-

plicated and our understanding of the world, and subsequent modelling techniques, is

incomplete at best, delivering simplified approximations of a complicated, ever-changing

process. The Clements and Hendry (1998b, 1999) theory of forecasting relaxes the as-

sumptions of conventional theory, allowing for a non-stationary and evolving world in

which the DGP and econometric model differ. In this paradigm, non-causal models can

1More recent research includes Phillips (1994, 1995, 1996, 2003), who proposes a selection algorithm
that uses posterior information criteria to select forecasting models, and Swanson and White (1997a,
1997b), who build forecasting models using artificial neural networks. Clements and Hendry (2005a) and
Hendry and Hubrich (2006) establish optimal selection criteria for selecting forecasting models based on
the theory of predictability.
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outperform causal models (see Hendry, 1997a), implying that methods of model selection

may well differ if the purpose is forecasting as opposed to in-sample analysis.

The thesis is embedded within a progressive research strategy, see Hendry (1995,

p.550) and Hendry (2000b, p.177). This approach does not require complete information

prior to developing empirical models, as is the case for models built on theory alone

(which Keynes, 1939, 1940, argued was a precondition for any inference from empirical

models). The approach gradually accumulates knowledge, conditional on the stock of

information previously accumulated. Hence, we build on both the general-to-specific

approach to model selection, and the inflation modelling approach that allows for many

explanations of inflation, captured in the papers of, inter alia, De-Brouwer and Ericsson

(1998), Hendry (2001) and B̊ardsen, Jansen and Nymoen (2003b). Furthermore, we use

the techniques developed in Clements and Hendry (1999), Hendry and Clements (2000),

Hendry (2005b) and Hendry and Mizon (2005) to build alternative forecasting models.

The literature review aims to identify the stock of knowledge on which the thesis builds.

To outline the structure of the chapter, Figure 1.1 demonstrates the linkages between

the broad topics that are reviewed, each relating to a substantive chapter of the the-

sis. We approach the literature from the perspective of model selection; the underlying

theme of the thesis. Section 1.2 discusses the current literature on model selection, briefly

addressing the criticisms associated with data mining, with section 1.3 focusing on auto-

matic model selection procedures. Section 1.4 examines nonlinear models, reviewing the

vast array of both nonlinear models and tests for nonlinearity proposed in the literature.

The interactions between automatic model selection and nonlinear models are addressed

in Chapter 3. Section 1.5 looks at the literature on inflation modelling, focusing on

the equilibrium correction class in which all theories of inflation can potentially play a

role. The linkages between automatic model selection techniques and inflation models

are demonstrated in Chapter 4. Finally, section 1.6 addresses the current standpoint of

the forecasting literature, highlighting the problem of structural breaks and motivating

the use of robust forecasting devices used in Chapter 5.
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Figure 1.1: Literature survey overview

1.2 Model selection

Model selection is ubiquitous. As the underlying DGP is unknown, some method of

approximating that entity is required. The techniques used can broadly be divided into

two non-distinct catagories; those that are built using economic theory and those that

are based on empirical data, see Hendry (1980). Hendry and Mizon (2000) provide a

critique of models developed to test economic theories, supporting our empirical strategy

of focusing on data-based model selection.

Data mining has courted much controversy in the field of economics; its connotations

of distorted statistical inference resulting from a prejudiced search are pervasive in the lit-

erature, and yet there is an increase in data mining, partly due to the ever increasing size

of databases and the availability of computing power and algorithms to analyse them, and

partly due to the realisation that building models on the basis of theory alone is insuffi-

cient to develop models for analysis, policy and forecasting. The data mining controversy

is not new: Frisch (1934) advocated methods to deal with data mining and Haavelmo

(1944) also discusses the problem. Concerns over data mining came to the fore again

with Leamer (1978), supported by the empirical evidence of Lovell (1983) who found low

success rates for selecting a small model within a large database. Furthermore, there were

concerns as to the apparent coefficient bias when selecting using significance tests and

the claimed under-estimation of coefficient standard errors, see Campos, Ericsson and

Hendry (2005). However, Gilbert (1986) argues that stringent and critical model evalua-

tion can avoid data mining, and Hendry (1995, ch.15), Campos and Ericsson (1999), and

Sargan (2001), demonstrate that data mining is not insurmountable. Constructive data

mining is a procedure that yields a high probability of locating the DGP while ‘letting

the data speak for itself’, and hence is a useful model selection procedure.
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There have been many ad hoc selection procedures based on model fit, including R2

and R2 criteria (although these measures do not account for the costs associated with se-

lecting an incorrect model); Mallows (1973) Cp criterion, based on mean square prediction

error; and Amemiya (1980) prediction criterion, based on the unconditional mean square

prediction error. However, Hendry and Krolzig (2005) observe that a model should not

be selected on the basis of fit, but instead, selecting the minimal congruent encompassing

model will result in the best fit. Information criteria penalise the log-likelihood function

by a function of the number of parameters to induce a parsimonious explanation of the

data phenomena, and are well established in the model selection literature (see, inter

alia, Akaike, 1973, Schwarz, 1978, Hannan and Quinn, 1979, Chow, 1981b, and Phillips,

1994, 1995). Both the Hannan-Quinn and Schwarz criterion deliver consistent model

selection, see, e.g., Campos, Hendry and Krolzig (2003), but an information criterion is

not a sufficient principle upon which to select models as it does not ensure congruency,

and so a mis-specified model could be selected (see Bontemps and Mizon, 2003).

Shrinkage techniques are popular in the statistics literature, stemming from the work

of Stein (1956) who showed that maximum likelihood and least squares principles are

unsuitable for handling many parameters. The technique uses the data to determine

the compromise between bias and variance, which results in a transformation of the

parameter vector such that all the information in the GUM is retained, but a smooth

discount weight is applied to the coefficient estimates, see James and Stein (1961) who

develop the first estimator, and Yancey and Judge (1976) and Judge and Bock (1978).

While this approach has been proposed as a solution to the pre-test problem, it does

deliver biased estimates. Furthermore, the technique is not progressive, in the sense of

knowledge accumulating about the process being modelled, because the decision rule does

not eliminate variables. Moreover, it is unclear how well it might work in non-stationary

processes.

There is a substantial literature on Bayesian model selection. Bayesian methods

require the assumption of prior probabilities for the individual models or variables as

well as prior distributions for the parameters, from which posterior probabilities can be

11
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derived for the models and their parameters. Some Bayesian methods select a single

model, for example, using the Schwarz (1978) information criterion (SIC), which is often

referred to as the Bayesian information criterion as it was developed using priors, although

Chow (1981a) notes that there is no need to justify SIC in terms of posterior probability

criteria. Most Bayesian methods select a mixture of models by model averaging (see

Hoeting, Madigan, Raftery and Volinsky, 1999, for an overview) in order to account for

model uncertainty. Another aspect of Bayesian model selection is the extreme bounds

analysis developed by Leamer (1978, 1983b, 1985) (also see Granger and Uhlig, 1990)

who argues that inferences are only robust if the specification assumptions are broad

enough to nest the DGP and the interval of inferences is narrow enough to be useful,

which implies that the coefficient estimates should be statistically significant given some

conventional decision rule. This requires prior information that Bayesians assume known.

The approach has been heavily criticised by, inter alia, McAleer, Pagan and Volker (1985),

Breusch (1990) and Hendry and Mizon (1990).

Simple-to-general modelling gradually augments the model until the preferred speci-

fication is achieved. Often, simplified theoretical models are postulated and subsequently

tested against data. These models can fail for a number of reasons: there may not be a

direct correspondence between the theoretical and empirical variables, time horizons may

differ, latent variables may not be correctly measured, the theory may exclude relevant

variables, exogeneity conditions may be violated, etc. If congruency tests are failed, the

model is augmented until it passes the required tests. There are many problems with

the technique, see Hendry and Krolzig (2001, p.132) for a critique. Primarily, the overall

significance level of the strategy will not be controlled as there is no defined termination

point, and the resulting model will be path dependent. The step-wise regression algo-

rithm of Efroymson (1960) undertakes forward selection, in which variables are added

to a set of selected variables and tests are implemented to see if any previously selected

variable can be deleted without increasing the residual sum of squares. Conversely, the

backward elimination procedure commences with the full set of regressors and eliminates

one variable at a time (see Miller, 2002, ch.3, for an outline of Efroymson’s algorithm). As
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step-wise regression only searches one path, it does not have a high success rate of finding

the DGP. Berk (1978) demonstrates that applying both forward and backward selection

is no guarantee to finding the correct model, and Leamer (1983a) is highly critical of the

step-wise approach. Alternative selection procedures exist, such as optimal regression in

which all subsets of regressors are included (see Coen, Gomme and Kendall, 1969, and

the response by Box and Newbold, 1971), but this approach is intractable with a large

set of potential regressors. Numerous algorithms have been proposed to undertake an

exhaustive search, see, inter alia, Schatzoff, Tsao and Fienberg (1968), Furnival (1971)

and Morgan and Tatar (1972), but with little success.2

One of the most prominent approaches to model selection is that of general-to-specific

modelling. The technique, which simplifies a general model that captures the salient char-

acteristics of the data, has a long history and has been known as the LSE approach due to

its proponents at the London School of Economics in the 1960s. Hendry (2003) discusses

the origins of the LSE methodology and Mizon (1995) provides a history, while Pagan

(1987) and Phillips (1988) provide reviews. Hansen (1996) critiques Hendry (1993), argu-

ing that it is impossible to implement the Gets approach fully, and Faust and Whiteman

(1995, 1997) refute the LSE approach due to the difficulty of deriving structural inter-

pretations from reduced form models, to which Hendry (1997b) provides a response.

The idea behind the Gets methodology is that there is a complex mechanism that

generates the observed data. The theory of reduction reduces this to a manageable frame-

work, enabling empirical models to be derived from the DGP. The theory of reduction

commences from the DGP given by:

Du

(
U1

T |U0,ψ
1
T

)
, with ψ1

T ∈ Ψ ⊆ R
kT , (1.1)

where U1
T = (u1, ...,uT ) is the full sample vector of random variables defined on proba-

bility space (Ω,F ,P). As U1
T is unmanageably large, the theory of reduction provides a

series of data reductions to obtain the local data generating process (LDGP), which can

2Many procedures and algorithms have been proposed to narrow down the search space, including
branch and bound techniques (see Hocking and Leslie, 1967, LaMotte and Hocking, 1970, and Gatu and
Kontoghiorghes, 2006), ridge regression (see Hoerl and Kennard, 1970b, 1970a), the non-negative garrote
(see Breiman, 1995), and the least absolute shrinkage and selection operator (LASSO: see Tibshirani,
1996).

13



Literature Survey

subsequently be modelled. Initially, the parameters of interest are identified, µ ∈ M,

and the data are mapped to a new dataset, U1
T ↔ W1

T , which includes any aggregation

and transformations of the original data. The data are then sequentially factorized to

obtain an innovation process:

Dw

(
W1

T |W0,φ
1
T

)
=

T∏

t=1

Dw

(
wt|W1

t−1, δt

)
. (1.2)

The data are partitioned into two sets, X1
T and V1

T , where everything about µ must be

learnt from X1
T alone (i.e. from δb,t).

Dw

(
wt|W1

t−1, δt

)
= Dv|x

(
vt|xt,W

1
t−1, δa,t

)
× Dx

(
xt|X1

t−1,V
1
t−1,W0, δb,t

)
(1.3)

Marginalization then allows the conditional distribution to be discarded from (1.3), as

well as the history of V1
t−1 in the marginal distribution if Granger non-causality is satis-

fied. The variables are then further partitioned into exogenous (zt) and endogenous (yt)

variables via conditional factorization such that:

Dx

(
xt|X1

t−1W0, δb,t

)
= Dy|z

(
yt|zt,X

1
t−1,W0,θa,t

)
× Dz

(
zt|X1

t−1,W0,θb,t

)
, (1.4)

in which the marginal distribution is discarded. Weak exogeneity ensures no loss of

information in the reduction, which requires that the parameters of interest are a function

of θa,t alone and that the parameters are variation free, i.e. (θa,t,θb,t) ∈ Θa × Θb,

see Engle, Hendry and Richard (1983). Further transformations, including mapping to

stationarity, constancy, lag truncation and functional form, are undertaken to result in

the derived LDGP, delivering the specification:

A (L)g (yt) = B (L)h (zt) + εt εt ∼
app

Nn (0,Σε) (1.5)

where εt is a mean-zero, homoskedastic, innovation process with variance Σε. Hendry

(1995, ch.9) provides an outline of the theory of reduction.

Gets modelling attempts to mimic the theory of reduction in a practical setting.

To summarise the approach, it is assumed that the DGP can be characterised by a

sufficiently general model that nests the LDGP. A more parsimonious representation is
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then searched for using a sufficiently exhaustive search procedure to ensure there is no

path dependence. The final specific model should be statistically well-specified (denoted

congruent), a valid restriction of the general model, and it should encompass every other

model that is a valid restriction of the general regression.3 Gilbert (1986, 1989) provides

a detailed exposition of the Gets approach, Hendry (1993) outlines the progression of the

methodology from its inception through a series of empirical papers, and Campos et al.

(2005) provide an extensive discussion and review of the key papers in the literature. Also

see Phillips (1988) and Ericsson, Campos and Tran (1990) for outlines of the approach.

Many criticisms have been levelled at the Gets methodology, ranging from the attack

on data-based model selection and the work of Tinbergen (1940a, 1940b) by Keynes (1939,

1940) (see Hendry, 1980, and Hendry and Morgan, 1995, section 6) and the measurement

without theory debate commenced by Koopmans (1947) (see Hendry and Morgan, 1995,

p.69-71 and ch.43), to the more technical problems of pre-test biases, which arise because

any statistical test has a non-zero size and non-unit power, but is a cost of inference

as opposed to a cost of search; selection effects, whereby coefficient standard errors

only reflect sampling variation conditional on a fixed model specification without taking

into account model uncertainty; repeated testing, which delivers a high probability of

obtaining spurious results due to undertaking many tests; a lack of identification, which

requires a unique model that corresponds to reality; and path dependence of selection,

which can be insured against by rigorous encompassing tests. Hendry (2000b, ch.20),

Hendry and Krolzig (2001, ch.11), and Hendry and Krolzig (2003b) review and refute the

range of criticisms. Furthermore, these criticisms can be addressed by rigorous analysis

of the properties of a Gets model selection procedure, which is discussed in section 1.3

in relation to PcGets.

1.3 Automatic model selection

Given the range of model selection techniques discussed in section 1.2, it is unsurprising

that a number of automatic algorithms have been developed to implement the techniques.

3The notion of encompassing has been extensively discussed in, inter alia, Mizon and Richard (1986),
Hendry and Richard (1989), Mizon (1994) and Hendry (1995, ch.14).
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Figure 1.2: General-to-specific model selection

With regard to the Gets methodology, Hoover and Perez (1999) re-analysed Lovell (1983)

using an algorithm that searched many different paths. The experimental design aimed

to select a few (0-5) regressors from a large set of 40 variables. They reversed Lovell’s

conclusion that data mining was disastrous. We return to the Hoover and Perez experi-

ment in Chapter 2 when we consider selection of nonlinear models. Hendry and Krolzig

(1999) improve on Hoover and Perez’s algorithm, developing the automatic model selec-

tion algorithm, PcGets. The econometric theory and methodology of the program are

discussed in many publications including Hendry and Krolzig (1999, 2001, 2004a, 2004b,

2004d). Figure 1.2 conceptualises how the algorithm mimics the theory of reduction.

Observe that the GUM must nest the LDGP defined in equation (1.5), which can be

tested by congruency, in order for the algorithm to have a chance of locating the LDGP.

The algorithm is outlined in detail in Chapter 2.

The properties of PcGets have been established by Krolzig and Hendry (2001) and

Hendry and Krolzig (2003b, 2005), who demonstrate that PcGets retains relevant vari-

ables close to the theoretical maximum given by the power of a single t-test on the

relevant variable, and eliminates irrelevant variables at the chosen significance level, such

that with n irrelevant variables and a significance level of α, nα variables will be re-

tained on average. Furthermore, extensive Monte Carlo evidence demonstrates that the

equation standard error is close to that of the DGP, and while selected estimates are

conditionally upward biased as the decision rule truncates the distribution to discard the

mass near zero, coefficients have appropriate standard errors despite selection and can be
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bias corrected using simple formulae, see Hendry and Krolzig (2005). Finally, Campos

et al. (2003) show PcGets model selection to be consistent.

Various alternative automatic algorithms have been proposed in the literature; Hof-

mann, Gatu and Kontoghiorghes (2005) develop a computationally efficient automatic

branch and bound algorithm, and substantial Bayesian model averaging software exists:

see, e.g., the software developed by Adrian E. Raftery.4 Other automatic algorithms

implement selection based on information criteria, see, e.g., Phillips (1994, 1995). This

algorithm is a data-based, automated model selection and forecasting tool that auto-

matically detects non-stationarities and cointegrating relations and builds these into the

model. The model selection criterion used is the posterior information criterion of Phillips

and Ploberger (1994). Also see Phillips (1996, 2003) for comments. Geriner and Ord

(1991) examine the use of automatic model selection techniques in developing multivari-

ate forecasting models, and numerous algorithms exist to automatically select data-based

models, including artificial neural networks, data mining algorithms, and dimension re-

duction methods.

1.4 Nonlinear models

Macroeconomic data comprises the aggregation and mapping of highly complex het-

erogeneous agents’ actions. It is therefore almost certain that economic relationships

are nonlinear in some form. There are numerous economic theories to support this

claim, including regime-switching hypotheses, disequilibrium models, and production

functions. However, most existing econometric models are linear, as it has proved diffi-

cult to develop tests for, and modelling of, general classes of nonlinear functions relevant

in economics, given the practical sample sizes available in macroeconomics. Despite this

precedence, there is an extensive literature looking at modelling nonlinearities (see, in-

ter alia, Granger, 1993, Granger and Teräsvirta, 1993, and Teräsvirta, Tjostheim and

Granger, 1994, for an overview), and many nonlinear model classes have met with success

in explaining in-sample phenomena, although De Gooijer and Kumar (1992) argue that

4http://www.stat.washington.edu/raftery/software.html contains downloadable software. Also see
Raftery, Painter and Volinsky (2005).
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the evidence is ambiguous on whether the forecast performance of nonlinear models is

superior to that of linear models, even if their in-sample fit is better.5

There have been a wide array of nonlinear models proposed in the literature, and

our focus shall be on parametric models. Perhaps the most popular nonlinear models

arise as extensions of linear autoregressive or moving average processes, see Granger

and Teräsvirta (1993, ch.4) and references therein. Gallant (1987) provides an in-depth

analysis of estimation and inference for nonlinear models, and Granger (1993) proposes a

simple-to-general approach to selecting single variable nonlinear models. An extension of

the nonlinear ARMA model is the bilinear model, which augments the ARMA model with

the cross-product of the lagged error term and lagged dependent variable, see Priestley

(1981, ch.11), Subba Rao and Gabr (1984) and Subba Rao (1985). As bilinear models

are often difficult to invert (an essential requirement for forecasting) their use is limited,

and they tend to be used for describing processes with occasional strong perturbances.

Maravall (1983) shows that bilinear models perform no better than linear models in a

forecasting context if there are no large perturbances in the forecast period.

A further class of models that captures the stochastic properties of economic data,

but are in fact deterministic, are chaotic processes. Economic theory often postulates

deterministic models, which is in direct contrast to evidence that data are stochastic,

but Lorenz (1989) and Puu (1989) demonstrate that deterministic theories can lead to

chaotic outcomes. Granger and Teräsvirta (1993, ch.3) find the evidence for economic

data exhibiting chaotic behaviour is limited, and the techniques are not in common

practice in econometrics.

There is a substantial literature on random coefficient and volatility models. Con-

ditional heteroskedasticity models commenced with ARCH (see Engle, 1982, and the

reviews in Engle and Bollerslev, 1986, Bollerslev, Chou and Kroner, 1992, and Bera and

Higgins, 1993) and rapidly expanded to GARCH models (Bollerslev, 1986) and many

others, see Engle (2002) for a review and look ahead to future developments in the field.

5On a note of caution, Granger and Teräsvirta (1999) provide an illustrative example of a case where
criteria that have been developed for specifying linear models are of little or no use in a nonlinear context,
and so linear properties are often not informative when describing the properties of a nonlinear process.
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Tsay (1987) demonstrates that ARCH is a special case of random coefficient autore-

gressive models (RCA: see Nicholls and Quinn, 1982), which are, in turn, a subclass of

time-varying parameter models (see Chow, 1984). Volatility models are now prominent in

the literature, particularly in finance, with numerous applications; see Engle and Patton

(2001) and Li, Ling and McAleer (2002) for surveys.

A wide class of models of particular interest are those of regime-switching models,

including switching regression models of Goldfeld and Quandt (1973), Quandt (1983)

and Hamilton (1989), as well as the class of smooth transition regression (STR) models

(see Maddala, 1977, ch.7, Granger and Teräsvirta, 1993, ch.4 and ch.7, and Teräsvirta,

1994, 1998) which include threshold autoregression models (TAR: see Tong, 1978, 1990),

smooth transition autoregression models (STAR: see Chan and Tong, 1986, Luukkonen,

Saikkonen and Teräsvirta, 1988, Granger and Teräsvirta, 1993, and Teräsvirta, 1994),

self-exciting threshold autoregressions (SETAR: see, e.g., Tong, 1983, and Clements,

Franses, Smith and van Dijk, 2003), and exponential autoregression models (EAR: see

Priestley, 1981, ch.11). These are popular tools for modelling state dependent behaviour.

The STR model takes the form:

yt = β′Xt +
(
θ′Xt

)
G (γ, c, st) + ǫt, ǫt ∼ IN [0,Ω] , (1.6)

for t = 1, ..., T , where st is the transition variable(s), c is the threshold, and γ controls the

speed of transition. Various distributional assumptions can be made on G(.) providing

it is bounded between 0 and 1: two popular choices are the logistic and exponential

functions. A further generalisation is the STR-deviation model. The nonlinearity in a

STR model is determined by the value of the transition function deviating from the fixed

threshold c, whereas the nonlinearity in an STR-D model is generated by the deviations

of a previous value or values of the dependent variable from a linear path. The evidence

on forecasting with regime-switching models and smooth transition models is mixed, see

Clements and Krolzig (1998) and Clements et al. (2003) for examples.

A final class of nonlinear models that have been popularised recently are artificial

neural networks (ANN), which are a class of models that are designed to replicate the
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way information is thought to be processed in the brain, see, e.g., White (1989) and

Lee, White and Granger (1993). ANNs are a class of flexible nonlinear functions, or

squashing functions, that are sufficiently general to approximate a wide range of nonlinear

relationships. These models are primarily forecasting tools and are discussed in more

detail in section 1.6.

Testing for functional form is an essential component of model building. There is

an extensive literature on nonlinearity testing, including tests against a specific alterna-

tive and those against a more general alternative: Granger and Teräsvirta (1993, ch.6)

provide an overview. Tests against a specific alternative can be formulated as Lagrange

Multiplier (LM) tests, which means that estimation of the nonlinear model is not neces-

sary, see Breusch and Pagan (1980). Furthermore, Pagan and Hall (1983) demonstrate

that often LM tests are not necessary as it may be feasible to formulate nonlinearity tests

as diagnostic tests on the residuals of the linear model.

Ramsey (1969) proposes a test for specification errors in regression, including unmod-

elled nonlinearity, based on adding powers of the fitted values: Doornik (1995) provides

a careful evaluation of both the numerical and statistical properties of the RESET test.

Keenan (1985) develops a univariate test for detecting nonlinearity (which is a special

case of the RESET test) and Tsay (1986) extends Keenan’s test to allow for contempo-

raneous nonlinearity. White (1980) develops a test that adds all squares of regressors, or

squares and cross-products, to test for heteroskedasticity, implicitly testing for omitted

nonlinearity as well. This has been investigated by numerous authors, including a recent

appraisal in Hendry and Krolzig (2003b), relevant in our context of model selection.

Tests against specific alternatives include tests based on chaotic processes such as

Brock, Dechert and Scheinkman (1987); tests against univariate bilinear models includ-

ing Weiss (1986) and Saikkonen and Luukkonen (1988) (which is equivalent to testing

against STR-D in the univariate case); and neural network tests proposed by Lee et al.

(1993). Hinich (1982) and Ashley, Patterson and Hinich (1986) develop a bispectrum

test that uses independence in the skewness to test for linearity. There are also a number

of tests for nonlinearity in the variance, i.e. conditional heteroskedasticity, see Engle
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(1982) and McLeod and Li (1983). Furthermore, Davidson and MacKinnon (1985) de-

velop procedures to implement tests in regression directions (i.e., the null and, possibly

implicit, alternative hypotheses are regression models of some sort and tests can therefore

be computed as tests for omitted variables) in the presence of heteroskedasticity of an

unknown form.

One of the principal difficulties in building nonlinear models in the time domain is to

remain agnostic regarding the functional form, and yet to find a parsimonious parameter

representation of sufficient generality to capture the underlying LDGP. Various approx-

imating classes have been proposed, including, among others, polynomials, orthogonal

polynomials, Fourier series, asymptotic series and confluent hypergeometric functions.

The use of polynomial functions has strong motivation, as a Taylor series expansion

delivers a polynomial specification. A Taylor series expansion around 0 of an unknown

functional form yt = f (Wt,Wt−1, ...,Wt−q) + vt, where Wt is a distinct vector of n

variables, will result in the dual of the Volterra series, see Priestley (1981, ch.11), given

by:

Ψ (Wt, ...,Wt−q ;ψ) = ψ0 +

q∑

s=0

n∑

i=1

ψ1,iswi,t−s +

q∑

r=0

q∑

s=0

n∑

i=1

i∑

j=1

ψ2,ijsrwi,t−swj,t−r

+

q∑

p=0

q∑

r=0

q∑

s=0

n∑

i=1

i∑

j=1

j∑

k=1

ψ3,ijksrpwi,t−swj,t−rwk,t−p + ... (1.7)

This is a nonlinear generalisation of the Wold (1938) representation theorem, which

states that the purely non-deterministic component of any stationary time-series can

be represented as an infinite moving average of uncorrelated errors. The number of

parameters expand rapidly, such that efficient estimation from a finite set of observations

is impossible unless either some smoothness properties are assumed, severe truncation is

applied, or the functions are expressed as known functions of a relatively small number

of other parameters. Polynomials provide a good local approximation but their accuracy

tends to decline further out. There are a substantial class of orthogonal polynomials of

the form:

Cn =

∫ b

a

w(x) [pn(x)]2 dx (1.8)
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where pn(x) is the class of polynomials defined over range [a, b] and w(x) is the weight-

ing function. Various weighting functions can be imposed, including Hermite polyno-

mials, with weighting e−x2
over the domain (−∞,∞); Chebyshev polynomials of the

first kind, with weighting (1 − x2)−
1
2 over the domain [−1, 1]; and Legendre polynomi-

als, with weighting 1 over over the domain [−1, 1]: see, e.g., Abramowitz and Stegun

(1972, ch.22) for details.6 Rushton (1951) demonstrates how to orthogonalise using the

Choleski method of solving linear equations. The concern with orthogonal polynomials

as approximations is that they tend to perform poorly in the tails.

A Fourier series is an expansion of a periodic function in terms of an infinite sum

of sines and cosines. The advantage of Fourier approximations is that they can capture

the variation in any absolutely integrable function of time, such that the behaviour of

any deterministic function can be readily captured by a sinusoidal function even though

the function in question is not periodic, see Körner (1988). However, a close approxima-

tion requires many Fourier terms and the function also suffers from Gibbs phenomenon,

see, e.g., Jerri (1998). Asymptotic expansions are discussed by Erdélyi (1987). In these

functions, a series may converge or diverge but the partial sums can be an arbitrarily

good approximation to the given function. Evidence on the ability of asymptotic se-

ries to approximate economic data is limited. Hypergeometric functions generalise many

classes of functional forms, see Abadir (1999), and are becoming increasingly popular

in economics. Hypergeometric functions are a general case of exponential functions,

and confluent hypergeometric functions are a result of the product of exponential and

polynomial functions. They can provide parsimonious general nonlinear estimation tech-

niques when functional forms are unknown and they represent a wide range of classes of

functions.

1.5 Inflation modelling

Inflation is a fundamental macroeconomic variable, driving both monetary and fiscal pol-

icy. A number of theories have been postulated to explain the determinants of inflation

6Other classes of orthogonal polynomials include, inter alia, Gegenbauer polynomials, Jacobi polyno-
mials, Laguerre polynomials and generalised Laguerre polynomials.
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(see Frisch, 1983, for a survey), with numerous empirical studies attempting to confirm or

refute the various hypotheses. The development of contemporary inflation theory com-

menced with the Phillips (1958, 1962) curve, formalised by Lipsey (1960), which aimed to

explain wage inflation by excess demand in the labour market. Empirical refutation led

to the natural rate hypothesis, developed independently by Friedman (1968) and Phelps

(1967), in which a distinction is made between the short-run and long-run Phillips curves,

based on the ‘natural rate’ of unemployment. This was later challenged by Lucas (1973)

and Sargent and Wallace (1975), who argued that rational expectations were more repre-

sentative of agents behaviour than the adaptive expectations embodied in the natural rate

model. Furthermore, Blanchard and Summers (1988) postulated the hysteresis hypoth-

esis, which argues that the non-accelerating inflation rate of unemployment (NAIRU) is

a function of actual employment. However, the expectations-augmented Phillips curve

remains a dominant theory in mainstream macroeconomic analysis.

Monetarism reached its height in the early 1970s with Friedman’s seminal works

(Friedman, 1970, 1971), in which he argues that inflation is essentially a monetary phe-

nomenon, i.e., if there is sustained money growth in excess of output growth, inflation will

be generated (see Laidler and Parkin, 1975). To build inflation models of the quantity

theory, the money-demand equation is inverted and nominal money is treated as exoge-

nous, see Friedman (1956). Ericsson and Irons (1994) and Hendry (2000a) demonstrate

the technical and empirical problems with this approach.

Excess demand and supply pressures in all sectors of the economy have provided ex-

planations of inflation. In the goods market, final demands play a key role. The output

gap, as a proxy for excess demand for goods and services, captures the difference between

actual and potential, or trend, output. As a latent variable it is notoriously difficult to

measure (see Hendry, 2000c) but numerous techniques have been proposed: for a use-

ful survey see Dupasquier, Guay and St-Amant (1999). These range from linear and

segmented linear trends; the Hodrick and Prescott (1997) filter (see Harvey and Jaeger,

1993, for a signal extraction interpretation and De-Brouwer, 1998, for a multivariate ex-

ample); cubic splines (see, e.g., Green and Silverman, 1994, p.11: Doornik and Hendry,
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1996, p.75, outline why the cubic spline and Hodrick Prescott filter result in similar de-

compositions); the Beveridge and Nelson (1981) filter (Proietti and Harvey, 2000, develop

an algorithm for a two-sided filter and Evans and Reichlin, 1994, extend the filter to the

multivariate case); band-pass filters (see, e.g., Baxter and King, 1999); structural time

series models (see, e.g., Harvey and Jaeger, 1993: for a multivariate generalisation see

Kuttner, 1994); structural VARS (see Blanchard and Quah, 1989); models based on the

permanent income hypothesis (see Cochrane, 1994); to the production function method

(for examples see, inter alia, Giorno, Richardson, Roseveare and van den Noord, 1995,

Bolt and van Els, 2000, and Proietti, Musso and Westermann, 2002). However, the un-

certainty associated with estimates of the output gap is substantial (see Orphanides and

van Norden, 2002), particularly at the end of sample for univariate statistical techniques.

De-Brouwer and Ericsson (1998), Hendry (2001), and Bowdler and Jansen (2004) all

find the output gap to be an important determinant of inflation. Evidence for nonlinear

inflation effects from the output gap have been examined in Turner (1995) and Clements

and Sensier (2003), although the evidence for such effects is less robust.

Excess demand in the labour market or competition over the profit share captured by

the mark-up often plays a prominant role in explaining inflationary pressure. Prevalent

UK examples include, inter alia, Dicks-Mireaux and Dow (1959), Sargan (1964, 1980),

Nickell (1990) and Layard, Nickell and Jackman (1991). The mark-up of prices over costs

has a long history (see Duesenberry, 1950) and is often measured by unit labour costs

and import prices. Nielsen and Bowdler (2003) find that unit labour costs feed through

to the GDP deflator with a coefficient of 0.79, whereas B̊ardsen, Fisher and Nymoen

(1998) find a larger coefficient of 0.89, although this study excludes import prices and

the real exchange rate. For further empirical analyses see, inter alia, Cockerell and

Russell (1995), B̊ardsen and Fisher (1999) and Batini, Jackson and Nickell (2000). With

regard to labour demand pressures, the dominant contemporary macroeconomic theory

is the NAIRU, see Ball and Mankiw (2002). Estimates of the NAIRU are as difficult to

obtain as estimates of the output gap (see Staiger, Stock and Watson, 1997) but many

empirical studies have estimated the NAIRU using a variety of approaches, see, inter
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alia, Gordon (1997), Coen and Hickman (2002), and Batini and Greenslade (2006).

The approach to modelling inflation adopted in the thesis is embedded within the Gets

framework, using equilibrium correction mechanisms (EqCM) to capture inflationary

pressures from all sectors of the economy. EqCMs have become prevalent in modelling

since their inception and development (see Granger, 1981, Engle and Granger, 1987,

and Johansen, 1988), as most econometric models belong to the equilibrium correction

class, including ADLs, VARs, DSGEs, and ARCH/GARCH models, see Hendry (2005a).

Our focus will be on vector and single-equation EqCMs. For examples of equilibrium

correction models of inflation in which many markets influence the inflation rate, see, inter

alia, Rowlatt (1988), Juselius (1992), Metin (1995), De-Brouwer and Ericsson (1998), and

Hendry (2001).

1.6 Forecasting

Economic forecasting has a long history, with serious criticisms thereof, stemming from

the work of Morgenstern, reviewed in Hendry and Morgan (1995, p.17 and ch.13), (see

Clements and Hendry, 1998b, ch.1.3, for a brief overview). Morgenstern argued that

accurate forecasting was not feasible, both because economic data are not independently

and identically distributed, and because forecasts are invalidated by agents’ reactions to

them. Marget (1929) provides an extensive discussion, refuting Morgenstern’s conclusion.

The first rigorous treatment of forecasting was provided by Haavelmo (1944), on which

the framework for the theory of predictability is based, see Clements and Hendry (1996a,

1999, 2005a). Suppose there are T observations on a random variable, X1
T = (x1, ..., xT ),

from which to predict the future H values, XT+1
T+H = (xT+1, ..., xT+H). The joint proba-

bility is DX1
T+H

(
X1

T+H |X0,θ
)

where θ ∈ Θ ⊆ R
p and X0 denotes the initial conditions.

Factorizing into conditional and marginal probabilities results in:

DX1
T+H

(
X1

T+H |X0,θ
)

= D
X

T+1
T+H

(
XT+1

T+H |X1
T ,X0,θ

)
× DX1

T

(
X1

T |X0,θ
)
. (1.9)

As D
X

T+1
T+H

(.) is unknown at T , it must be estimated from DX1
T

(.), which requires the

specification of DX1
T

(.) to imply the complete specification of DX1
T+H

(.). In this case, the

only uncertainty in the forecast will be due to predictable uncertainty of the innovation
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process generated by the sequential factorization and the estimation uncertainty from

θ̂, see Ericsson (2002). However, in practice the mapping from DX1
T

(.) to D
X

T+1
T+H

(.)

is not direct. Model mis-specification, data mis-measurement and structural breaks all

impact on the ability to forecast future outcomes, and substantial empirical evidence of

the forecast failure of econometric models in forecasting competitions is provided in, e.g.,

Makridakis and Hibon (2000), Clements and Hendry (2001), and Fildes and Ord (2002),

all of which point to these factors as the fundamental components of explanations of

forecast failure.

The theory of predictability provides the necessary, but not sufficient, conditions for

forecastability, see Clements and Hendry (2005a). A random variable νt is unpredictable

with respect to an information set It−1 over a period T if its conditional distribution

Dνt (νt|It−1) equals its unconditional Dνt (νt):

Dνt (νt|It−1) = Dνt (νt) , ∀t ∈ T . (1.10)

Thus, a predictable process requires some combination with the information set:

yt = φt (It−1, νt) , (1.11)

such that Dyt (yt|It−1) 6= Dyt (yt), ∀t ∈ T . Predictability is relative to the information

set used, for example, if Jt ⊂ It the case could occur where Dνt (νt|Jt−1) = Dνt (νt)

and yet Dνt (νt|It−1) 6= Dνt (νt). However, while the predictions from a proper subset

of information (i.e. contains the σ−field generated by (yt−1, ...)) will be less accurate,

they will remain unbiased. Increasing the information set by disaggregation is addressed

in Chapter 5 (see Espasa, Senra and Albacete, 2002, and Hubrich, 2005, for empirical

studies). A further important result from the theory of predictability highlights the

problems that structural breaks can cause. As unpredictability is relative to the historical

time period, it is possible that Dνt (νt|It−1) 6= Dνt (νt) for t = 1, ..., T , but Dνt (νt|It−1) =

Dνt (νt) for t = T + 1, ..., T +H. Thus, there is no guarantee that a model that explains

the phenomena of interest in-sample will be able to forecast out-of-sample. Clements and

Hendry (1999) provide a taxonomy of forecast errors to determine all potential sources
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of forecast error, including both the requirements for predictability, and the subsequent

requirements for forecastability.

There are numerous techniques and methods for economic forecasting, ranging from

simple rules of thumb and extrapolation to large econometric systems. Texts that pro-

vide an overview include Granger and Newbold (1986), Harvey (1989), Engle and White

(1999), and Hendry and Ericsson (2001). Surveys of consumers’ and businesses’ plans and

expectations provide useful information regarding future events, but require the plans to

be realised and are uninformative if alternative plans are realised, see Nerlove (1983).

However, surveys do play a role in augmenting the information set and can be included

in econometric models to capture latent variables.7 Granger (1989, ch.6) provides an

overview of the use of survey data.

Leading indicators are another conventional forecasting tool, popularised by the

NBER over 50 years ago. A composite leading index of economic activity aims to predict

economic expansions and contractions, but many constancy assumptions are required re-

garding both the variables in the index and the weights on the variables, for the indicator

to be of use. In practice, the composition of leading indicators is changed regularly, see,

inter alia, Diebold and Rudebusch (1989, 1991), Stock and Watson (1989, 1993), and

Camba-Mendez, Kapetanios, Weale and Smith (2002) for examples, and Emerson and

Hendry (1996) and Clements and Hendry (1998b, ch.9) for an evaluation. Lahiri and

Moore (1991) and the papers therein provide an extensive overview.

Structural time series models and Box-Jenkins approaches are closely interlinked as

there is a direct mapping between unobserved components models and ARIMA models,

see Harvey (1989). The Box and Jenkins (1970) framework has enjoyed relative popular-

ity since its inception, primarily due to the Wold (1938) decomposition theorem, but also

due to its apparent empirical success relative to econometric models. Subsequently, the

ARMA model has provided the standard benchmark against which forecasts are mea-

sured: see, inter alia, Naylor, Seaks and Wichern (1972), Granger and Newbold (1986,

7For example, the Bank of England makes use of surveys such as the Chartered Institute of Purchasing
and Supply survey for services data, the British Chambers of Commerce surveys for capacity utilisation,
and the NOP inflation attitudes survey, among others (see, e.g., Britton, Cutler and Wardlow, 1999, and
Harrison, Nikolov, Quinn, Ramsay, Scott and Thomas, 2005).
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ch.5) and Pedregal and Young (2002). The success of these simple parsimonious models

is partly due to their relative robustness to structural breaks and partly due to mis-

specification of the comparative econometric models. Unobserved components models

are the modern successor of Box-Jenkins models (see, inter alia, Harvey and Todd, 1983,

Andrews, 1994, and Proietti, 2002). The approach has wide appeal as the Kalman (1960)

filter enables time-varying parameter models to be estimated, interpreted and forecast

directly using a program such as STAMP (Koopman et al., 1995), although the forecasts

will not be robust if the time-varying trend is poorly estimated or subject to structural

breaks.

Granger and Newbold (1986), Hamilton (1994, ch.4) and Diebold (1998) all provide

overviews of univariate time-series forecasting approaches. The ARIMA model has been

generalised in many directions. In the univariate context, there is a substantial literature

on volatility forecasting, with a focus on conditional variance models such as ARCH

(Engle, 1982), GARCH (Bollerslev, 1986), IGARCH (e.g. Lamoureux and Lastrapes,

1990), EGARCH (Nelson, 1991), and nonlinear GARCH (e.g. Glosten, Jagannathan and

Runkle, 1993, and Lanne and Saikkonen, 2005). Long-memory models such as ARFIMA

(Baillie, Bollerslev and Mikkelsen, 1996) have also been used to forecast. Anderson

and Bollerslev (1998) and Christoffersen and Diebold (2000) assess whether volatility is

forecastable, and numerous studies have had varying degrees of success.

Neural networks are relatively new in the field of economics, introduced by Kuan and

White (1994): Kohzadi, Boyd, Kaastra, Kermanshahi and Scuse (1995) provide a useful

introduction. As they allow for very general nonlinear relationships between variables

they are a popular forecasting tool, but success has been limited, see Swanson and White

(1995, 1997b) and Angstenberger (1996) in macroeconomics and finance respectively.

Evidence on the forecasting performance of nonlinear models has been mixed at best:

see, inter alia, Granger and Teräsvirta (1993, ch.8), Brooks (1997), Stock and Wat-

son (1999b), Clements, Franses and Swanson (2004) and Granger (2005). Furthermore,

obtaining optimal forecasts for more than 1-step ahead is very difficult for nonlinear

models, see Granger and Lin (1994) who consider multi-step forecasts from a nonlinear
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autoregressive time-series model. However, many studies have delivered favourable re-

sults. For example, Dahl and Hylleberg (2004) examine the forecast performance of four

nonlinear models and find evidence that some of the flexible nonlinear regression models

perform well relative to the nonlinear benchmark, and Marcellino (2004) finds that non-

linear models often perform better than linear models when forecasting aggregate EMU

macroeconomic variables in a real-time forecasting framework. Furthermore, Clements

and Galvão (2004) and Sensier, Artis, Osborn and Birchenhall (2004) demonstrate the

relevance of nonlinear models for forecasting.

The multivariate extensions to Box-Jenkins models are the VAR and VARMA (see

Quenouille, 1957, and Tiao, 1981, with a review in Lütkepohl, 1991). Engle and Yoo

(1991) demonstrate that a VARMA representation can be derived from the Wold (1938)

decomposition theorem. Sims (1980) is a strong advocate of the VAR approach, which

has become popular for forecasting (see, e.g., Doan, Litterman and Sims, 1984). How-

ever, Clements and Hendry (1999) demonstrate that the detectability of any structural

change, particularly in the deterministic terms, is not easily reflected by the VAR para-

meterisation. Developments in cointegration analysis have led to EqCMs as the dominant

class of econometric forecasting models. Engle and Yoo (1987) and Clements and Hendry

(1995) demonstrate that VEqCMs should outperform VARs in a forecasting context, but

the class of models is not robust to structural breaks either, which is highlighted by

the forecast failure of many empirical equilibrium correction models; see, e.g., Hendry

and Mizon (1993) for UK money demand and Clements and Hendry (1998a) for UK

consumers’ expenditure.

Forecasting using large scale macro-econometric models requires different techniques

and evaluation criteria to standard models due to the high dimensionality and nonlinear-

ity of such systems, see Clements and Hendry (1998b, ch.7). For applications, see Fair

(1984) for the US, and Hatch (2003) who discusses the Bank of England’s core model.

Korenok and Swanson (2005) examine the forecast performance of DSGE models. An

alternative approach that is becoming more popular is factor forecasting. The approach

stems from principal components analysis developed by Hotelling (1933) and outlined
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in Muirhead (1982) and Anderson (1994), and is implemented in the form of diffusion

indices (see, e.g., Stock and Watson, 1998, 2002) and dynamic factor models (see, e.g.,

Forni, Hallin, Lippi and Reichlin, 2000). Bernanke and Boivin (2003) argue that factor

models have the advantage of offering a framework for analysing data that is clearly

specified and statistically rigorous, but that remains agnostic regarding the structure of

the economy. Hendry and Clements (2005) examine the properties of factor forecasts in

the presence of structural breaks: if the factors pool the information set, a smaller error

variance could be obtained, but if the weights on the factors change in ways that are

not captured, the factor forecasts perform poorly. Stock and Watson (1999c) provide

an empirical example, demonstrating that principal component forecasts outperform a

standard Phillips curve model when forecasting US inflation at the 12−month horizon.

Clements and Hendry (1999, ch.3) demonstrate that structural breaks are the most

pernicious cause of forecast failure, particularly shifts in the deterministic terms (also see

Clements and Hendry, 2002b, 2003). Robust forecasting methods have been developed

to overcome the forecast failure associated with these breaks, see, inter alia, Hendry and

Clements (2000) and Hendry (2005b). Various techniques have been proposed, including

differencing, intercept corrections, rapid updating and pooling. Differencing ensures that

the impact of shifts in deterministic terms are reduced by lowering the degree of the

polynomial in time, eliminating shifts in both trend and location. Figure 1.3, taken from

Hendry (2005b), demonstrates this: double-differencing deterministic terms reduces a

location shift to a blip and a trend break to an impulse. A double differenced device is

based on the premise that most economic time-series do not accelerate continuously, and

hence E
[
∆2xt

]
= 0, so the forecasting rule given by:

∆̃xT+1|T = ∆xT (1.12)

delivers unconditionally unbiased forecasts. The rule captures the LDGP even if the

econometric model is mis-specified, albeit with a 1-period lag, and this helps to explain

the device’s success. A second robust device, proposed by Clements and Hendry (2005a)

and Hendry (2005b), differences the VEqCM, thereby removing the deterministic terms,
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Levels

Second Differences

Location shift Trend shift 

Differences
∆ Location shift = Impulse ∆ Trend Shift = Level shift 

∆2 Location shift = Blip ∆2 Trend shift = Impulse 

Figure 1.3: Location shifts and broken trends

see Chapter 5 for details. This device robustifies the model to structural breaks while

still retaining the causal information through the cointegrating relations, although there

is a cost incurred due to an increased error variance.

Model-based forecasts, in which no adjustments are applied, are rarely reported.

Judgements or corrections are often used, either to set the model ‘back on track’, or

to capture anticipated future events that are not explicitly modelled, see Clements and

Hendry (1998b, ch.8). Forecast adjustments are common: see, inter alia, Klein (1971,

p.48), Klein, Howrey and MacCarthy (1974), Wallis, Fisher, Longbottom, Turner and

Whitley (1987, ch.4.3), and Turner (1990), and they have appeared to improve forecast-

ing performance, see, e.g., Wallis and Whitley (1991). However, Clements and Hendry

(2005b) demonstrate that intercept corrections can worsen forecast performance, de-

pending on the underlying LDGP, and hence caution should be applied when using these

techniques.

Exponential smoothing has a long history stemming from Holt (1957) and Winters

(1960). The exponentially weighted moving average (EWMA: see Gardner, 1985) is a

smoothing device, given by the recursive updating formula:

ŷT+1|T = (1 − λ)

∞∑

j=0

λjyT−j, (1.13)
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for λ ∈ (0, 1), such that:

ŷT+1|T = (1 − λ) yT + λŷT |T−1 = yT − λ
(
yT − ŷT |T−1

)
(1.14)

with ŷ1 = y1. The EWMA can be seen as approximating an ARIMA(0,1,1) and is

therefore often used to overcome measurement error. Clements and Hendry (2005a)

observe that the apparent success of the technique is due to a number of factors including

(i) the adaptive behaviour of updating the next forecast by the previous forecast error;

(ii) differencing to avoid location shifts; (iii) the lack of deterministic terms; and (iv)

the rapid adaption when λ is small. However, the EWMA dampening factor has the

opposite impact to intercept corrections, and so there is a dichotomy between accounting

for breaks and allowing for measurement error.

Forecast combination or pooling is extremely common in practical forecast applica-

tions and often produces superior forecasts to the individual forecasts: Clemen (1989)

provides a review, and surveys are given by Diebold and Lopez (1996) and Newbold

and Harvey (2002). Bates and Granger (1969) propose the combination of two or more

forecasts using:

ŷT+h = αŷ1,T+h + (1 − α) ŷ2,T+h, (1.15)

where ŷi,T+h is the h-step ahead forecast made at T using model i, for i = 1, 2. The

in-sample period is used to calculate the optimal weights and various approaches to

estimating α̂ have been proposed. Bates and Granger (1969) use a variance-covariance

approach, whereas Granger and Ramanathan (1984) propose obtaining α from the regres-

sion of forecast errors on the difference between the two models’ forecasts, see Diebold

(1988). Hendry and Clements (2004) propose various explanations for the success of

forecast pooling. If the individual forecasts are based on different subsets of the full

information set, or if forecasts are differentially biased, a combination may improve the

forecast accuracy. Forecast pooling may also offset the impact of structural breaks and it

may reduce the variance if different information sets are used. Furthermore, combination

may act like an intercept correction. Finally, pooling can also be viewed as a shrinkage

estimation technique, which may have a closer correspondence to the underlying reality.
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Multi-step forecasts are essential to economic forecasting, and yet there are relatively

few formal analyses of the properties of multi-step forecasts; see Clements and Hendry

(1996b) and Bhansali (2002). To forecast h-steps ahead, either an iterated 1-step esti-

mator or a direct h-step estimator can be used. Consider an h-step ahead forecast from

a VAR for the n variables yt:

yt = Πyt−1 + ǫt, (1.16)

where E [ǫt] = 0. The iterated 1-step forecast is defined as:

ŷT+h = Π̂hyT , (1.17)

where the forecast error is ǫ̂T+h|T =
(
Πh − E

[
Π̂h
])

yT . The direct h-step estimator is:

ỹT+h = Π̃hyT , (1.18)

where Π̃h = arg min
Πh

∣∣∣∣∣
T∑

t=1

(yt − Πhyt−h) (yt − Πhyt−h)′

∣∣∣∣∣ , (1.19)

such that the forecast error is ǫ̃T+h|T =
(
Πh − E

[
Π̃h

])
yT . The relative forecast accu-

racy of the two forecasts depends on the estimators, Π̂h and Π̃h. Chevillon and Hendry

(2005) find that the iterated 1-step forecasts are preferable if the model is well-specified,

for both stationary and I(1) processes, but if there is mis-specification, deterministic

shocks or negative serial correlation, direct multi-step estimation may lead to more ac-

curate forecasts. Clements and Hendry (1998b, ch.11) confirm these results, noting that

model mis-specification is necessary but not sufficient to justify direct estimation. The

conclusions suggest limited use of direct estimation techniques, although the empirical

results of Tsay (1993) and Lin and Tsay (1996) are more positive regarding direct h-step

forecasting.

Clements (2005, p.1) defines a forecast to be any statement about the future, which

implies the type of forecast can range from a point forecast to a density forecast, over

any future horizon. Point forecasts have traditionally dominated the literature, sparking

a vast literature on the evaluation of point forecasts, see Granger and Newbold (1973),

Clements and Hendry (1998b, ch.3), Granger (2003) and Clements (2005) for critiques.

The ideal evaluation criterion would depend on the cost function of the user of the
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economic forecast, and so denoting the forecast error as eT+h = yT+h − ŷT+h, where the

forecast is ŷT+h, the point forecast should solve:

min
yT+h

∫ ∞

−∞
C (ŷT+h − x) pT+h (x|IT+h) dx (1.20)

where the cost function is C(.), and pT+h (x|IT+h) is the conditional probability density

function. Granger and Pesaran (2000a, 2000b), Pesaran and Skouras (2002) and Clements

(2005, ch.6) discuss forecast evaluation in the framework of decision-based methods. In

practice, specifying the user’s cost function is difficult and a squared cost function is

often postulated, C (e) = e2, which implies the optimal point forecast is the conditional

mean. This results in the MSFE criterion. While popular, the MSFE criterion may

not result in a definitive ranking as the measure is not invariant to non-singular, scale-

preserving linear transformations, see Clements and Hendry (1993a, 1993b). Hence,

different forecast rankings can be obtained if different isomorphic representations of a

process are examined. Furthermore, rankings can differ over h-step forecasts, where

h > 1, as the MSFE criterion does not account for the covariances between the forecasts

at different horizons. Clements and Hendry (op. cit.) propose the generalised forecast-

error second-moment criterion (GFESM), based on the determinant of the forecast-error

second-moment matrix, Φh = E [EE′], obtained by stacking all previous step ahead

forecast errors, E′ =
[
e′T+1, e

′
T+2, ..., e

′
T+h

]
.

Tests of forecast accuracy are used for both testing predictive failure and for com-

paring rival forecasts. A test of predictive accuracy is equivalent to testing for structural

change in the form of non-constant parameter estimates and error variances across two

sub-samples, see Chow (1960), Christ (1966, ch.10), Hendry (1979) and Hackl and West-

lund (1991): Pesaran, Smith and Yeo (1985) and Mariano (2002) provide reviews. Box

and Tiao (1976) formalise a test that compares the estimate of the forecast error variance

obtained from past residuals with the actual MSFE. Tests of comparative forecast accu-

racy attempt to assess whether rival forecasts are significantly different or whether the

differences can be attributed to sampling variability, see Hendry (1986) and Andrews,

Minford and Riley (1996). Forecast encompassing tests, which test whether one model
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can explain the forecast errors made by an alternative model (where Chong and Hendry,

1986, present the test as a model specification test for large-scale models), are formally

equivalent to testing for ‘conditional efficiency’ (see Nelson, 1972, and Granger and New-

bold, 1973), where the forecast is conditionally efficient if the variance of the forecast

error from a combination of two forecasts is not significantly less than that of the origi-

nal forecast alone. Details of encompassing tests can be found in Harvey, Leybourne and

Newbold (1998, 2000).8 The established test statistic to evaluate the equality of MSFEs is

derived by Granger and Newbold (1986) and is often referred to as the Morgan-Granger-

Newbold test due to Morgan (1940). Diebold and Mariano (1995) discuss relaxing the

assumptions of zero-mean, normally distributed and serially uncorrelated errors, and

Harvey, Leybourne and Newbold (1997) refine the test to relax normality.

The forecast of a random variable should be described in terms of its conditional

distribution, which provides a complete description of the uncertainty associated with the

forecast. Point forecasts limit the information by looking at the mean or median estimate,

excluding any measure of uncertainty. Density forecasts were relatively uncommon until

the last decade, see Tay and Wallis (2002) for a survey, but they have become popular

both in finance (see, inter alia, Diebold, Hahn and Tay, 1999, Granger and Sin, 2000,

and Berkowitz, 2001, for both estimation and evaluation) and in macroeconomics, most

explicitly observed in the “rivers of blood” and “rivers of bile” fan charts produced by

the Bank of England (see Coyle, 2001).9 Interval forecasts collapse the information in

a density forecast to give a range for the forecast, with an assigned probability (see

Chatfield, 1993, and Clements, 2005, ch.4) and are particularly popular in Value-at-Risk

analysis. Lopez (1999) provides a discussion and Wallis (2005b) draws together density

and interval forecasting.

8The impact of parameter estimation uncertainty on tests of forecast encompassing, and other tests
of predictive accuracy when the forecasts are model-based, are examined by West (1996, 2001) and West
and McCracken (1998).

9The “rivers of blood” refer to the Bank of England inflation forecasts, produced as a fan chart in
shades of red, and the “rivers of bile” refer to GDP forecasts, produced in green. For more details on
the Bank of England forecasts of inflation and output see Britton, Fisher and Whitely (1998) and Wallis
(1999, 2005a). An evaluation using the Kullback-Leibler Information Criterion is given in Mitchell and
Hall (2005).
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1.7 Conclusion

The fundamental concern in model selection is to assess the costs of retaining irrelevant

variables and the costs of excluding relevant variables. These costs can be calibrated for

in-sample models (e.g., Hendry and Krolzig, 2005, calculate the costs for PcGets) but

less is known in a forecasting context. Hendry and Hubrich (2006) calculate the MSFE,

both including and excluding a set of relevant regressors for a static linear regression

model, and express these in terms of the non-centralities of the excluded variables. They

show that variables with a squared non-centrality greater than one should be retained,

which implies a much looser selection criterion than is used to select in-sample models

(it is, however, equivalent to the implicit significance level of AIC at T = 100 for a range

of n). This is in contrast to the nonlinear model selection literature that suggests strong

evidence of nonlinearity is required before building nonlinear forecasting models.

The literature regarding the empirical modelling and forecasting of inflation is abun-

dant, and the recent progress made in the fields of automatic model selection, under-

standing of forecast failure, and the development of nonlinear models has led to a broad

knowledge base on which this thesis builds, in keeping with a progressive research strat-

egy.
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Chapter 2

Evaluating PcGets and RETINA as Automatic

Model Selection Algorithms

2.1 Introduction

Advances in automatic model selection procedures have been swift in recent years, with

impressive results. Despite the controversy surrounding many model selection strategies,

and the multitude of diverse approaches in the literature, automatic procedures have been

developed that show remarkably ‘good’ properties. Two such procedures are PcGets and

RETINA (relevant transformation of the inputs network approach). PcGets is based on a

general-to-specific search strategy, starting with a general model capturing the underlying

characteristics of the data and testing downwards, ensuring validity of the reductions at

each stage to result in a congruent, parsimonious, undominated model. RETINA differs

from PcGets in that the Gets methodology is not its main tenet. The program uses a

specific-to-general approach whereby variables are added into the model depending on a

given criterion. RETINA aims to identify a parsimonious set of variables that are likely

to be relevant for predicting out-of-sample.

This chapter brings together the two selection algorithms, reviewing their differing

structures and objectives. RETINA automatically generates nonlinear transformations

and then uses disjoint sub-samples to select, performing a selective search informed by

out-of-sample fit criteria. PcGets requires the user to formulate a general model, perform-

ing an exhaustive search over the full sample using diagnostic and significance testing

as the selection criteria. An assessment of these algorithms on both time-series and

cross-section data is informative as to the comparative performance of the two programs.

Furthermore, extensive Monte Carlo analysis exposes the properties of the two selection

algorithms when selecting nonlinear models. This analysis is requisite in establishing the

use of automatic algorithms to select models for the purpose of forecasting, and will help
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to inform the econometrician as to the most appropriate approach to use when selecting

models, depending on the underlying characteristics of the data.

The chapter is structured as follows. Section 2.2 outlines the RETINA algorithm

and discusses its objectives and performance claims. Section 2.3 outlines the PcGets

algorithm and notes the development that PcGets can handle more variables than ob-

servations. Section 2.4 reviews the differences between the two approaches. Section

2.5 examines the performance of the two programs for applications including the cross-

section data analysed in Perez-Amaral, Gallo and White (2005), and the time-series

data analysed in Hoover and Perez (1999). Section 2.6 presents a range of Monte Carlo

experiments assessing the null and non-null rejection frequencies of both of these auto-

matic model selection procedures when searching over nonlinear functions, for orthogonal

and non-orthogonal models. Finally, section 2.7 concludes, reviewing the importance of

automatic model selection procedures and assessing their use in a nonlinear framework.

2.2 RETINA

RETINA is a method of model selection along the lines of neural network models and

is designed to identify a parsimonious set of regressors to predict out-of-sample. The

algorithm is outlined in Perez-Amaral, Gallo and White (2003). RETINA is useful when

the functional form of the conditional mean of the dependent variable is unknown, testing

for nonlinearities and interaction effects within the modelling procedure. Concavity of

the likelihood is achieved by imposing linearity in the parameters. The method relies

on a sub-sample cross-validation scheme to ensure parsimony. Rather than undertaking

an exhaustive model search, which would require the evaluation of 2m models for m

variables, the number of models is narrowed down by including variables sequentially in

rank order. Collinearity is controlled by ensuring the R2 between the included variables

and the additional variable lies below a specified threshold parameter, λ. This section

describes RETINA and briefly discusses how it works.
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2.2.1 The RETINA selection algorithm

There are four main stages in the RETINA algorithm, including data building and sort-

ing, isolating a candidate model, the search strategy and model selection. Initially, a

set of potentially relevant variables, X, that are thought to contain information about

the conditional mean of the dependent variable, y, are identified and labelled ‘level 0

transforms’. A set of transformed variables, ζ (X) = {W1, ...,WM} , are generated and

denoted ‘level 1 transforms’. There are numerous possible transformations capturing

both nonlinearities and interactions, and RETINA uses the transformations given by:

ζ (X) = Xα
i,hX

β
i,j , for α, β = −1, 0, 1, (2.1)

which results in a set of M potential predictors. Note that further iterations of the

transformations can be implemented and appended to the level 0 and level 1 transforms.1

The sample is randomly divided into three disjoint sub-samples, Nk for k = 1, 2, 3,

from which a candidate model is selected. This is, of course, appropriate only for cross-

section data. As there are six pairwise permutations of the three sub-samples, a candidate

model is chosen for each ordering. To isolate a candidate model for one of the permuta-

tions, the variables in the first sub-sample, Wkj for j = 1, ...,M, are ranked according to

a relevance measure. RETINA uses the sample correlation with y, denoted |ρ̂kj|. Start-

ing with an intercept and the first variable, Wk1, which has the highest absolute sample

correlation, successive variables are added in their ranked order, ensuring the R2 of the

regression of the last added variable on the subset already included lies below a specified

threshold parameter, λ (0 < λ < 1), i.e. include Wkj if R2
kj ≤ λp where R2

kj is derived

from the regression of:

Wkj,i = β0 +

j−1∑

l=1

βlWkl,i + ǫi for i = 1, ...,Nk . (2.2)

This results in a set of variables selected on the basis of λp. Repeating the process for a

grid of values for λ, a set of models will be retained, denoted by ζp (X) for p = 1, ..., ν,

1The transformations include squares, inverses, squared-inverses, cross-products, cross-inverses and
ratios. Some transformations may be excluded in practice because of numerical problems. For example,
the inverse of Xj will be excluded if at least one observation is equal to 0.
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where p determines the value of λ.2

MSFE, given by N−1
k

∑Nk

i=1k
(yi − ŷi)

2 where k denotes sub-sample k, is used to select

between the ν potential models. The models are estimated in the first sub-sample and

the MSFE is computed for the second sub-sample. The candidate model is chosen on the

basis of lowest MSFE in the second sub-sample and is denoted the ‘local best model’.

This model will have a corresponding optimal λ∗. MSFE criterion is used as a means of

sub-sample cross-validation to focus the selection algorithm on out-of-sample predictive

ability.

The third stage of the algorithm aims to select a more parsimonious model by search-

ing over all other possible models. Using the regressors in the local best model, models

are estimated in the second sub-sample by adding in regressors sequentially, starting with

the highest ranked variable. This results in S models, where S is the number of regressors

in the local best model. These regressors are also ranked based on correlations with the

dependent variable in the second sub-sample and are again included sequentially, giving

S−1 models if the rankings differ. Out-of-sample AIC is computed for all 2S−1 models

on the third sub-sample, and the resulting preferred model is chosen on the basis of low-

est AIC. Once the process is repeated for all sub-sample permutations, the final model

is selected based on out-of-sample AIC.3

Perez-Amaral et al. (2003, p.4) state that there is no theoretical justification for the

use of the two different evaluation measures (MSFE and AIC) except that the authors

found the procedure to work well in simulations. AIC is useful when searching for a more

parsimonious model as it penalises large models, which is important when there are a

large number of candidate variables. Both criteria use disjoint sub-samples to obtain an

‘out-of-sample’ evaluation statistic, which avoids over-parameterisation because the use of

disjoint sub-samples is a powerful mechanism for controlling the null rejection frequency,

but at the expense of the non-null rejection frequency (see Hendry and Krolzig, 2004c).

2The λ varies in increments of approximately 0.1, resulting in ν ≈ 9.
3The criterion for selecting the final model depends on the econometrician’s objectives. Perez-Amaral

et al. (2005) state that the model which has the best performance over the whole sample is selected.
Either AIC or cross MSFE (CMSFE) can be used, where CMSFE is computed by using two of the
three sub-samples for estimation and the third for cross-validation. The overall CMSFE is obtained by
summing the MSFEs from each of the three rotations.
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The regressors in the candidate model depend on the order of inclusion of the vari-

ables, determined by absolute correlations with y. If the set of W regressors is larger

than the number of observations in one sub-sample, the search over varying threshold

parameters, λ, becomes essential. For low values of λ the program will work with many

transformations, as only a small number will be selected. As λ gets closer to 1, only the

Nk−1 ranked variables (where Nk is the number of observations in sub-sample k) will be

considered. Methods based on subset selection, as described in section 2.3.1 for PcGets,

would be problematic as the rankings based on |ρ̂kj | apply to all candidate regressors

and this ranking would be destroyed if subsets were considered. The program can be run

using all level 1 transformations including those that are linearly dependent (note that

the candidate model will only contain regressors that are linearly independent because

of the collinearity index) ensuring that any transformation can potentially be included.4

2.3 PcGets

PcGets is a procedure for automatic model selection that is designed to select a par-

simonious undominated representation of a GUM. The GUM is a very general model

that includes all potentially relevant factors, and the Gets procedure tests downwards

from this starting point to select a specific model. Krolzig and Hendry (2001) examine

the properties of the model selection procedure in a linear framework: the LDGP can

be found almost as often commencing from a general model as from the LDGP itself,

and false rejection frequencies of null hypotheses can be controlled, correct rejections of

alternatives are close to the theoretical upper bound and model selection is consistent.

PcGets is described below (see Hendry and Krolzig, 2001, for details).

2.3.1 The PcGets selection algorithm

There are four stages in the PcGets algorithm, including estimation and testing of the

GUM, the pre-search process, the multipath search procedure, and finally post-search

4RETINA contains a number of settings including: (i) selecting from level 0 regressors, providing
a baseline linear model; (ii) selecting from all level 0 regressors and all level 1 transformations; and
(iii) selecting from all level 0 regressors and all level 1 transformations excluding interaction terms, i.e.
ζ (X) = Xα

i,hX
β
i,h for α, β = −1, 0, 1. The new release of RETINA (see Marinucci, 2005) also enables the

inclusion of regressors that interact with level 0 regressors or level 1 transformations, which is useful for
interaction dummies.
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evaluation. Initially, the GUM is formulated based on theory and previous evidence,

which is sufficiently general to nest the LDGP. If there are relevant variables that are

omitted from the GUM, this would be likely to manifest itself as a failure of the mis-

specification tests. A batch of mis-specification tests are performed on the GUM to ensure

congruency, which means that the model matches the unknown LDGP in all measured

aspects (see Bontemps and Mizon, 2003). If there is a failure of congruency, the search

procedure would not commence and the econometrician would need to re-specify the

GUM. Observe that the LDGP is just the DGP for the set of variables under analysis,

and so re-specifying the GUM implies that an alternative LDGP is being approximated.

There are many different LDGPs that exist for varying sets of regressors, which could

potentially all be congruent, implying that alternative congruent models can be obtained

for different information sets. However, for some sets of variables, the targeted LDGP

may be ‘poor’, and this is often detected by evidence of non-constancy.

Pre-search reduction tests are undertaken at loose significance levels to remove highly

insignificant variables. Then the multipath search strategy commences from every feasible

deletion, searching along each path using t-tests and F-tests until no more reductions

can be made, checking the diagnostics at each reduction to ensure congruence. The

resulting models are denoted terminal models, which are tested against their union until

a unique, undominated, congruent model is selected.5 Sub-sample reliability of the final

model is evaluated by using overlapping sub-samples to formulate a reliability weighting,

depending on whether a variable is significant in the two sub-samples and the full sample

or not.

Various search strategies are available in PcGets, including the liberal strategy, the

conservative strategy, the expert-users strategy and the quick modeller. The liberal strat-

egy reduces the non-selection probability, whereas the conservative strategy is tighter,

reducing the non-deletion probability. A conservative strategy is recommended if there

are highly significant variables among many insignificant variables. If there are fewer re-

gressors and the significant variables have smaller t-values, a liberal strategy is suggested.

5For the case in which a unique model does not emerge and the models are mutually encompassing
and undominated, selection of the preferred model is made on the basis of information criteria.
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Both are examined in the empirical examples below. The expert-users strategy allows

for all selection strategy options to be set by the user; and the quick modeller lets the

algorithm make all the modelling decisions, including selecting lag length, seasonals and

outlier dummies, and transforming an I(1) model to a differenced, cointegrated model,

upon which the model selection algorithm is then applied.

An important development is that PcGets can handle more variables, n, than ob-

servations, T . This enables a greater flexibility when examining nonlinear models, as

the number of potential regressors is likely to be large. The GUM cannot be estimated

initially. Instead, the variables are divided into J groups (we take J = 2 in this expo-

sition but the analysis is easily generalised) in which the dimensions of the two groups

are strictly smaller than T (and preferably ≤ T
2 ). PcGets selects the first terminal model

from the first subset of variables, and likewise the second terminal model from the sec-

ond subset. The two terminal models are combined and used as the GUM in the second

estimation stage by PcGets, resulting in a final terminal model. If the variables are not

orthogonal, it is recommended that the variables are ‘crossed-over’. This requires the

two groups of variables, x1,t and x2,t, to be partitioned into two halves, xa
i,t and xb

i,t for

i = 1, 2, and cross-paired, resulting in six combinations, which are denoted the GUMs

for the search procedure outlined above.6

We assert that under the null, for a correctly calibrated nominal significance level α,

nα variables should still be retained on average even if n > T , as discussed below. To

examine the actual properties of selection under the null when there are more variables

than observations, we undertake a simple Monte Carlo experiment in which there are 40

irrelevant variables and 20 observations. The GUM is:

yt =
40∑

i=1

βixi,t + ǫt, ǫt ∼ IN [0, 1] (2.3)

xt ∼ IN40 [0, I] (2.4)

for t = 1, ..., T , where T = 20. The DGP is given by:

yt = vt, vt ∼ IN
[
0, σ2

v

]
. (2.5)

6The ‘crossed pairs’ would include xa
1x

b
1, xa

1x
a
2 , xa

1x
b
2 , xb

1x
a
2 , xb

1x
b
2 and xa

2x
b
2 for J = 2.
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Table 2.1: Monte Carlo results: more variables than observations
Average retained 0 retained 1 retained

Lib Cons Lib/Cons Lib Cons Lib/Cons Lib Cons Lib/Cons

MC 2.03 0.38 1.20 0.09 0.71 0.41 0.31 0.22 0.28
Theory 2.00 0.40 0.40 0.13 0.67 0.67 0.27 0.27 0.27

Notes: n = 40 variables; T = 20 observations; M = 100 replications.

The variables are divided into subsets of 10 and are selected using the liberal and con-

servative strategies. The union of the resulting terminal models is formed and selected

again. We consider three cases: the liberal strategy for both stages, the conservative

strategy for both stages, and the liberal strategy for the first stage and the conservative

strategy for the second stage. Results are reported in Table 2.1.

The average number of variables retained in selection t-testing can be calculated using

the binomial expansion of 1 = (α+ (1 − α))n, and is given by:

n∑

i=0

i
n!

i! (n− i)!
αi (1 − α)n−i = nα, (2.6)

where n is the number of irrelevant variables and α is the significance level. Hence,

with 40 variables, the liberal strategy should retain two variables and the conservative

strategy should retain 0.4 of a variable on average. The Monte Carlo results closely match

these theoretical results despite n > T . The probability that no variables are retained is

(1 − α)n, and the probability of retaining one variable is nα (1 − α)n−1, both of which are

close to the Monte Carlo results, demonstrating that the selection properties of PcGets

are unchanged with more variables than observations, even in the case of small samples.

However, using the liberal strategy followed by the tighter conservative strategy results in

a significance level of approximately 3%, which lies between the liberal and conservative

strategies, suggesting that the significance levels used should be the same for each stage

to ensure correct retention probabilities.

It is also worth noting the distinction between the costs of search and the costs of

inference. The costs of search arise because the GUM is overly general and is tested down

to find a congruent, undominated model. The costs of inference are unavoidable and are

due to non-zero significance levels. They arise because the true specification is unknown

and must therefore be tested for, even if the econometrician (unknowingly) starts with
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the LDGP. Any selection strategy should be assessed on the basis of search costs alone

as the costs of inference are inevitable, regardless of the selection procedure applied.

2.4 A comparison of the two approaches

Although RETINA and PcGets have many similar characteristics, a brief look at their

selection algorithms reveals fundamentally different search strategies. A comparison of

the two programs is provided in Perez-Amaral et al. (2005). This section briefly assesses

the differences between the two algorithms, noting potential criticisms and counter ar-

guments.

First, RETINA was developed with the aim of finding a model that has good out-

of-sample predictive ability, whereas PcGets selects a congruent, dominant, in-sample

model, aiming to locate the LDGP which is nested within the GUM. While in a stationary

world, the preferred forecasting model is the best in-sample model, in a non-stationary

world that is subject to structural breaks, this may not be the case. For time-series

models in particular, a good forecasting model is often one that is robust to breaks

(see Clements and Hendry, 1999). Nonlinear models are likely to be less robust than

linear models, not only because estimation errors can accumulate rapidly, leading to

forecast failure, but also because the interactions between variables are also likely to

be subject to breaks. While RETINA does not insure against non-stationarities and

structural breaks, the properties of RETINA as an “out-of-sample forecasting” tool are

shown to be successful in cross-sectional applications, suggesting that RETINA may be

more applicable to stationary data, and cross-section data in particular.

Specification of the nonlinear functions depends on the degree of interpretability that

the modeller wishes to retain. PcGets specifies the GUM based on the econometrician’s

knowledge and experience, institutional knowledge, past evidence and economic theory.

If the econometrician deems any nonlinear terms to be relevant, these should be included

in the GUM. However, RETINA automates this decision and includes all transformations

that have been specified by the program. A degree of economic interpretation is lost in

RETINA, but as the goal is out-of-sample prediction, this property is not fundamental.

The development of the PcGets ‘Quick Modeller’, which automatically selects the lag
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length for the variables in the GUM, has advanced the automatic procedures embodied

in PcGets, and generating nonlinear regressors as functions of the specified linear variables

would be the next stage in automating the selection algorithm. As there are an infinite

number of nonlinear transforms, an arbitrary cut-off point will be needed. Chapter 3

looks at classes of functions that might approximate economic data.

RETINA uses a specific-to-general approach, in which variables are added into the

model sequentially, whereas PcGets uses a Gets approach that tests downwards from the

GUM. There are numerous problems with the simple-to-general approach, discussed in

Chapter 1. The specific-to-general methodology tends to have an ad hoc termination

point for the search, and alternative path searches are unbounded, implying that the ap-

proach could miss the LDGP. Moreover, the null rejection frequency will not be controlled

as the number of tests conducted will depend on the termination point, and failure of

mis-specification tests is likely at the initial stages, invalidating conventional tests. The

methodology also conflicts with the ideas behind encompassing. RETINA overcomes

these problems by constructing the GUM as a starting point, effectively bounding the

number of paths, and by using a grid search over threshold values as the termination

point for each path search. RETINA also avoids testing, thereby solving the problems of

mis-specification and uncontrolled test size. This does mean that there is no guarantee

that the final model selected by RETINA is congruent, which may or may not be relevant

for forecasting models.

PcGets performs an exhaustive search ensuring that almost all paths are checked,

whereas RETINA uses a selective search determined by correlations. This is particularly

relevant when there are more potential regressors than observations, as the candidate

models will depend on the order of inclusion of variables. RETINA does control for

collinearity through the use of the threshold parameter. An orthogonal specification of

the GUM is preferable in PcGets, as collinearity induces a fall in the non-null rejection

frequency and an increase in the null rejection frequency (see Hendry and Krolzig, 2005,

for Monte Carlo evidence on collinearity). For forecasting time-series, controlling for

collinearity will be essential if there are interactions between collinearity and structural
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breaks (see Hendry and Hubrich, 2006).

RETINA uses three disjoint sub-samples to cross-validate the variables selected. The

PcGets approach performs a post-selection reliability check using sub-samples to evaluate

whether significance is substantive or due to chance. There is a null rejection frequency

gain in the RETINA procedure due to the use of sub-samples. However, Lynch and

Vital-Ahuja (2003) show that the use of sub-samples for model selection delivers no

gain over using tighter significance levels for the full sample. This is because there is

a trade-off between the null and non-null rejection frequencies. The non-null rejection

frequency function is highly nonlinear and depends on the LDGP. Thus, the key question

is whether a null rejection frequency reduction for the whole sample, which is equivalent

to a null rejection frequency gain caused by the use of sub-samples, results in an increase

or decrease in the non-null rejection frequency. Hendry and Krolzig (2004c) examine

the case of non-overlapping sub-samples. With J equal partitions, defining t0 as the

full sample t-value and tj as the jth sub-sample t-value, the full sample t-value can be

calculated as a function of the sub-sample t-values. If τj is the fraction of observations

in sub-sample j (where
∑

j τj = 1), Hendry and Krolzig show that:

t0 ≃
J∑

j=1

√
τjtj >

J∑

j=1

τjtj . (2.7)

The weighted sum of the sub-sample t-values is less then the full sample t-value. If J = 3,

as in RETINA:

t0 ≃ 1√
3

3∑

j=1

tj = 0.58

3∑

j=1

tj. (2.8)

Hence, selecting on the sub-sample t-values, a marginally significant sub-sample t-value

of 2 will imply a full sample t-value of 3.5. A direct relationship between the average

t2-value on the full sample and sub-samples is given by:

E
[
t2j
]
≃ 1

J
ψ2 (2.9)

where ψ is the non-centrality parameter. There is a reduction in the information content

of the sub-sample t-tests, which Hendry and Krolzig (2004c) refer to as the ‘curse of

sub-samples’, implying that locating the LDGP will be more difficult using sub-sample
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procedures. For non-stationary data, if the breakpoints are known, substantial gains

could be achieved by analysing sub-sample information. Conversely, the best in-sample fit

in one sub-sample may well differ from that in a second sub-sample because of structural

breaks. In this case, the use of cross-validation would be more appropriate for post-sample

evaluation as opposed to informing model selection.

While PcGets controls the rejection frequency of the test battery, RETINA does not

address the question of costs of search and costs of inference. Krolzig and Hendry (2001)

and Hendry and Krolzig (2003b) examine the properties of PcGets and show that, even for

small samples, the rejection frequencies of the t-tests are close to their theoretical levels

based on a t-test from the true model. Distinguishing between individual significance

levels, η, and the overall significance level of a test battery of n mis-specification tests,

the overall rejection probability under the null is given by 1 − (1 − η)n, which can be

controlled. RETINA selects variables on the basis of out-of-sample MSFE rather than

statistical tests, reflecting the differing objectives of the two procedures.

2.5 Applications

This section assesses evidence on RETINA and PcGets. First, the results in Perez-

Amaral et al. (2005) (hereafter referred to as PGW) are summarised and re-assessed in

light of some important considerations, including the presence of substantial outliers,

the arbitrary re-scaling of the data, the assessment of forecast ability based on in-sample

rather than out-of-sample evaluation, and the selection algorithm for nonlinear functions.

Secondly, we assess a time-series application using data from Hoover and Perez (1999)

(hereafter referred to as HP), evaluating both algorithms’ ability to recover the known

LDGP under the null of linearity.

2.5.1 Cross-section data: Demand for business toll telephone services

PGW assess the two programs using data from a cross-section of US firms regarding the

demand for business toll telephone services in 1997. The authors model the duration

of intra-lata (within local access and transport area) calls (denoted INTRA) with the

explanatory variables including the number of business lines (bus), hunting lines (hun),

48



Evaluating PcGets and RETINA

0 200 400 600 800 1000 1200

2000

4000

INTRA 

0 200 400 600 800 1000 1200

20

40

60

bus 

0 200 400 600 800 1000 1200

2.5

5.0

7.5

10.0
hun 

0 200 400 600 800 1000 1200

20000

40000

60000
sales 

Figure 2.1: Cross-sectional data including INTRA, bus, hun and sales.

sales of the company (sales), number of employees working locally (emt), total number of

employees for the business (emh), physical size of the business proxied by square feet of

the premises (sqft) and population of the business area location (pop). The sample size

is 1,217 and the data are initially re-scaled to avoid large differences in the magnitudes

of the variables. Observations are randomly assigned to the three sub-samples and the

models are assessed on the basis of two criteria: AIC and CMSFE. The data are recorded

in Figures 2.1 and 2.2.

Correcting for outliers

There are substantial outliers in the data, and the nonlinear terms retained by PGW

primarily capture these outliers by proxying dummies, rather than by modelling the

nonlinear characteristics of the data. Using a standard method of outlier removal in

which all observations of INTRA outside the range (µ̂± 2σ̂) are removed, 22 observations

would be excluded, resulting in a substantial reduction in variance. However, this crude

method of outlier removal has many problems. The standard error is dependent on the

outliers and so the rule determining exclusion is a function of the excluded variables, and

the method removes extreme observations in the dependent variable rather than extreme

observations in the residuals. This may remove the underlying nonlinearity instead of

removing just the outliers.
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Figure 2.2: Cross-sectional data including emt, emh, sqft and pop.

Hendry et al. (2004) have proposed the use of saturation with indicator variables to

detect outliers, utilising the fact that PcGets can handle more variables than observa-

tions. The testing procedure initially generates indicator variables for every observation,

It = 1{t=ti}∀T . A regression of y on all indicators would result in a perfect fit. In-

stead, the indicators are divided into J equal subsets which form the initial GUMs and

PcGets selects the significant indicators from each subset, which are then stored.7 The

joint model is formulated as the union of the terminal models and PcGets re-selects the

indicators. Under the null that there are no outliers, αT indicators will be retained on

average for a significance level α.

If there are n potentially relevant variables and T indicators, then n+T >> T . Using

the technique in which the variables are divided into subsets, nk for k = 1, ...,K and Tj

for j = 1, ..., J , we can formulate JK GUMs in which all cross pairings of nk + Tj (∀j, k)

are included. The same selection procedure is applied, but by selecting the outliers and

the relevant variables at the same time the indicator saturation procedure is effectively

applied to the residuals of the dependent variable as opposed to the variable itself, thereby

avoiding spurious retention of indicators. The process can be performed iteratively if the

union after the first reduction stage is still larger than T .

The nonlinear general model consists of 86 explanatory variables. These include an

7An intercept is also included in the GUMs.
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intercept, the seven explanatory variables and all level 1 transformations, excluding any

transformations that result in numerical problems. As some observations of bus and hun

are 0, inverse transformations of these explanatory variables are excluded. We generate

J = 6 subsets of indicators and specify the six GUMs (with 288 or 289 regressors), which

include an intercept, all explanatory variables and T
J

indicator variables. A conservative

strategy is used given the large number of regressors, and the block F-test is adjusted to

avoid missing a significant variable among a plethora of insignificant indicators. Hence,

the final selected model should indicate the outliers at the 1% significance level. Forty-

six indicators are retained (< 4% of observations), with an average t-value of 5.7. The

largest t-value is 17.6, indicating that there are substantial outliers in the data. The

extreme observations that remain correspond to nonlinearities in the data that can be

explained by the explanatory variables, providing evidence for nonlinearity. The removal

of outliers has a significant effect on the models retained; there is a dramatic reduction

in the forecast error and fewer nonlinear regressors are retained than in PGW.

As a benchmark, we examine the linear model in which just the seven explanatory

variables and an intercept are included in the general model. Applying the indicator

saturation test to this model, using J = 3 subsets of indicators, 27 indicators are retained

in the final model, of which the average t-value is 8.9 and the highest t-value is 34. The

inclusion of the nonlinear functions reduces the significance of the outliers on average,

but increases the number of outliers identified. Almost all of the outliers identified in the

linear model are common to the nonlinear model as well.

Variable transformation

PGW initially re-scale the data as there are large differences in the scales of the vari-

ables. The scales are given in (2.10). The problem with this arbitrary re-scaling is that

when forming the matrix of regressors, X, using all level 1 transformations, the diagonal

elements of the X′X matrix are still very different. One solution would be to take a

log-transformation to re-scale the data. This nonlinear transformation has the benefit of

downweighting the largest observations which are dominating other features. As bus and

hun both take the value of 0 for some observations, the transformation ln (x+ 1) is used
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for these two variables. The problem with the log-transformation is that the forecasts

of ln (INTRA) would have to be transformed back to levels and this will generate some

sub-optimality. In the analysis below, both levels and logs data are considered.




INTRA ÷10
bus No change
hun ×10
sales ÷1, 000, 000
emt ÷10
emh ÷10
sqft ÷1, 000
pop ÷100, 000




. (2.10)

The data are randomly re-ordered to ensure homogeneous subsets. A plot of the

data provides evidence of heteroskedasticity, with clusters of observations with a larger

variance at the beginning and end of the sample, and the random re-ordering of the data

removes any systematic component that may be causing heteroskedasticity.

Table 2.2 records descriptive statistics of both the levels and log-transformed data,

based on the randomly re-ordered data set. In order to assess the forecasting performance

of the models, the final quarter of the observations are excluded from the outlier analysis.

These observations are retained to ensure an out-of-sample forecasting analysis. The

indicator saturation tests are performed over a sample of 913 observations. For the

levels data, 21 outliers are identified for the linear model and 31 for the nonlinear model.

Sixteen of these outliers are common to both models. Taking a log-transformation results

in fewer outliers; 11 in the linear model and 13 in the nonlinear model, eight of which are

common to both models, implying that few are due to the nonlinear functions. Removing

outliers based on the µ̂ ± 2σ̂ rule would have led to 65 observations being removed for

the log-transformed data, which is a much more stringent strategy.

Forecasting out-of-sample

When using the full sample to derive a model, the forecast errors generated from the

model will be biased downwards because information in the forecast period will be in-

cluded in the model. Instead, a forecast evaluation is required in which the forecasts

are assessed on out-of-sample data. Hence, analogous to the indicator saturation tests,
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Table 2.2: Descriptive statistics of the dependent variable, INTRA
Mean Standard Deviation
In-sample Forecast In-sample Forecast

INTRA 8.455 7.803 25.461 24.032
INTRA exc. linear outliers (21) 6.722 7.803 20.613 24.032
INTRA exc. nonlinear outliers (31) 6.551 7.803 22.695 24.032
ln(INTRA) 3.179 3.107 1.667 1.764
ln(INTRA) exc. linear outliers (11) 3.220 3.107 1.618 1.764
ln(INTRA) exc. nonlinear outliers (13) 3.226 3.107 1.615 1.764

Notes: (.) denotes number of outliers.

the models are selected using the first 913 observations. Rather than assess the models

on CMSFE as in PGW, we use root mean square forecast error (RMSFE) and mean

absolute percentage error (MAPE):

RMSFE =

√√√√ 1

H

N+H∑

i=N+1

(yi − ŷi)
2 (2.11)

MAPE =
100

H

N+H∑

i=N+1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (2.12)

These statistics are computed for the final 304 observations. To assess forecast accu-

racy relative to the in-sample model fit, we can compare the equation standard error

augmented by the standard deviation of the indicators to the RMSFE.

To determine whether the forecasts are statistically different, we use a test based

on the Morgan-Granger-Newbold (MGN) test of comparative forecast accuracy (see

Clements and Hendry, 1998b, p.323).8 As this test is oversized if the errors are not

normally distributed, we use a modified test developed by Harvey et al. (1997). Defin-

ing the forecast errors of two competing forecasts at N + h as êN+h and ẽN+h, we can

undertake an orthogonalising transformation given by:

u1,N+h = êN+h − ẽN+h (2.13)

u2,N+h = êN+h + ẽN+h (2.14)

Setting this in a regression framework, a test for forecast differences is equivalent to a test

of zero correlation between u1,N+h and u2,N+h, which can be tested with the hypothesis

8The MGN test is a test of equality of MSFE, which is equivalent to equality of variances if we make
the assumption that the forecast errors are unbiased. Other assumptions are that the forecast errors are
normally distributed and serially uncorrelated.
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H0 : β = 0 in the regression:

u2,N+h = βu1,N+h + ǫN+h, for h = 1, ...,H. (2.15)

The test statistic is:

S = β̂



∑N+H

i=N+1 u
2
1iǫ̂

2
i(∑N+H

i=N+1 u
2
1i

)2




− 1
2

∼
app

tH−1 (0) (2.16)

The null distribution is not exact but the test is shown to have good properties in large

samples.9 The test enables two competing forecasts of the same phenomena to be judged

as to whether the seemingly preferable forecast based on MSFE (which is equivalent

to minimum variance under the assumption of unbiased forecasts) is a better forecast,

or whether such an outcome is due to chance. Rejection of the null of equal forecast

accuracy implies the forecast with the lower MSFE is a statistically superior forecast,

based on the MSFE criterion.

Strategies for searching over nonlinear functions

Various strategies need to be considered if many nonlinear functions are included in the

GUM. Retaining many nonlinear functions in the model is likely to be detrimental to

forecasting as the model will lose robustness. However, for linear models, Hendry and

Hubrich (2006) find that variables with even relatively insignificant coefficient estimates

should contribute to forecasting, although this is derived from the theory of predictability

and therefore abstracts from many of the problems associated with forecastability.

Given their large number, it is important to narrow down the number of nonlinear

regressors. The ideal strategy would be to use more stringent significance levels for the

nonlinear functions compared to the linear functions, testing both sets of regressors within

the same procedure. Two methods that are used in the application include pre-searching

over nonlinear functions and discarding subsets of nonlinear functions based on block

F-tests.

A pre-search over the nonlinear functions is conducted by regressing the nonlinear

9H = 304 in this application.
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functions on an intercept and the linear functions, retaining the residuals: an application

of the Frisch and Waugh (1933) theorem. PcGets is then used to test the significance of

these residuals using a stringent search strategy (significance level of the individual t-tests

of 0.005). The selected residuals are replaced by their nonlinear functions in the GUM,

which also contains all linear functions, and testing is conducted at standard significance

levels. This technique is applied to the levels data, ensuring a tighter selection criterion

for the nonlinear functions. Without applying the pre-search strategy, 25 regressors are

retained for the liberal strategy. This is reduced to 11 when using a significance level of

α = 0.005 for the nonlinear functions, with just four nonlinear functions being retained,

all of which have |t|s > 10.

The level 1 transformations include various classes of functions including squares,

inverses, cross-products, etc. The number of regressors in the GUM may be narrowed

down by undertaking block F-tests on these classes of functions, deleting any insignificant

sets of regressors and thereby reducing the number of variables that the algorithm needs

to search over. Block F-tests are computed for the log-transformed data, testing various

subsets of the GUM, and a sequential procedure is followed until the classes of nonlinear

functions that are significant are retained. These then form the GUM, along with the

linear functions, and standard testing procedures are applied.

Results

Table 2.3 records PGWs results for comparison.10 A linear GUM, consisting of an in-

tercept and the seven explanatory variables, is examined. Four models are computed,

including a linear regression with no selection (denoted bench), two PcGets models using

the liberal and conservative strategies respectively, and RETINA with just the level 0

variables. The GUM for the nonlinear models includes all level 1 transforms excluding

any regressors with inverses of 0, resulting in 86 variables in the GUM. The results show

that, for the linear models, RETINA has a better forecast performance, whereas PcGets

performs better for the nonlinear models, which is remarkable as RETINA is designed

explicitly to select nonlinear forecasting models whereas PcGets is currently designed to

10Parameter estimates are not reported, see PGW for a full outline of the results.
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Table 2.3: Perez-Amaral et al. (2005) results for cross-sectional data.
Linear Models Nonlinear Models

Linear PcGets RETINA PcGets RETINA

bench Lib. Cons. level 0 Lib. Cons. AIC CMSFE

CMSFE 909.88 896.11 903.08 770.86 507.42 498.63 572.01 518.00

AIC 5.443 5.440 5.446 5.459 4.839 4.839 4.932 4.947

R2 0.603 0.603 0.600 0.595 0.785 0.784 0.757 0.756

Parameters 8 6 5 5 19 18 9 9

Notes: Lowest CMSFE and AIC are highlighted in bold.

select linear models. Furthermore, non-parsimony is not detrimental to forecasting, as

PcGets has an extra 9 or 10 parameters in the nonlinear model compared to RETINA,

and yet its forecasting performance is superior.

The results for the re-scaled data given by (2.10) (denoted levels) are reported in Table

2.4 and the results for the log-transformed data are reported in Table 2.5. Examining

the levels models, which are comparable to PGW, a notable feature of the results is that

parsimony is obtained by removing outliers. The fit is also improved. The nonlinear

models selected by PcGets have the highest R2 and the lowest AIC, suggesting that they

have the best in-sample fit. Only one nonlinear variable that is retained is the same as in

PGW. The t-statistics for the nonlinear functions retained by PcGets are all > 10, and yet

RETINA does not retain any of these variables. Conversely, the variable that RETINA

does retain has a t-value of 30, which is not retained by PcGets. The explanation for

these results is collinearity between those in PcGets and that in RETINA, and arises

from RETINA’s selection criterion.

In terms of forecasting performance, the nonlinear models selected by PcGets have

the lowest MAPE and RMSFE, suggesting that the forecasting performance of these

models is superior. A test of forecast error equivalence is reported in Table 2.6, in

which the Harvey et al. (1997) statistic is recorded in the lower diagonal for the levels

model. The results show that none of the forecasts are statistically different from each

other when evaluated in terms of MSFE. However, all other forecasts lie outside the

±2 standard error bands of the MAPE of the PcGets nonlinear models, suggesting that

these forecasts are superior. RMSFE is not unit-free or robust to extreme observations,

implying that comparisons of forecasts based on RMSFE are difficult. The results do,
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Table 2.4: Models selected for the demand for business toll telephone services
Levels Linear Models Nonlinear Models

Linear PcGets RETINA PcGets RETINA

benchmark Lib. Cons. level 0 Lib. Cons. level 1

RMSFE 14.00 14.05 14.20 14.23 13.74 13.70 14.54
MAPE 1084.2 1016.8 942.13 1020.4 766.42 752.45 1169.7
AIC 4.521 4.515 4.518 4.528 4.298 4.301 4.561

R2 0.786 0.786 0.785 0.783 0.859 0.858 0.815
Parameters 8 4 3 3 11 10 3

Intercept −0.161
(0.555)

0.991
(0.464)

3.190
(0.551)

3.303
(0.550)

3.991
(0.333)

Bus 1.182
(0.174)

1.216
(0.129)

1.305
(0.123)

1.300
(0.152)

2.238
(0.152)

2.098
(0.137)

Hun 0.067
(0.024)

0.065
(0.022)

0.077
(0.021)

−0.205
(0.026)

−0.192
(0.025)

Sales 4.099
(34.041)

−67.85
(31.46)

Emt 0.022
(0.067)

−0.482
(0.086)

−0.482
(0.086)

Emh 1.864
(0.097)

1.880
(0.056)

1.884
(0.056)

1.883
(0.060)

−0.865
(0.242)

−0.933
(0.241)

−0.992
(0.119)

Sqft 0.092
(0.046)

0.096
(0.042)

−0.752
(0.100)

−0.764
(0.100)

Pop 0.210
(0.137)

(emh)2 −0.594
(0.044)

−0.588
(0.044)

(sqft)2 0.032
(0.003)

0.032
(0.003)

hun× emh 0.155
(0.008)

0.156
(0.008)

emt× emh 0.546
(0.040)

0.541
(0.040)

bus× sqft 0.184
(0.006)

Notes: Data are in levels, scaled using the rules in equation (2.10). Evaluation statistics are
reported in rows 1-5 with the best forecasting performance highlighted in bold; coefficient
estimates are reported in the remaining rows with standard errors in parentheses.
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Table 2.5: Log-transformed models for demand for business toll telephone services
Logs Linear Models Nonlinear Models

Linear PcGets RETINA PcGets RETINA

benchmark Lib. Cons. level 0 Lib. Cons. level 1

RMSFE 1.643 1.649 1.649 1.645 1.642 1.649 1.644
MAPE 185.63 186.66 186.66 183.63 186.63 187.48 186.54
AIC 0.774 0.768 0.768 0.779 0.742 0.746 0.761

R2 0.179 0.179 0.179 0.170 0.200 0.195 0.183
Parameters 8 3 3 3 5 4 3

Intercept 0.333
(0.449)

1.693
(0.122)

1.636
(0.120)

2.196
(0.101)

Bus 0.791
(0.109)

0.894
(0.097)

0.894
(0.097)

0.877
(0.099)

1.373
(0.107)

Hun 0.102
(0.087)

Sales 0.035
(0.026)

Emt 0.089
(0.165)

0.288
(0.052)

Emh 0.125
(0.172)

0.219
(0.056)

0.219
(0.056)

0.284
(0.056)

Sqft 0.163
(0.051)

0.224
(0.016)

0.224
(0.016)

0.208
(0.016)

Pop 0.014
(0.025)

(bus)2 0.328
(0.036)

bus× hun −0.371
(0.110)

−0.610
(0.097)

hun× emh 0.256
(0.064)

0.412
(0.052)

emt× sqft 0.020
(0.006)

bus÷ sqft 8.657
(0.927)

Notes: Data are log-transformed. Evaluation statistics are reported in rows 1-5 with the
best forecasting performance highlighted in bold; coefficient estimates are reported in the
remaining rows, with standard errors in parentheses.

Table 2.6: Harvey et al. (1997) test statistics of equivalent forecast errors
Linear Linear Linear Linear Nonlin Nonlin Nonlin
bench Lib. Cons. RETINA Lib. Cons. RETINA

Linear bench - -0.619 -0.731 -0.209 0.030 -0.366 -0.036
Linear Lib. -0.662 - -0.627 0.208 0.318 -0.124 0.304
Linear Cons. -0.756 -1.273 - 0.240 0.337 -0.105 0.329
Linear RETINA -0.781 -1.535 -0.171 - 0.184 -0.282 0.174
Nonlin Lib. 0.719 0.733 0.788 0.808 - -0.725 -0.063
Nonlin Cons. 0.770 0.762 0.815 0.836 0.453 - 0.390
Nonlin RETINA -0.093 0.096 0.136 0.929 -0.360 -0.372 -

Notes: Levels results are reported below the diagonal and log-transformed results are re-
ported above the diagonal.
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however, suggest that the PcGets selection procedure with a pre-search over nonlinear

functions yields ‘good’ forecasts.

For the log-transformed results, even more parsimony is attained in PcGets. Block

F-tests on the classes of functions removed both the squared-inverses and cross-inverses

from the GUM. Again, the nonlinear PcGets liberal model has the best in-sample fit based

on R2, with the lowest AIC. The linear RETINA model produces the best forecasts based

on MAPE and the PcGets liberal strategy performs best on RMSFE. The forecasts are

very comparable and it is difficult to rank the models definitively. The upper diagonal of

Table 2.6 records the forecast comparison statistics, none of which are significant. Only

one of the nonlinear variables is the same for PcGets in the levels and logs models, with

none for RETINA, indicating there are no clear relevant variables and various nonlinear

functions will proxy the underlying characteristics of the data.

There is a vast improvement from removing outliers and ensuring a homogeneous data

sample. In addition, forecast accuracy must be conducted on out-of-sample forecasts or

the results will be biased. Finally, we advocate stringent critical values for nonlinear

functions as these can drive forecasts badly awry, but looser critical values are required for

the linear functions. Overall, the results improve on those presented in PGW, although

the forecast errors are all quite similar. However, the null rejection frequency costs of

searching for a nonlinear model are small for RETINA, suggesting that if it is unknown

whether the LDGP contains nonlinearities and interaction terms, the use of RETINA

could be informative.

2.5.2 Time-series data: Hoover and Perez (1999)

To assess the programs on time-series data, we apply both RETINA and PcGets to

a drawing from the Hoover and Perez (1999) data set. The data are outlined in Table

2.11 in the Appendix. We examine four of the DGP specifications outlined in HP, which

are given in equations (2.17) to (2.20).
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y1,t = 130ut (2.17)

y2,t = 130u∗t (2.18)

y7,t = 1.33∆FM1DQt + 9.73u∗t (2.19)

y9,t = 0.67∆FM1DQt − 0.023∆2GGEQt + 4.92u∗t (2.20)

where: ut ∼ N [0, 1] (2.21)

u∗t = 0.75u∗t−1 + ut

√
7/4. (2.22)

The linear GUM for RETINA and PcGets includes an intercept, variables dated t and

t − 1 of ∆DCOINC, ∆2GD, ∆2GGEQ, ∆GGFEQ, ∆2GGFR, ∆GNPQ, ∆GYDQ,

∆GPIQ, ∆2FMRRA, ∆2FMBASE, ∆FM1DQ, ∆FM2DQ, ∆FSDJ, ∆FY AAAC,

∆LHC, ∆LHUR, ∆MU, ∆2MO, ∆GCQ, and the lagged dependent variable, giving a

total of 40 regressors. The sample is 1960q2-1995q1, and 20 observations are retained

for an out-of-sample forecast assessment, giving an in-sample period of 1960q2-1990q1

(T = 120 observations). The nonlinear GUM for RETINA and PcGets includes the

linear GUM as outlined and the level 1 transformations given by the squares, inverses,

and inverse-squares. The interaction terms including cross-products, cross-inverses and

ratios are excluded because of the limited number of observations. In total there are 157

regressors in the nonlinear GUM, including the nonlinear transforms of the lagged de-

pendent variable, but we exclude the squared-inverses of ∆DCOINC, ∆2GD, ∆GYDQ,

∆GGFEQ, ∆2FMBASE, ∆FM2DQ, ∆LHC and ∆LHUR, because they all have ob-

servations that exceed 2.5e9 causing numerical estimation problems. This results in 141

regressors. For the PcGets model selection, we partition the regressors into four groups

and all pairwise combinations of the groups are implemented as GUMs, resulting in six

combinations, as outlined in section 2.3.1. The specific models are then combined to

produce the final GUM.

A summary of the results is reported in Table 2.7, with full results reported in Tables

2.12 to 2.15 in the Appendix. ‘Relevant’ refers to the number of relevant variables retained

and ‘Irrelevant’ refers to the number of irrelevant variables that are retained. Note that
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Table 2.7: Number of relevant and irrelevant variables retained for the DGPs based
on Hoover and Perez (1999)

Linear Models Nonlinear Models

PcGets RETINA PcGets RETINA
Lib. Cons. Lib. Cons.

y1,t [0]

Relevant - - - - - -
Irrelevant 4 3 2 12 4 2

y2,t [0]

Relevant - - - - - -
Irrelevant 3 1 2 9 1 2

y7,t [1]

Relevant 1 1 1 1 1 1
Irrelevant 3 0 1 7 3 1

y9,t [2]

Relevant 1 1 1 1 1 1
Irrelevant 3 0 1 8 2 1

Notes: [.] denotes the number of variables in the DGP.

RETINA always retains the intercept and therefore it will always retain one irrelevant

variable given the DGP specifications. RETINA tends to deliver a more parsimonious

model than the PcGets liberal strategy when the nonlinear transformations are included

in the GUM. The RETINA models chosen when the nonlinear functions are included are

identical to those chosen when just the linear model is examined, indicating that the cost

of testing for nonlinearity is low in RETINA if the DGP is linear. The sub-sample cross-

validation procedure is analogous to imposing very stringent critical values, resulting in

more parsimonious models. Given the DGPs in HP, this parsimony is advantageous.

The linear PcGets model selected using the conservative strategy identifies the DGP for

model 7. Interestingly, neither algorithm retains ∆2GGEQt, which is a relevant variable

in model 9.

The PcGets liberal strategy tends to overfit when nonlinear functions are included

in the GUM. The strategy implemented should be adapted to the problem under con-

sideration, and hence a conservative or more stringent strategy would be recommended

when there are many nonlinear functions that have a high probability of being irrelevant.

While the nonlinear models selected using the conservative strategy retain slightly more

regressors than in the linear case, the costs of searching for nonlinear functions are not

too high and can be controlled in PcGets. It is essential that the data pass diagnostics as
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nonlinear terms may be kept to ensure congruence, even if they are insignificant. Overall,

few nonlinear terms were retained.

RETINA and PcGets are similar with regard to forecast accuracy. The overfitted

nonlinear model selected by the PcGets liberal strategy has the lowest RMSFE for model

1 but it has a substantially larger MAPE compared to the other models. This is due to the

retained nonlinear functions generating substantial forecast outliers which are magnified

by the MAPE criterion. For model 2, RETINA performs best based on RMSFE criterion

but the PcGets conservative strategy outperforms RETINA on MAPE. The forecasts

from both models are similar and it is difficult to draw substantive conclusions from

the results. The models identifying the DGP have the lowest RMSFEs for model 7

(the intercepts in the RETINA models are negligible) but observe that the overfitted

nonlinear model beats the DGP when assessing the forecasts on MAPE. This indicates

that parsimonious models are not always preferable. A similar result is observed in model

9, with the nonlinear model chosen using the liberal strategy reporting the lowest MAPE.

To conclude, the results of both PcGets and RETINA are promising. RETINA tends

to underfit, which may be useful for forecasting purposes as parsimonious models may

be more robust. This is not necessarily the case as a less parsimonious model could be

made robust, for example, by differencing. Simplicity in itself is not a necessary element

of forecasting models but robustness often is. RETINA’s more parsimonious criteria is

driven by the use of disjoint sub-samples and the search strategy stage in which variables

from the local best model are sequentially added in and chosen on the basis of AIC,

although note that AIC does overselect asymptotically. The costs of search for PcGets

are given in (2.6): for the linear GUM (n = 40) two variables will be retained on average

at the 5% significance level but this increases to seven variables for the nonlinear GUM

(n = 141). Campos et al. (2003) observe the need for significance levels to vary with

both sample size and the number of candidate variables.
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2.6 Monte Carlo evidence on RETINA and PcGets

This section provides a formal evaluation of the properties of nonlinear model selec-

tion, measuring the retention and deletion probabilities of RETINA and PcGets. One

concern is that the inclusion of nonlinear regressors in the GUM may result in over-

parameterisation of the model. This could occur due to commencing with a large GUM,

in which case tighter significance levels should be used, or it could be driven by ‘infer-

ence fragility’, whereby the model is sensitive to keeping one variable which may have low

significance. Once the marginal variable is removed, the significance of other correlated

variables tends to fall. Other problems with nonlinearity include a potentially high level

of collinearity between variables and their corresponding nonlinear transformations, and

the presence of outliers whereby nonlinear functions proxy indicator dummies to capture

these outliers.

The design of the Monte Carlo experiments is kept simple for tractability. There are a

multitude of nonlinear and interaction terms that could be examined but the experiments

concentrate on those generated by RETINA. We assess an orthogonal model in which the

regressors are generated as white-noise processes, and a non-orthogonal model in which

the regressors are independent normal innovation processes with a mean of ten.

Non-existence of moments is a concern with the orthogonal model. Nonlinear trans-

formations such as the inverse or squared-inverse can explode with a zero-mean process.

Observe that in Monte Carlo experiments, the existence of moments can be crucial. By

increasing the number of replications, the probability that a draw will take a value very

near zero is increased. For a small number of replications, the probability that a draw

is zero is negligible, but this increases with the number of replications M . Hence, there

is a dichotomy between standard Monte Carlo theory that requires an increase in the

number of replications to determine asymptotic results and the problem of increasing

the probability of a zero draw: see Sargan (1982). The non-orthogonal model ensures

the existence of moments, but this model generates substantial collinearity between the

linear and nonlinear functions.
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2.6.1 Monte Carlo evidence on the orthogonal model

To assess the performance of PcGets and RETINA on orthogonal data, providing a

baseline case, we examine a white-noise DGP based on Krolzig and Hendry (2001). The

orthogonality of regressors enables population t-values to be easily calculated. The DGP

is given by:

yt =
5∑

k=1

βk,0xk,t + β6,0x
2
1,t + β7,0x2,tx3,t + β8,0x4,tx5,t + εt, (2.23)

εt ∼ IN [0, 1]

xt = vt, vt ∼ IN10 [0, I] for t = 1, ..., T , (2.24)

where ten white-noise processes are generated, denoted xi,t, five of which feature in the

DGP. Two DGPs are assessed, including a linear DGP in which we set β6,0 = β7,0 =

β8,0 = 0, and a nonlinear DGP in which βi,0 6= 0 for i = 1, ..., 8. We can calculate β by

specifying t-values, due to orthogonality. A t-test of H0 : βk = 0 is given by:

tk =
βk

σβk

. (2.25)

As βk = σxky/σ
2
xk

and σ2
βk

= σ2
ε/
(
Tσ2

xk

)
, this implies:

tk =
βk

σβk

=
βk√

σ2
ε/
(
Tσ2

xk

) =
√
Tβk

σxk

σε
. (2.26)

As σε = 1 and σxk
= 1 for xk, population t-values of 2, 3, 4, 6 and 8 result in β1,0 = 2/

√
T ,

β2,0 = 3/
√
T , β3,0 = 4/

√
T , β4,0 = 6/

√
T , and β5,0 = 8/

√
T respectively.

For the nonlinear DGP, to determine β6,0 we calculate σ2
xk

as:

σ2
xk

= E
[(
x2

1t

)2]
= E

[
x4

1t

]
= 3

∴ tk =
√

3Tβk (2.27)

and so we shall set β6,0 = 4/
√

3T for a t-value of 4. For β7,0 and β8,0:

σxkxj
= E

[
(x1tx2t)

2
]

= 1

∴ tk =
√
Tβk (2.28)
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and so we shall set β7 = 3/
√
T and β8 = 4/

√
T for t-values of 3 and 4 respectively.

The first experiment that we undertake is the benchmark linear model in which the

GUM is an ADL(1,1) model which includes, as non-DGP variables, the lagged endogenous

variable, yt−1, the strongly exogenous variables, x6,t, ..., x10,t, and the first lags of all

regressors:

yt = π0,1yt−1 +
10∑

k=1

1∑

i=0

πk,ixk,t−i + π0,0 + ut, ut ∼ IN
[
0, σ2

u

]
. (2.29)

In (2.29), 17 out of the 22 regressors are nuisance, as β6,0 = β7,0 = β8,0 = 0.

The second experiment examines a nonlinear general model based on the level 1

transformations generated by RETINA. (2.30) outlines the GUM: there are a total of 62

regressors, 57 of which are nuisance using the linear DGP.11

The final experiment that we undertake assesses the properties of the selection al-

gorithms when the DGP contains the nonlinear terms (βi,0 6= 0 for i = 6, 7, 8) and the

GUM is nonlinear, as given in (2.30). In this case, 54 of the 62 regressors are nuisance.

yt = π0,1yt−1 +

10∑

k=1

1∑

i=0

πk,ixk,t−i +

5∑

k=1

γkx
2
k,t +

5∑

k=1

δk

(
1

xk,t

)

+

4∑

j=1

5∑

l=j+1

κjl (xj,txl,t) +

4∑

j=1

5∑

l=j+1

µjl

(
1

xj,txl,t

)

+

4∑

j=1

5∑

l=j+1

φjl

(
xj,t

xl,t

)
+ π0,0 + ǫt, ǫt ∼ IN

[
0, σ2

ǫ

]
. (2.30)

In the Monte Carlo experiments, two sample sizes are examined, T = 100 and T =

1, 000. A further 20 and 200 observations are generated respectively to assess out-of-

sample forecast accuracy. M = 100 replications are undertaken to reduce the probability

of a zero draw.

Results for the orthogonal Monte Carlo experiments

Tables 2.8 and 2.9 record the selection probabilities for a sample size of 100 and 1,000

respectively. The upper half of the tables record overview statistics, including the prob-

11In the GUM, the squared-inverses are excluded because the white-noise processes have a zero mean.
Also, to narrow down the number of regressors in the GUM, we discard the nonlinear transformations
for the strongly exogenous variables x6,t, ..., x10,t, only 5C2 ratios are included in the GUM as opposed
to all permutations, and the first lags of the level 1 transformations are also excluded.

65



Evaluating PcGets and RETINA

ability that the exact DGP is selected, the probability that an irrelevant variable is

included in the selected model, the probability that a relevant variable is excluded from

the selected model, the average number of relevant variables retained (denoted non-null

rejection), the average number of irrelevant variables retained (denoted null rejection),

and finally, two forecast statistics including RMSFE and mean absolute error (MAE).

Note that MAPE is not recorded because division by near-zero observations will result

in an erratic statistic. The lower half of the tables record the selection probabilities for

the non-central t-statistics. As well as recording results for the three experiments out-

lined above, the retention probabilities for a single t-test on the regressors in the DGP

with no selection are reported (denoted simulated: these experiments are undertaken in

PcNaive, see Doornik and Hendry, 2001b, at the 5% and 1% significance level, providing

the benchmark ‘inference costs’ against which PcGets and RETINA should be judged).

Figure 2.3 records the probability of retaining the variables in the GUM for the

linear model, with the horizontal axis representing the variables, commencing with 1 =

yt−1, 2 = xt, 3 = xt−1, to 22 = intercept. The retention probabilities of all non-DGP

variables are fairly constant, at approximately 5% for the liberal strategy and 1% for

the conservative strategy. The PcGets selection probabilities are in accordance with the

results of Krolzig and Hendry (2001). As RETINA always retains the intercept, retention

probabilities for RETINA are calculated excluding the intercept to avoid biasing the null

rejection frequency upwards. The retention probabilities for RETINA are lower than

the conservative strategy and the probability of retaining relevant variables is also much

lower for RETINA, particularly for low non-centralities. With a non-centrality of 8, the

retention probabilities are near unity for both programs. RETINA has a much more

stringent selection criterion than the PcGets conservative strategy, and so to accurately

compare the two algorithms PcGets would ideally be run at RETINA’s null rejection

rate to see which has a higher power. As RETINA does not have an explicit, constant,

null rejection frequency, this is infeasible. While the probability of excluding a relevant

variable is much higher for RETINA, the probability of including an irrelevant variable is

much lower, demonstrating the trade-off between null and non-null rejection frequencies.
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Figure 2.3: The probability of retaining the GUM variable in the specific model, for the
linear GUM and linear DGP

Figure 2.4 plots the retention probabilities of the variables in the GUM for the linear

DGP and nonlinear GUM.12 The inclusion of a substantial number of nonlinear and

interaction terms does not dramatically alter the properties of either the PcGets or

RETINA selection algorithms. The DGP is found less often than the linear case, in

accordance with a larger GUM. Also, the probability of not retaining a DGP variable

increases, as does the probability of including non-DGP variables, although this effect is

much less marked for RETINA. More stringent strategies are preferable for this GUM,

because the null rejection frequency becomes more important as the number of variables

increase. A sensible way to proceed with PcGets when analysing this type of problem

would be to tighten significance levels in direct relation to the number of variables in the

GUM. (See Campos et al., 2003, for a discussion on optimal selection strategies.) This

suggests that RETINA may be designed for much larger problems than PcGets.

Finally, we assess the case in which nonlinear terms are contained in the DGP. Figure

2.5 plots the retention probabilities, where the nonlinear terms in the DGP are numbered

22 for x2
1,t, 36 for x2,tx3,t and 41 for x4,tx5,t. The results are similar to those for the linear

DGP, although the probability that a DGP variable is not retained is higher for PcGets.

12The number ordering on the x-axis proceeds in the order; lagged dependent variable, levels and their
lags, squares, inverses, cross-products, cross-inverses, ratios and finally the intercept. The interaction
terms are ordered x1x2, x1x3,..., x2x3,... etc. in logical order.
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The non-null rejection frequency falls with the larger DGP in all cases, but it is most

marked for RETINA where the probabilities of retaining even the largest non-centralities

fall. Comparing the results for PcGets to simulations given the known DGP, for smaller

t-values there are some small costs of search, but the behaviour of the nonlinear variables

is not dramatically different to that of the linear variables. A comparison of RETINA

to the simulated DGP is not meaningful as the size of RETINA is not well calibrated.

However, assuming a null rejection frequency of 0.001, comparisons with simulated values

indicate that again the costs of search are not too high.

Assessing the algorithms on forecast performance is difficult as no clear ranking

emerges from RMSFE or MAE. Given that the DGP is stationary, the best forecast-

ing model will be the best in-sample model, which will be the model that most closely

captures the DGP. Irrelevant nonlinear functions are likely to be most detrimental to

forecasting. We find the linear PcGets models perform very well on RMSFE criteria.

RETINA delivers the best forecasts based on MAE for the linear DGP and nonlinear

GUM, but the worst forecasts when the DGP is nonlinear, for T = 100, indicating that

it is difficult to rank the methods on forecast performance.

The Monte Carlo evidence suggests that we can treat orthogonal problems that are

nonlinear in the variables (but linear in the parameters) in exactly the same way as linear

problems. The size of the tests will need to be controlled if starting with an overly general

GUM. If the GUM is mis-specified by a DGP variable not being included in the GUM,

both algorithms would face problems. If there is severe mis-specification, PcGets would

not commence the path search, whereas RETINA would produce a mis-specified model.

If there is parameter change, the problem would be most acute at the forecast origin,

in which case both algorithms would suffer. Both algorithms would indicate in-sample

parameter non-constancy: PcGets would do so through the reliability weightings and

for RETINA, very different local best models would be reported for the six sub-sample

combinations.
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Table 2.8: Summary statistics and selection probabilities, orthogonal model, T = 100
T = 100 Linear GUM, Nonlin GUM, Nonlin GUM,

Simulated linear DGP linear DGP Simulated nonlin DGP

Strategy 0.05 0.01 Lib. Con. Ret. Lib. Con. Ret. 0.05 0.01 Lib. Con. Ret.

DGP found 0.20 0.15 0.02 0.04 0.03 0.00 0.00 0.00 0.00
Non-DGP inc. 0.58 0.16 0.05 0.81 0.26 0.06 0.84 0.32 0.06
DGP not inc. 0.53 0.77 0.98 0.82 0.95 1.00 0.93 0.98 1.00
Non-null rejection 0.86 0.76 0.52 0.78 0.64 0.39 0.74 0.57 0.27
Null rejection 0.053 0.009 0.007 0.058 0.008 0.001 0.063 0.009 0.001
RMSFE 1.04 1.04 1.13 1.62 1.11 1.19 1.38 1.49 1.37
MAE 2.88 2.87 2.83 3.33 3.09 2.41 2.62 3.50 4.04

t=2 0.47 0.21 0.58 0.38 0.08 0.36 0.18 0.03 0.47 0.24 0.40 0.17 0.03
t=3 0.82 0.63 0.81 0.62 0.22 0.59 0.42 0.16 0.81 0.59 0.63 0.40 0.06
t=4 0.97 0.90 0.96 0.85 0.49 0.75 0.54 0.29 0.96 0.86 0.72 0.51 0.19
t=6 1.00 0.99 1.00 0.99 0.74 0.99 0.97 0.52 1.00 0.99 0.99 0.97 0.51
t=8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 0.77
t=4

�
x2

1

�
0.93 0.83 0.73 0.57 0.20

t=3 (x2x3) 0.78 0.57 0.49 0.32 0.08
t=4 (x4x5) 0.94 0.84 0.88 0.68 0.12

Table 2.9: Summary statistics and selection probabilities, orthogonal model, T = 1, 000
T = 1, 000 Linear GUM, Nonlin GUM, Nonlin GUM,

Simulated linear DGP linear DGP Simulated nonlin DGP

Strategy 0.05 0.01 Lib. Con. Ret. Lib. Con. Ret. 0.05 0.01 Lib. Con. Ret.

DGP found 0.21 0.15 0.03 0.06 0.12 0.00 0.05 0.06 0.00
Non-DGP var. inc. 0.54 0.17 0.04 0.83 0.27 0.07 0.83 0.28 0.06
DGP var. not inc. 0.55 0.82 0.97 0.57 0.83 1.00 0.73 0.94 1.00
Non-null rejection 0.88 0.78 0.54 0.88 0.77 0.38 0.87 0.77 0.29
Null rejection 0.045 0.012 0.003 0.048 0.007 0.001 0.041 0.007 0.001
RMSFE 1.12 1.15 1.27 1.54 1.58 1.33 1.42 1.55 1.49
MAE 3.12 3.04 3.29 4.11 4.17 3.89 2.96 3.33 3.69

t=2 0.50 0.27 0.55 0.27 0.05 0.52 0.28 0.04 0.51 0.29 0.49 0.27 0.03
t=3 0.86 0.67 0.85 0.70 0.24 0.85 0.69 0.13 0.85 0.66 0.82 0.71 0.08
t=4 0.99 0.93 0.97 0.89 0.47 0.95 0.87 0.32 0.98 0.91 0.97 0.90 0.24
t=6 1.00 1.00 1.00 1.00 0.77 1.00 1.00 0.56 1.00 1.00 1.00 1.00 0.49
t=8 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.86
t=4

�
x2

1

�
0.98 0.92 0.92 0.87 0.25

t=3 (x2x3) 0.86 0.67 0.75 0.65 0.11
t=4 (x4x5) 0.97 0.91 0.99 0.92 0.19
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Figure 2.4: The probability of retaining the GUM variable in the specific model, for
the nonlinear GUM and linear DGP
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Figure 2.5: The probability of retaining the GUM variable in the specific model, for
the nonlinear GUM and nonlinear DGP
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2.6.2 Monte Carlo evidence on the non-orthogonal model

Collinearity can be problematic for any selection procedure but is common in economic

applications. Hence, we investigate the properties of PcGets and RETINA in a setting in

which the regressors are highly collinear. Chapter 3 addresses the problem of collinearity

in more detail. The DGP is given by:

yt =
J∑

j=1

βjxj,t + ǫt, ǫt ∼ IN [0, 1] (2.31)

xt = 10 + νt, νt ∼ IN2 [0, I] ,

for t = 1, ..., T , where J = 1 or 2. We also consider a nonlinear DGP given by:

yt = β1x
2
1,t + β2x1,tx2,t + ǫt. (2.32)

The GUM is given by:

yt = β0 + β1x1,t + β2x2,t + β3x
2
1,t + β4x

2
2,t + β5

1

x1,t
+ β6

1

x2,t
+ β7

1

x2
1,t

+β8
1

x2
2,t

+ β9x1,tx2,t + β10
1

x1,tx2,t
+ β11

x1,t

x2,t
+ β12

x2,t

x1,t
+ εt, (2.33)

where εt ∼ IN
[
0, σ2

ε

]
. The sample size is T = 100 and 1,000 and the number of replica-

tions, M = 1, 000. As the mean of xt is non-zero, substantial collinearity is generated

between the linear and nonlinear regressors which will require very large parameter values

to generate significant non-central t-values. For example, if xt = µ + vt, the regression

yt = α1xt + α2x
2
t + ηt will result in:

E
[
T−1

(
X′X

)]
=

[
µ2 + 1 µ3 + 3µ
µ3 + 3µ 3 + µ4 + 6µ2

]
, (2.34)

with:

E
[
T−1

(
X′X

)]−1
=

1

3 + µ4

[
3 + µ4 + 6µ2 −

(
µ3 + 3µ

)

−
(
µ3 + 3µ

)
µ2 + 1

]
. (2.35)

With µ = 10, the correlation between xt and x2
t would be 0.99. Given such magnitudes

of correlation between the regressors, the coefficient estimates will be strongly driven by

the covariance matrix. Observe that the problems of high collinearity can be mitigated

by reducing µ or increasing σ2
v .
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Results for the non-orthogonal Monte Carlo experiments

We initially consider the DGP given by J = 1 in (2.31) with β1 = 0.4 for T = 100 and

β1 = 0.12649 for T = 1, 000 (corresponding to a non-centrality of 4 in the orthogonal

model). Table 2.10 summarises the rejection frequencies for all Monte Carlo experiments

undertaken and Table 2.16 in the Appendix records the retention probabilities for the

relevant and irrelevant variables for RETINA, PcGets and the simulated DGP from

PcNaive for this experiment. The simulated model undertakes individual t-tests on the

GUM with no selection, at the 5% and 1% significance levels. The estimated t-values

from the simulated model are also recorded, and the high correlation between x1,t and

x2
1,t imply that the t-statistic on the relevant variable is insignificant. The retention

probabilities of irrelevant variables are too high, with retention rates close to those of the

relevant variable for PcGets. The null rejection frequency is approximately 25% for the

liberal strategy, 14% for the conservative strategy and 10% for RETINA. The non-null

rejection frequency of PcGets is much higher than that of RETINA, which retains x1,t

less than 1% of the time, although it picks up x2
1,t, which is highly correlated, 35% of the

time. RETINA picks up interactions between x2
1 and x−2

1 , which is also highly correlated,

although most retention probabilities of non-DGP variables are very small.

To ensure a non-null rejection frequency near unity despite collinearity, very large

coefficient values are imposed on the DGP. We can determine values of β1 that deliver

a non-centrality of approximately 4 using a simulated GUM in PcNaive. Coefficients of

1,100 for T = 100 and 180 for T = 1, 000 are required. Table 2.17 in the Appendix records

the retention probabilities, with Table 2.10 summarising. RETINA always retains the

DGP and rarely retains irrelevant variables, exhibiting good null rejection frequencies

given the model design in which a high non-null rejection frequency is ensured. The

probability of retaining relevant variables is good for PcGets, but the null rejection

frequencies are too high because of high correlations.

A further experiment undertaken examines the case where J = 2 in (2.31). Again,

large coefficients are required to ensure significant t-statistics for the DGP variables.

The experiments are based on non-centralities of approximately 3 and 6 for x1,t and
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Table 2.10: Summary statistics: retention probabilities of non-orthogonal experiments

RETINA PcGets Lib. PcGets Cons.
Sample 100 1,000 100 1,000 100 1,000

Non-null rejection frequency
J = 1;β1 = 0.4 0.066 0.080 0.331 0.347 0.190 0.190
J = 1;ψβ1 ≈ 4 1.000 1.000 0.980 0.993 0.984 0.988
J = 2;ψβ1 ≈ 3, ψβ2 ≈ 6 0.987 0.998 0.970 0.984 0.970 0.978
Non-lin DGP; ψβi

≈ 4 0.995 1.000 0.964 0.986 0.969 0.988
J = 1;ψβ1 ≈ 4 de-mean 0.812 0.867 0.970 0.972 0.870 0.920

Null rejection frequency
J = 1;β1 = 0.4 0.100 0.096 0.254 0.250 0.142 0.148
J = 1;ψβ1 ≈ 4 0.003 0.002 0.153 0.138 0.044 0.033
J = 2;ψβ1 ≈ 3, ψβ2 ≈ 6 0.666 0.592 0.165 0.138 0.068 0.046
Non-lin DGP; ψβi

≈ 4 0.047 0.079 0.165 0.143 0.063 0.042
J = 1;ψβ1 ≈ 4 de-mean 0.026 0.018 0.052 0.053 0.012 0.012

Notes: ψβ = E[|tβ|] is the non-centrality of the regressor.

x2,t respectively, which require coefficients of β1 = 800, β2 = 1, 600 for T = 100 and

β1 = 140, β2 = 280 for T = 1, 000. Table 2.18 in the Appendix records the retention

probabilities for RETINA and PcGets, and Figure 2.6 plots the retention probabilities.13

The results for PcGets are similar to the single variable case. PcGets does overfit, as

the probability of retaining irrelevant variables is too high, but the non-null rejection

frequency is almost unity. In contrast to the previous results, the null rejection frequency

of RETINA is very high. More variables are retained than would be expected given its

emphasis on parsimony. With a large correlation matrix the program struggles to control

for the correlation between the variables in order to distinguish the DGP variables, and

it retains some irrelevant variables with a probability close to unity.

A fourth experiment undertaken considers the nonlinear DGP outlined in (2.32).

To deliver non-centralities of approximately 4, coefficients of β1 = 17 and β2 = 40 for

T = 100, and β1 = 2.9 and β2 = 7 for T = 1, 000, are required. Retention probabilities

are reported in Table 2.19 in the Appendix. Results for PcGets are analogous to the linear

DGP case, with good non-null rejection frequencies but null rejection frequencies that are

too high. For RETINA, the problems observed in the previous experiment are mitigated,

with the nonlinear relevant variables being retained with a high probability and a null

13The number ordering on the x-axis proceeds in the order: x1, x2, x
2
1, x

2
2,

1
x1
, 1

x2
, 1

x2

1

, 1
x2

2

, x1x2,
1

x1x2
,

x1

x2
, x2

x1
, intercept.
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Figure 2.6: The probability of retaining the GUM variable in the specific model;
DGP= β1x1,t + β2x2,t + ǫt, where β1 = 800 and β2 = 1, 600, for T = 100.

rejection frequency of approximately 5% for T = 100. The null rejection frequency is

much larger than in the orthogonal case due to the smaller GUM under consideration.

The results suggest that RETINA performs better when the DGP is nonlinear.

The non-orthogonal Monte Carlo evidence highlights the problems with model se-

lection procedures in the presence of nonlinear functions. The substantial collinearity

that nonlinear transformations can generate is a problem for both algorithms, resulting

in an increase in the null rejection frequency and a reduction in the non-null rejection

frequency. While the RETINA selection algorithm should account for collinearity, the

evidence in Figure 2.6 indicates poor null rejection frequencies for RETINA when two

linear variables enter the DGP. The solution to the problem is to transform the regres-

sors to a near orthogonal representation. This is achieved by ‘double de-meaning’ the

variables, which is discussed in detail in Chapter 3. For x2
1,t, the transformation would

be x̃2
1,t = (x1,t − x1)

2 − 1 where x̃2
1,t is the de-meaned variable and x1 is the mean of

x1,t. Both the means of x1,t and of x2
1,t need to be removed to eliminate collinearity.

Results for both RETINA and PcGets for a range of non-centralities for J = 1 in (2.31)

are recorded in Table 2.20 in the Appendix. The results indicate that the rejection fre-

quencies of PcGets improve dramatically and, in fact, match previous results for a linear

model. Figures 2.7 and 2.8 record the rejection frequencies of the models when all vari-
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Figure 2.7: The probability of retaining the GUM variable in the specific model for
the de-meaned non-orthogonal case; DGP= β1x1,t+ǫt, where β1 = 0.3, for T = 100.

ables are de-meaned for the 1- and 2- variable DGP respectively, for a non-centrality of

3. The null rejection frequency of PcGets is constant and at theoretical levels. RETINA

has a non-constant null rejection frequency across non-centralities that falls as the non-

null rejection frequency increases, but the null rejection frequency is much higher than

the Monte Carlo experiments from the orthogonal model suggest. This is due to the

smaller GUM, as the parsimony benefits of RETINA are achieved in larger GUMs. The

non-null rejection frequency of RETINA is lower than the PcGets conservative strategy

at non-centralities greater than two.

Collinearity is problematic for both model selection algorithms but a solution is of-

fered: double de-meaning results in a near-orthogonal specification, which implies that

nonlinear functions can be analysed in a similar way to linear functions. Both PcGets

and RETINA perform well in an orthogonal setting. The null rejection frequency of

RETINA depends on the number of variables in the GUM, providing a tighter criterion

when the GUM is large. Moreover, RETINA has a lower non-null rejection frequency for

smaller non-centralities. PcGets is more flexible in that the null rejection frequency is

controlled regardless of the GUM size, and the significance levels can be set by the user

depending on the problem under consideration.
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Figure 2.8: The probability of retaining the GUM variable in the specific model for
the de-meaned non-orthogonal case; DGP= β1x1,t+β2x2,t+ǫt, where β1 = β2 = 0.3,

for T = 100.

2.7 Conclusion

The aim of this chapter is to assess two automatic model selection procedures, PcGets

and RETINA, and compare the two programs on both cross-section and time-series data

in order to establish the advantages of automatically selecting forecasting models. The

results are promising; automated methods of model selection have a high level of success

and could be dominant in econometric modelling in the future. RETINA is a method

of model selection designed primarily to forecast and its predominant feature is the

parsimony it can achieve from a highly over-parameterised GUM, whereas PcGets aims

to find a congruent, undominated representation of an overly general model. RETINA

achieves parsimony via the use of three disjoint sub-samples, but the trade-off is that its

selection criteria are very stringent, which can lead to a failure to retain highly significant

variables.

Both programs are useful for modelling and forecasting. The ease with which the

significance of nonlinearities can be tested with relatively low cost is most advantageous,

as demonstrated by the empirical applications. The cross-section results highlight the

need to check for outliers. Nonlinear functions may simply be reflecting a few outliers

and vastly different results may be obtained by removing these observations. The Monte
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Carlo evidence shows that the rejection frequencies of PcGets do not differ substantially

because of the inclusion of nonlinear functions of white-noise processes, although one must

control the null rejection frequency. The null rejection frequency of RETINA is shown

to be much tighter for large GUMs. The evidence for non-orthogonal models is less

satisfactory, both for PcGets and RETINA, but a solution is offered. Taking deviations

from means mimics a near-orthogonal specification and results in dramatic improvements,

both in terms of null and non-null rejection frequencies. This suggests that nonlinearity

can be investigated at low cost using automatic model selection algorithms.

2.A Appendix

Table 2.11: Hoover and Perez (1999) data set. Sample: 1959q1-1995q1
Times differenced

Variable for stationarity Name
Index of four coincident indicators 1 DCOINC
GNP price deflator 2 GD
Government purchases of goods and services 2 GGEQ
Federal purchases of goods and services 1 GGFEQ
Federal government receipts 2 GGFR
GNP 1 GNPQ
Disposable personal income 1 GYDQ
Gross private domestic investment 1 GPIQ
Total member bank reserves 2 FMRRA
Monetary base (federal reserve bank of St. Louis) 2 FMBASE
M1 1 FM1DQ
M2 1 FM2DQ
Dow Jones stock price 1 FSDJ
Moody’s AAA corporate bond yield 1 FYAAAC
Labour force (16 years+, civilian) 1 LHC
Unemployment rate 1 LHUR
Unfilled orders (manufacturing, all industries) 1 MU
New orders (manufacturing, all industries) 2 MO
Personal consumption expenditure 1 GCQ
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Table 2.12: Results for Hoover and Perez (1999): Model 1
Linear Nonlinear
PcGets RETINA PcGets RETINA
Lib. Cons. (level 0) Lib. Cons. (level 1)

RMSFE 175.59 159.27 162.48 148.63 175.59 162.48
MAPE 348.30 249.31 245.01 585.04 348.30 245.011
AIC 9.891 9.945 10.036 9.823 9.891 10.036

R2 0.342 0.299 0.226 0.422 0.342 0.226
Parameters 4 3 2 12 4 2
∆y1,t−1 −0.448

(0.076)
−0.441
(0.078)

−0.485
(0.081)

−0.417
(0.073)

−0.448
(0.076)

−0.485
(0.081)

intercept 1.078
(13.68)

1.078
(13.68)

∆DCOINCt−1 9082.82
(2446.7)

7485.39
(2461.4)

9853.0
(2463.5)

9082.8
(2446.7)

∆GNPQt−1 −10243.5
(2335.3)

−8428.0
(2323.6)

−12776
(2294.9)

−10243.5
(2335.3)

∆FSDJt 572.88
(195.43)

644.65
(228.40)

572.88
(195.43)

∆2MOt−1 1003.8
(368.48)

∆GCQt 3980.4
(1699.5)

∆FY AAAC2
t −9465.7

(3601.4)
1

∆FSDJ t−1
−0.384
(0.153)

1
∆2MO t

−0.036
(0.015)

1
(∆2GGEQ)2 t−1

−0.00002
(0.00001)

1
(∆FSDJ)2 t−1

−0.0001
(0.00005)

1
(∆2MO)2 t

[t=2.862]

Notes: The first five rows of the table report summary statistics, with the remaining rows
of the table reporting coefficient estimates, with standard errors in parentheses. Square
brackets containing t-values are reported where coefficient estimates and standard errors
≤
∣∣×10−6

∣∣.
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Table 2.13: Results for Hoover and Perez (1999): Model 2
Linear Nonlinear
PcGets RETINA PcGets RETINA
Lib. Cons. (level 0) Lib. Cons. (level 1)

RMSFE 207.44 203.12 179.66 221.74 203.12 179.66
MAPE 146.08 134.71 144.81 261.83 134.71 144.81
AIC 10.169 10.283 10.311 10.087 10.283 10.311

R2 0.173 0.058 0.039 0.273 0.058 0.039
Parameters 3 1 2 9 1 2
intercept 0.877

(15.69)
0.877
(15.69)

∆2GDt −8664.95
(3575.0)

−8664.95
(3575.0)

∆DCOINCt−1 10102
(2793.3)

9224.5
(2893.5)

∆GNPQt−1 −11422
(2666.1)

−13149
(2695.6)

∆FSDJt 892.82
(225.39)

626.53
(231.31)

1121.5
(231.45)

626.53
(231.31)

∆GY DQt−1 2988.1
(1653.4)

∆2GGFR2
t−1 4961.5

(1872.4)

∆FM1DQ2
t−1 −88265

(42467)
1

∆MU t
−0.316
(0.135)

1
(∆MU)2 t

0.0001
(0.00005)

1
∆GGFEQ t−1

0.00003
(0.00002)

Notes: The first five rows of the table report summary statistics, with the remaining rows
of the table reporting coefficient estimates, with standard errors in parentheses.

Table 2.14: Results for Hoover and Perez (1999): Model 7
Linear Nonlinear
PcGets RETINA PcGets RETINA
Lib. Cons. (level 0) Lib. Cons. (level 1)

RMSFE 16.711 14.688 14.687 18.800 16.711 14.687
MAPE 114.56 109.37 109.37 91.94 114.56 109.37
AIC 4.990 5.151 5.168 4.895 4.990 5.168

R2 0.506 0.405 0.399 0.564 0.505 0.399
Parameters 4 1 2 8 4 2
intercept −0.003

(1.218)
−0.003
(1.218)

∆FM1DQt 744.095
(92.412)

844.526
(92.452)

844.563
(94.29)

507.729
(127.23)

744.095
(92.411)

844.563
(94.29)

∆DCOINCt−1 782.670
(208.91)

822.185
(196.60)

782.670
(208.91)

∆GNPQt−1 −866.088
(199.28)

−1022.93
(195.12)

−866.088
(199.28)

∆FSDJt 70.878
(18.256)

67.928
(17.735)

70.878
(18.256)

∆2MOt−1 89.901
(30.251)

∆FM1DQt−1 500.539
(136.13)

∆FM2DQt 255.799
(124.03)

1
∆FSDJ t

0.0062
(0.0026)

Notes: The first five rows of the table report summary statistics, with the remaining rows
of the table reporting coefficient estimates, with standard errors in parentheses.
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Table 2.15: Results for Hoover and Perez (1999): Model 9
Linear Nonlinear
PcGets RETINA PcGets RETINA
Lib. Cons. (level 0) Lib. Cons. (level 1)

RMSFE 8.408 7.407 7.403 8.422 7.403 7.403
MAPE 113.56 108.83 108.42 98.136 109.476 108.420
AIC 3.629 3.788 3.805 3.527 3.732 3.805

R2 0.502 0.401 0.396 0.567 0.443 0.396
Parameters 4 1 2 9 3 2
intercept −0.087

(0.616)
−0.087
(0.616)

∆FM1DQt 373.551
(46.796)

422.876
(46.769)

424.045
(47.69)

315.645
(48.631)

376.600
(50.490)

424.045
(47.69)

∆DCOINCt−1 389.331
(105.79)

336.817
(103.80)

∆GNPQt−1 −473.694
(100.91)

−487.811
(95.436)

−184.15
(59.210)

∆FSDJt 35.402
(9.245)

29.173
(9.533)

∆2MOt−1 42.294
(15.501)

∆GCQt 149.078
(74.345)

196.372
(72.414)

1
∆FSDJ t

0.0029
(0.0013)

1
∆FM1DQ t−1

0.0008
(0.0004)

1
(∆2GGEQ)2 t−1

[t=-2.188]

Notes: The first five rows of the table report summary statistics, with the remaining rows
of the table reporting coefficient estimates, with standard errors in parentheses. Square
brackets containing t-values are reported where coefficient estimates and standard errors
≤
∣∣×10−6

∣∣.

Table 2.16: Retention probabilities for the non-orthogonal model: one variable DGP
Simulated RETINA PcGets

Strategy 0.05 0.01 0.05 0.01 Lib. Con. Lib. Con.

Sample t-value 100 100 t-value 1,000 1,000 100 1,000 100 100 1,000 1,000

x1 -0.006 0.049 0.013 0.019 0.036 0.008 0.066 0.080 0.331 0.190 0.347 0.190
x2 -0.023 0.051 0.007 0.016 0.056 0.006 0.006 0.005 0.251 0.114 0.248 0.125

(x1)
2 0.025 0.053 0.013 0.002 0.048 0.006 0.350 0.393 0.262 0.230 0.280 0.242

(x2)
2 0.011 0.036 0.010 -0.009 0.050 0.009 0.027 0.023 0.191 0.122 0.194 0.130

1
x1

-0.006 0.050 0.013 0.020 0.041 0.008 0.069 0.081 0.248 0.106 0.247 0.105
1

x2
-0.025 0.047 0.007 0.014 0.051 0.008 0.009 0.003 0.265 0.109 0.240 0.119

1
(x1)2

0.020 0.051 0.015 -0.012 0.039 0.005 0.213 0.232 0.252 0.196 0.260 0.206
1

(x2)2
0.014 0.041 0.009 -0.008 0.046 0.010 0.034 0.019 0.200 0.123 0.181 0.101

x1x2 0.006 0.047 0.012 -0.006 0.046 0.006 0.111 0.084 0.262 0.165 0.279 0.184
1

x1x2
0.007 0.047 0.011 -0.003 0.042 0.008 0.113 0.063 0.257 0.118 0.241 0.132

x1

x2
0.007 0.048 0.009 -0.004 0.044 0.007 0.083 0.069 0.298 0.166 0.274 0.185

x2

x1
0.006 0.043 0.010 -0.005 0.042 0.007 0.088 0.084 0.268 0.135 0.242 0.126

intercept 0.011 0.053 0.011 -0.023 0.044 0.011 1.000 1.000 0.294 0.119 0.312 0.123

Notes: DGP = β1x1,t + ǫt, where β1 = 0.4 for T = 100 and β1 = 0.12649 for T = 1, 000.
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Table 2.17: Retention probabilities for the non-orthogonal model: one variable DGP
Simulated RETINA PcGets

Strategy 0.05 0.01 0.05 0.01 Lib. Con. Lib. Con.

Sample t-value 100 100 t-value 1,000 1,000 100 1,000 100 100 1,000 1,000

x1 3.978 0.898 0.769 3.983 0.957 0.868 1.000 1.000 0.980 0.984 0.993 0.988
x2 -0.023 0.051 0.007 0.016 0.056 0.006 0.000 0.001 0.168 0.047 0.161 0.034

(x1)
2 0.025 0.053 0.013 0.002 0.048 0.006 0.011 0.009 0.118 0.046 0.114 0.017

(x2)
2 0.011 0.036 0.010 -0.009 0.050 0.009 0.001 0.002 0.121 0.034 0.116 0.023

1
x1

-0.006 0.050 0.013 0.020 0.041 0.008 0.000 0.002 0.166 0.047 0.149 0.041
1

x2
-0.025 0.047 0.007 0.014 0.051 0.008 0.000 0.000 0.169 0.051 0.160 0.035

1
(x1)2

0.020 0.051 0.015 -0.012 0.039 0.005 0.001 0.000 0.146 0.050 0.119 0.028
1

(x2)2
0.014 0.041 0.009 -0.008 0.046 0.010 0.000 0.001 0.132 0.028 0.104 0.018

x1x2 0.006 0.047 0.012 -0.006 0.046 0.006 0.002 0.005 0.156 0.039 0.138 0.038
1

x1x2
0.007 0.047 0.011 -0.003 0.042 0.008 0.006 0.001 0.158 0.049 0.135 0.031

x1

x2
0.007 0.048 0.009 -0.004 0.044 0.007 0.007 0.003 0.163 0.043 0.133 0.036

x2

x1
0.006 0.043 0.010 -0.005 0.042 0.007 0.005 0.003 0.160 0.044 0.145 0.039

intercept 0.011 0.053 0.011 -0.023 0.044 0.011 1.000 1.000 0.181 0.055 0.179 0.052

Notes: DGP = β1x1,t + ǫt, where β1 is estimated to give ψβ1
≈ 4. For T = 100, β1 = 1, 100,

and for T = 1, 000, β1 = 180.

Table 2.18: Retention probabilities for the non-orthogonal model: two variable DGP
Simulated RETINA PcGets

Strategy 0.05 0.01 0.05 0.01 Lib. Con. Lib. Con.

Sample t-value 100 100 t-value 1,000 1,000 100 1,000 100 100 1,000 1,000

x1 2.891 0.709 0.536 3.102 0.830 0.676 0.973 0.995 0.944 0.944 0.969 0.955
x2 5.942 0.986 0.956 6.208 0.999 0.995 1.000 1.000 0.996 0.996 0.999 1.000

(x1)
2 0.026 0.053 0.013 0.002 0.048 0.006 0.570 0.403 0.141 0.057 0.124 0.036

(x2)
2 0.011 0.036 0.010 -0.009 0.050 0.009 0.995 1.000 0.111 0.043 0.093 0.017

1
x1

-0.006 0.050 0.013 0.020 0.041 0.008 0.429 0.284 0.191 0.094 0.160 0.068
1

x2

-0.025 0.047 0.007 0.014 0.051 0.008 0.995 1.000 0.180 0.076 0.159 0.051
1

(x1)2
0.020 0.051 0.015 -0.012 0.039 0.005 0.305 0.144 0.159 0.063 0.133 0.042

1
(x2)2

0.014 0.041 0.009 -0.008 0.046 0.010 0.995 1.000 0.133 0.041 0.097 0.014

x1x2 0.006 0.047 0.012 -0.006 0.046 0.006 0.995 1.000 0.160 0.061 0.150 0.050
1

x1x2

0.007 0.047 0.011 -0.003 0.042 0.008 0.998 1.000 0.181 0.078 0.142 0.052
x1

x2

0.007 0.048 0.009 -0.004 0.044 0.007 0.205 0.057 0.171 0.073 0.136 0.052
x2

x1

0.006 0.043 0.010 -0.005 0.042 0.007 0.177 0.034 0.174 0.067 0.143 0.051

intercept 0.011 0.053 0.011 -0.023 0.044 0.011 1.000 1.000 0.210 0.091 0.177 0.071

Notes: DGP = β1x1,t + β2x2,t + ǫt, where β1 and β2 are estimated to ensure ψβ ≈ 3, 6. For
T = 100, β1 = 800 and β2 = 1, 600, and for T = 1, 000, β1 = 140 and β2 = 280.
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Table 2.19: Retention probabilities for the nonlinear non-orthogonal model
Simulated RETINA PcGets

Strategy 0.05 0.01 0.05 0.01 Lib. Con. Lib. Con.

Sample t-value 100 100 t-value 1,000 1,000 100 1,000 100 100 1,000 1,000

x1 -0.036 0.054 0.008 -0.011 0.049 0.007 0.171 0.362 0.179 0.082 0.147 0.051
x2 -0.043 0.048 0.004 -0.009 0.051 0.007 0.001 0.000 0.162 0.058 0.154 0.041

(x1)
2 4.057 0.836 0.729 4.057 0.943 0.849 0.990 1.000 0.953 0.961 0.986 0.988

(x2)
2 0.034 0.040 0.011 0.008 0.044 0.010 0.003 0.001 0.116 0.035 0.102 0.022

1
x1

-0.036 0.054 0.010 -0.007 0.045 0.008 0.060 0.026 0.188 0.088 0.150 0.049
1

x2

-0.043 0.047 0.004 -0.012 0.054 0.009 0.002 0.000 0.188 0.067 0.160 0.042
1

(x1)2
0.021 0.049 0.010 -0.012 0.040 0.008 0.039 0.012 0.148 0.069 0.128 0.034

1
(x2)2

0.030 0.044 0.009 0.007 0.044 0.011 0.006 0.000 0.130 0.035 0.104 0.025

x1x2 4.056 0.907 0.824 4.049 0.951 0.876 1.000 1.000 0.975 0.977 0.987 0.989
1

x1x2
0.031 0.043 0.010 0.011 0.051 0.009 0.186 0.393 0.174 0.064 0.151 0.047

x1

x2
0.031 0.041 0.011 0.015 0.054 0.012 0.000 0.000 0.171 0.057 0.146 0.043

x2

x1

0.032 0.044 0.009 0.007 0.052 0.009 0.001 0.000 0.156 0.056 0.153 0.043

intercept 0.043 0.054 0.007 0.011 0.052 0.008 1.000 1.000 0.210 0.083 0.174 0.064

Notes: DGP = β1x
2
1,t+β2x1,tx2,t +ǫt, where β1 = 17 and β2 = 40 for T = 100, and β1 = 2.9

and β2 = 7 for T = 1, 000.

Table 2.20: Retention probabilities for the double de-meaned model
ψ = 2 ψ = 3 ψ = 4 ψ = 5

T = 100 Lib. Con. RET. Lib. Con. RET. Lib. Con. RET. Lib. Con. RET.

x1 0.479 0.234 0.341 0.808 0.564 0.593 0.970 0.870 0.812 0.998 0.981 0.938
x2 0.053 0.009 0.078 0.052 0.012 0.048 0.053 0.011 0.020 0.053 0.011 0.017
x2

1 0.062 0.012 0.080 0.067 0.018 0.067 0.060 0.017 0.038 0.060 0.014 0.025
x2

2 0.048 0.007 0.072 0.049 0.006 0.052 0.050 0.006 0.029 0.049 0.006 0.016
1

x1

0.060 0.009 0.059 0.061 0.011 0.043 0.062 0.012 0.031 0.061 0.013 0.014
1

x2

0.057 0.005 0.052 0.060 0.011 0.032 0.056 0.012 0.024 0.056 0.010 0.014
1

(x1)2
0.054 0.015 0.072 0.053 0.015 0.052 0.049 0.017 0.037 0.050 0.018 0.016

1
(x2)2

0.040 0.007 0.069 0.037 0.008 0.050 0.039 0.009 0.021 0.039 0.010 0.014

x1x2 0.059 0.011 0.077 0.057 0.011 0.043 0.052 0.009 0.031 0.051 0.009 0.019
1

x1x2

0.043 0.009 0.048 0.045 0.012 0.028 0.045 0.013 0.014 0.045 0.013 0.009
x1

x2

0.063 0.017 0.058 0.065 0.019 0.040 0.062 0.018 0.024 0.062 0.018 0.015
x2

x1

0.047 0.010 0.052 0.049 0.016 0.048 0.047 0.017 0.024 0.047 0.016 0.011

intercept 0.059 0.011 1.000 0.058 0.011 1.000 0.056 0.013 1.000 0.057 0.013 1.000

Notes: DGP = β1x1,t + ǫt. The GUM comprises the double de-meaned regressors, where
ψ = E [|t|].
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Chapter 3

Extending the Boundaries of PcGets:

Nonlinear Models

3.1 Introduction

Econometric modelling requires rules for model selection. One systematic approach is

the Gets methodology automated in PcGets. An extensive assessment of Monte Carlo

simulation studies has revealed that the operational characteristics of the PcGets algo-

rithm are excellent across a wide range of states of nature, see Hendry and Krolzig (1999,

2003b, 2005) and Krolzig and Hendry (2001). However, the program is currently de-

signed to select linear models. Economic processes are inherently nonlinear, but we often

make a simplifying assumption to reduce the model to a linear representation, leading to

potential mis-specification. The LDGP derived in equation (1.5) imposes no restrictions

on the functional form of g (yt) and h (zt), and so a model that approximates the LDGP

will also need to approximate g (.) and h (.).

This chapter develops a strategy for selecting nonlinear models within PcGets, com-

mencing with a new test for nonlinearity and providing solutions to the problems of

collinearity generated by nonlinear transformations, extreme observations leading to non-

normal distributions, and the use of sufficiently general expansions to approximate the

nonlinearity while avoiding excess retention of irrelevant variables. The strategy requires

all four developments to be implemented, as exclusion of one aspect of the selection

algorithm can be seriously deleterious. The current techniques used to build nonlin-

ear models are mostly specific-to-general, based on a postulated class of models (e.g.,

the smooth transition regression model (STR), see, inter alia, Teräsvirta and Anderson,

1992, Teräsvirta, 1995, and Franses and Teräsvirta, 2001), and the main contribution

of this chapter is to provide an alternative methodology for selecting nonlinear models,

motivated by the theory of reduction and hence, embedded within the Gets framework.
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The proposed strategy for selecting nonlinear models commences by specifying a lin-

ear GUM that includes all potentially relevant variables. Nonlinearity is then tested

for within the batch of diagnostic tests used to ensure congruency. The test proce-

dure is close to the test for heteroskedasticity proposed by White (1980), but by using

weighted combinations of the squares and cross-products based on the eigenvectors of the

variance-covariance matrix, the test circumvents problems of high dimensional systems

and collinearity. Rejection of the null then requires that the process is modelled within

the nonlinear framework. As the number of possible nonlinear functions is infinite, an

approximating class is required. Given that many nonlinear models, including smooth

transition regressions, regime-switching models, neural networks and nonlinear VARs can

be approximated by Taylor expansions, polynomials form an appropriate approximating

class. The PcGets selection algorithm is then applied to the re-specified nonlinear GUM

to select an undominated, congruent, specific model.

There are problems with selecting under nonlinearity that need to be addressed before

an operational algorithm can be implemented. First, undertaking a nonlinear transforma-

tion of a variable can generate substantial collinearity between the original linear function

and the transformed nonlinear function, as demonstrated in Chapter 2. Collinearity is

problematic for any selection procedure because the information content of an extra

highly collinear variable is very small, yet it disrupts existing information attribution.

Any model selection algorithm will struggle to determine the relevant variables, and will

therefore select poorly between the relevant and irrelevant variables depending on sam-

pling error. Orthogonality is highly beneficial for model selection in general, both for that

reason, and because deleting small, insignificant coefficients leaves the retained estimates

almost unaltered. Operational rules are proposed to transform the nonlinear functions

to a more orthogonal form prior to undertaking model selection, and this results in

greatly improved properties of the selection procedure. Secondly, some classes of nonlin-

ear functions can generate extreme observations and the resulting fat-tailed distributions

are problematic because the assumption of normality is often inbuilt for the critical val-

ues used by model selection procedures. Nonlinear functions can ‘line up’ with outliers,
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causing those functions to be retained too often. We propose a solution of removing the

extreme observations using indicator saturation techniques, developed by Hendry et al.

(2004), to ensure near normality for inference. This innovative technique also avoids

the problem of otherwise undetectable outliers. Finally, the ability of PcGets to handle

more variables than observations enables sufficiently general expansions to approximate

the nonlinearity. However, we seek to control the problem of excess retention of non-

linear functions due to an over-parameterised GUM by proposing a ‘super-conservative’

strategy for selecting nonlinear functions.

The structure of the chapter is as follows. Section 3.2 outlines the nonlinearity test

and establishes the power of the test under alternative LDGP specifications. Section 3.3

considers the polynomial class of functions and investigates their ability to approximate

a STR model. The LSTR model nests the two regime-switching model and captures

characteristics of ANNs, Markov-switching models and nonlinear VARs, hence providing

a general benchmark model on which to assess the polynomial approximation. Section 3.4

addresses the intrinsic problems of selecting models that are nonlinear in the regressors,

including collinearity between linear and nonlinear functions; non-normality whereby a

Monte Carlo study highlights the problem of extreme observations for model selection;

and the use of a super-conservative strategy to ensure nonlinear functions are retained

only when there is definite evidence of nonlinearity in the data. Finally, section 3.5

concludes.

3.2 Functional form testing

An essential component of congruency concerns the validity of the functional form, and

therefore a test for nonlinearity is required that can evaluate the ‘goodness’ of the pos-

tulated linear model. The modelling strategy commences by specifying a GUM in which

all potentially relevant variables are included in a linear functional form. A test for non-

linearity is then undertaken within the batch of diagnostic tests. If the null of linearity

is accepted, the PcGets selection algorithm is applied. If the null is rejected, the GUM is

reformulated to include a set of polynomial approximations, and selection is then applied

to the more general nonlinear model. Two types of linearity test exist: those that test

85



Nonlinear Models

against a specific alternative and those that test against any departure from linearity,

and, in keeping with the Gets methodology, we seek a test against any alternative.

3.2.1 A quadratic approximation test

Consider a general relation:

yt = f (x1,t . . . xn,t) + ǫt, (3.1)

where the linear approximation is:

yt = β0 + β1x1,t + · · · + βnxn,t + et = β0 + β′xt + et. (3.2)

To evaluate the goodness of (3.2) requires testing the validity of the functional form

approximation. Using the mean value theorem around a fixed point x0:

f (xt) = f (xt)⌋xt=x0
+
∂f (xt)

∂x′
t ⌋xt=x0

(xt − x0) + (xt − x0)
′ ∂

2f (xt)

∂xt∂x
′
t ⌋xt=x∗

(xt − x0)

= f (x0) + β′ (xt − x0) + (xt − x0)
′ A∗ (xt − x0)

= β0 + β′xt + x′
tA

∗xt (3.3)

where x∗ ∈ [xt,x0]. Thus, a ‘natural’ test is to consider the importance of the quadratic

term x′
tA

∗xt added to (3.2). Since:

x′
tA

∗xt = tr
(
x′

tA
∗xt

)
= tr

(
A∗xtx

′
t

)
, (3.4)

for fixed regressors, an exact test would be an F-test of δ1 = 0 in:

yt = β0 + β′xt + δ′1wt + et (3.5)

where:

wt =
(
xtx

′
t

)ve (3.6)

and ve vectorises and selects non-redundant elements from the lower triangle (including

the diagonal) of the outer product. This procedure is close to the test for heteroskedas-

ticity proposed by White (1980), where his heteroskedastic-consistent covariance matrix

estimator will differ from the conventional formula when the squares and cross-products
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of the regressors would be significant if added to the model.

There are three main drawbacks of such a test: first, its high dimensionality; secondly

the potentially high collinearity between the elements of wt; and third, the possibility that

the second derivative is not the source of the important departure from linearity, which

may depend on asymmetry or skewness and be better reflected in the third derivative.

To rectify these potential drawbacks we develop an alternative test.

3.2.2 Improved testing

First, consider the optimal test of δ1 = 0 when f (xt) is the exact quadratic:

f (xt) = β0 + β′xt + x′
tAxt (3.7)

and A is known and symmetric. Let A = KΥK′, where Υ is the matrix of eigenvalues

of A and gt = K′xt, so that

x′
tAxt = x′

tKΥK′xt = g′
tΥgt =

n∑

i=1

τig
2
i,t = τ ′rt (3.8)

where τ is the vector of diagonal elements of Υ and rt is the n× 1 vector with elements

g2
i,t. Then:

yt = β0 + β′xt + τ ′rt + ǫt = β0 + β′xt + δwt + ǫt (3.9)

say, so a t-test of H0: δ = 0 will be the most powerful test for nonlinearity when wt = τ ′rt.

To provide an operational counterpart when A is unknown, let:

xt ∼ Dn [µ,Ω] (3.10)

such that Ω = HΛH′ and z∗t = H′xt where H′H = In so that:

z∗t ∼ Dn

[
H′µ,Λ

]
. (3.11)

Finally, take deviations from their means, then scale the zd
i,t = z∗i,t − z∗i by the square

roots of their corresponding λi:

zd
i,t√
λi

= zi,t, (3.12)
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so:

zt gapp Dn [0, I] . (3.13)

Thus, the zi,t are standardised and mutually orthogonal combinations of squares and

cross-products of the original xi,t.

As (3.4) is a scalar:

tr
(
x′

tA
∗xt

)
= tr

(
x′

t (A∗)′ xt

)
=

1

2
tr
(
x′

t

[
A∗ + (A∗)′

]
xt

)
= tr

(
x′

tBxt

)
(3.14)

where B is symmetric. Hence, we can take A∗ to be symmetric without loss of generality.

Next:

tr
(
x′

tA
∗xt

)
= tr

(
x′

tH
(
H′A∗H

)
H′xt

)
= tr

((
H′A∗H

)
ztz

′
t

)
= tr

(
Cztz

′
t

)
. (3.15)

Under the null of a linear function, C = 0, so for a local alternative, exploiting symmetry,

we expand C around 0 as C = ∆n for a diagonal ∆n (= 0 under the null). Hence, from

(3.15):

tr
(
Cztz

′
t

)
≃ tr

(
∆nztz

′
t

)
= z′t∆nzt =

n∑

i=1

δ1,iz
2
i,t. (3.16)

Thus, the test has the same form as that in (3.9), but where ui,t = z2
i,t in place of wi,t.

Relative to (3.5), there are only n elements in ut, as opposed to n (n+ 1) /2, but every

element potentially depends on squares and cross-products of every xi,t. Thus, the first

and second objectives of effecting a major dimensionality reduction and formulating a

test in terms of non-collinear variables are achieved. Additional terms from the next sub

and super diagonals of C could also be used; or going in the opposite direction, a scalar

test corresponding to (3.9) could be constructed using
∑n

i=1 z
2
i,t as a single regressor.

Under the null, for fixed regressors and et ∼ IN
(
0, σ2

e

)
, the test of δ1 = 0 in:

yt = β0 + β′xt + δ′1ut + et (3.17)

where ui,t = z2
i,t, is an exact F-test with n degrees of freedom. Under the alternative,

the test should have power against quadratic departures that are not orthogonal to the

wi,t. Finally, it is easy to accommodate the third drawback, and generalise the test for

higher-derivative departures from the null by also including
{
z3
i,t

}
terms, which leads
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again to an exact F-test under the null. When the additional terms
∑n

j=1 δ2,jz
3
j,t are

included, the test is an F-test of δ1 = δ2 = 0, with 2n degrees of freedom.

3.2.3 Non-centrality

The easiest case to consider is (3.7), as a t-test of H0: δ = 0 will be the most powerful

test for non-linearity in (3.9):

yt = β0 + γ′xt + δ
(
τ ′r
)
t
+ ǫt = β0 + γ ′xt + δwt + ǫt. (3.18)

Then letting β0 = 0 and µ = 0 for simplicity, so all linear terms have means of zero, and:

Q = IT − X
(
X′X

)−1
X′

where:

y′ = (y1 . . . yT ) and X′ = (x1 . . .xT ) ,

then:

y = Xγ + wδ + ǫ, (3.19)

so for ǫ ∼ IN
[
0, σ2

ǫ IT ]:

√
T
(
δ̂ − δ

)
=
(
T−1w′Qw

)−1 w′Qǫ√
T

D→ N
[
0, σ2

δ

]
, (3.20)

where:

σ2
δ = σ2

ǫ plimT→∞

(
T−1w′Qw

)−1
. (3.21)

After double de-meaning to ensure the squares and cross-products are not highly collinear

with the xi,t, Qw should be approximately w, leading to:

σ2
δ = σ2

ǫ plimT→∞

(
T−1w′w

)−1
. (3.22)

From (3.8):

T−1w′w = T−1
T∑

t=1




n∑

i=1

n∑

j=1

τiτjr
2
i,tr

2
j,t


→ τ ′Rτ (3.23)

and R is the limit of the matrix with elements
{
T−1

∑T
t=1 r

2
i,tr

2
j,t

}
. Then:

√
T
(
δ̂ − δ

)
D→ N

[
0, σ2

ǫ

(
τ ′Rτ

)−1
]
. (3.24)
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Under the sequence of local alternatives that δ = c/
√
T :

t2δ=0 =
T δ̂2 (τ ′Rτ )

σ2
ǫ

(3.25)

which has a local non-centrality parameter:

ψ =
c2 (τ ′Rτ )

σ2
ǫ

. (3.26)

To relate the operational test in (3.17) to the optimal, and derive the non-centrality

corresponding to (3.26), again for β0 = 0, consider:

x′
tAxt = x′

tH
(
H′AH

)
H′xt = z′t

(
H′KΥK′H

)
zt = z′tCzt, (3.27)

so that, using the symmetry of A:

C = H′AH = ∆n + D, (3.28)

where D has a zero diagonal:

yt = β′xt + z′t∆nzt + z′t (C − ∆n) zt + ǫt = β′xt + δ′1ut + z′tDzt + ǫt. (3.29)

Thus, the closer D is to 0, the less the power loss. If, for example, A was positive definite,

then H could jointly diagonalise A and Ω, such that ∆n = In and so D = 0 (see, e.g.,

Hendry, 1995, p.631).

3.2.4 Test power

To compute the power function, we approximate Fk
T−k by a chi-squared with n degrees

of freedom:

Fk
T−k (ϕr,α) ∼ χ2

k

(
ϕ2

r,α

)
. (3.30)

Next, we relate that non-central χ2 distribution to a central χ2 using (see, e.g., Hendry,

1995, p.475):

χ2
k

(
ϕ2

r,α

)
= hχ2

m (0) , (3.31)

such that:

h =
k + 2ϕ2

r,α

k + ϕ2
r,α

and m =
k + ϕ2

r,α

h
. (3.32)
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Finally, we calculate the power function of the χ2
k

(
ϕ2

r,α

)
test in (3.30) using:

P
[
χ2

k

(
ϕ2

r,α

)
> cα | H1

]
≃ P

[
χ2

m (0) > h−1cα
]

(3.33)

For example, when k = 20 and ϕ2
r,α = 5, then h = 70/45 ≃ 1.56 and m ≃ 29 with cα ≃

31.4 for χ2
20 (0) so P

[
χ2

29 (0) > 20.1
]
≃ 0.89, delivering a reasonable power. Reducing the

degrees of freedom of the test would increase power at the same ϕr,α, or more generally

there is a trade-off between fewer terms and the value of ϕr,α.

3.2.5 Powerless case

The test will have no power if the departure from linearity is in the direction of ut,⊥,

which would require ∆n = 0n when D 6= 0. This may occur if the xi,ts were perfectly

orthogonal, such that Ω = σ2
xIn, and the nonlinearity entered in the form of a cross-

product. In this case, the matrix of eigenvectors would be the identity matrix, and the

resulting linear combinations would exclude cross-product terms. However, the economic

relevance of a case in which two variables are perfectly orthogonal but that their cross-

product is relevant, is likely to be limited. Furthermore, the test would have no power

if the second derivative of f (·) was zero, but the third was non-zero: this is precisely

the reason for seeking to include the additional terms
∑n

j=1 δ2,jz
3
j,t. If the first non-zero

derivative is the fourth, the test will have power, as the second derivative will almost

certainly be correlated with the fourth. Monte Carlo experiments are undertaken to

confirm these conjectures.

3.2.6 Optimal test

We first examine the power of the ‘optimal’ test, defined as the F-test of the nonlinear

regressors in the DGP, which are assumed to be known. This provides the benchmark

against which to assess both White’s test and the test outlined above, denoted the ‘index’

test. Consider a polynomial DGP given by:

yt = βxi
t + ǫt, (3.34)
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where ǫt ∼ IN [0, 1] and xt ∼ IN [0, 1], for t = 1, ..., T , and i = 1, ..., 4. Hence, the four cases

include a linear, quadratic, cubic and quartic function. To calculate the non-centrality,

since:1 √
TE
[(
xi

t

)2] (
β̂ − β

)

√
σ2

ǫ

∼ N [0, 1] (3.35)

then:

T
(
β̂ − β

)2
E
[(
xi

t

)2]

σ2
ǫ

∼ χ2
1 (3.36)

so:
T β̂2E

[(
xi

t

)2]

σ2
ǫ

∼ χ2
1

(
ϕ2

α,i

)
(3.37)

and

ϕ2
α,i =

Tβ2E
[(
xi

t

)2]

σ2
ǫ

, (3.38)

where E
[
(xt)

2
]

= 1; E
[
(x2

t )
2
]

= 3; E
[
(x3

t )
2
]

= 15; and E
[
(x4

t )
2
]

= 105. Using (3.38),

values of β can be backed out for a given ϕα,i. We undertake an experiment in which the

Monte Carlo non-centralities are calculated for a given β corresponding to the analytic

ϕα,i, ranging from ϕα,i = 1, ..., 6, ∀i = 1, ..., 4. For example, for ϕα,i = 3 and T = 100, β is

given by T− 1
2ϕα,1 = 0.3 for the linear DGP; (3T )−

1
2 ϕα,2 = 0.1732 for the quadratic DGP;

(15T )−
1
2 ϕα,3 = 0.0775 for the cubic DGP; and (105T )−

1
2 ϕα,4 = 0.0293 for the quartic

DGP. 10, 000 replications of (3.34) are undertaken and the corresponding estimated non-

centralities are recorded in Table 3.1.

For the linear DGP, the Monte Carlo non-centralities match the analytic non-centralit-

ies. However, as the polynomial order increases, the approximation becomes poorer, with

deviations of 10% for the quartic function over intermediate non-centralities. This is a

small sample problem; as T increases, the gap between the analytic and Monte Carlo

non-centralities narrows. The poor approximation is driven by the skewness and kurtosis

1As bβ = β +
�P�

xi
t

�2�−1P
xi

tǫt, and bβ2 = β2 + 2β
�P�

xi
t

�2�−1P
xi

tǫt +

��P�
xi

t

�2�−1P
xi

tǫt

�2
,

E
hbβ2
i

= β
2 +

�X�
x

i
t

�2
�

−2

E

�X�
x

i
t

�2

ǫ
2
t

�
= β

2 +

�X�
x

i
t

�2
�

≃ β
2 + Tσ

2
ǫE

��
x

i
t

�2
�
,

where bσ2
β = bσ2

ǫ

�P�
xi

t

�2�−1

≃ σ2
ǫ

�P�
xi

t

�2�−1

.
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Figure 3.1: Distribution of t-statistics for a linear, quadratic, cubic, and quartic regressor
under the alternative.

of the distribution of σ̂2
β under the alternative, which impacts on the distribution of the

t-statistic. This is demonstrated in Figure 3.1, which records the distribution of the

t-statistics for ϕα,i = 3 and T = 100. Panels a–d correspond to the linear, quadratic,

cubic and quartic DGPs respectively. The long right hand tail for the quartic is clearly

evident. Edgeworth expansions would be a natural tool to approximate the small sample

distribution, and we highlight this as a future area of research.

The resulting impact on the power of the optimal test, which is equivalent to a t-test

of H0 : β = 0, is observed in Figure 3.2. The figure records the power of the optimal test

based on the χ2-approximation outlined in Section 3.2.4. Panels a and b record the pow-

ers for T = 100, and panels c and d record the corresponding powers for T = 1, 000. For

T = 100, the divergence between the analytic and Monte Carlo test powers is substan-

tial, particularly for intermediate non-centralities, indicating that the χ2-approximation

is poor for higher order polynomials. Thus, caution must be applied when using conven-

tional statistical analysis for processes that generate extreme observations, such as the

cubic or quartic function.2

2The non-centralities were also calculated using the median of xi
t as opposed to the mean. If the mean

of xi
t is large the results do deliver an improvement over the mean, but for a zero mean, this strategy fails

badly. Furthermore, calculation of the mean based on the truncated distribution of xi
t aimed to exclude

the extreme observations causing the divergence. This is disastrous if the truncation is too severe, but
does deliver marginal improvements if the truncation only excludes the few outliers far out in the tails:
excluding observations that lie outside the 0.9995 quantile proved successful.
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Table 3.1: Monte Carlo non-centralities for the optimal test
ϕα,i

T 1 2 3 4 5 6

i = 1
100 1.012 2.018 3.023 4.028 5.033 6.039
1,000 1.006 2.007 3.008 4.008 5.009 6.009

i = 2
100 1.001 1.998 2.995 3.992 4.989 5.986
1,000 1.014 2.014 3.014 4.015 5.015 6.015

i = 3
100 0.971 1.940 2.910 3.879 4.849 5.818
1,000 0.992 1.988 2.985 3.981 4.978 5.974

i = 4
100 0.902 1.816 2.729 3.642 4.555 5.469
1,000 0.978 1.962 2.946 3.931 4.915 5.899

Notes: i = order of polynomial function: i = 1 is linear, i = 2
is quadratic, i = 3 is cubic and i = 4 is quartic.
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Figure 3.2: Analytic and Monte Carlo power functions for the optimal test on a polynomial
function
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3.2.7 Monte Carlo results

Monte Carlo experiments are undertaken to examine the power of the index test for static

DGPs, for varying degrees of collinearity and number of regressors. Four tests are under-

taken, including the optimal F-test on the known nonlinear functions (giving maximum

power); White’s test, which performs an F-test on the squares and cross-products of all

the regressors; the index test, which computes the F-test for the orthogonalised quadratic

functions; and the index test including orthogonalised cubic functions. We assess both

polynomial DGPs and an LSTR specification.

Quadratic DGP

Consider the DGP given by:

yt = β1x1,t + β2x2,t + β3x
2
1,t + ǫt, (3.39)

where xt = (x1,t, x2,t)
′:

xt ∼ IN2 [0,Ω] with Ω =

[
1 ρ
ρ 1

]
, (3.40)

and ǫt ∼ IN [0, 1]. As noted above, the optimal test of H0 : β3 = 0, has a non-centrality

of:

ϕ2
r,α = 3Tβ2, (3.41)

which is independent of ρ, the degree of collinearity.

White’s test is also independent of the degree of collinearity, and will have the same

non-centrality as the optimal test but with larger degrees of freedom. The power of

White’s test for (3.39) will depend on:

δ1x
2
1,t + δ2x

2
2,t + δ3x1,tx2,t. (3.42)

The non-centrality of the White test is given by:

ϕ2
r,α =

TE
[(
δ1x

2
1,t + δ2x

2
2,t + δ3x1,tx2,t

)2]

σ2
ǫ

= T
[
3δ21 + 2ρ2δ1δ2 + 12ρδ1δ2 + 3δ22 + 12ρδ2δ3 + ρ2δ23

]
. (3.43)
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using:3

E
[
x2

i,tx
2
j,t

]
= E

[
(xi,txj,t)

2
]

= ρ2

E
[
x3

i,txj,t

]
= 2 [3ρ] = 6ρ.

As δ2 = δ3 = 0, the test non-centrality collapses to the optimal test non-centrality of

3Tδ21 . Hence, the difference between the analytic power of the optimal test and White’s

test will be a function of the number of degrees of freedom alone.

The index test for (3.39) is based on γ1z
2
1,t + γ2z

2
2,t, but as:

z∗t = H′xt

we can calculate:

z1,t = x1,t + κ1x2,t (3.44)

z2,t = x2,t + κ2x1,t (3.45)

where κ is based on the eigenvalues λ, of Ω (assuming a zero mean, the zi,t are given by

(H′xt)λ
− 1

2 ). Note that even under orthogonality, as the index is based on Ω̂, sampling

errors will result in a non-zero off-diagonal. If Ω = I2, this implies λ = 1, and H = I2,

such that z2
1,t = x2

1,t and z2
2,t = x2

2,t. In practice, Ω̂ 6= I2 such that z comprises a linear

combination of the xs.

This results in:

z2
1,t = x2

1,t + κ2
1x

2
2,t + 2κ1x1,tx2,t (3.46)

z2
2,t = x2

2,t + κ2
2x

2
1,t + 2κ2x1,tx2,t (3.47)

such that the index test power will depend on:

γ1

(
x2

1,t + κ2
1x

2
2,t + 2κ1x1,tx2,t

)
+ γ2

(
x2

2,t + κ2
2x

2
1,t + 2κ2x1,tx2,t

)
(3.48)

3Using the fact that the fourth cumulant of a normal is 0, the Hannan (1970, p.23) theorem states:

E
�
x

3
1,tx2,t

�
= E [w1,tw2,tw3,tw4,t] = 2 {E [w1,tw2,t] E [w3,tw4,t] + E [w1,tw3,t] E [w2,tw4,t] + E [w1,tw4,t] E [w2,tw3,t]} .
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Table 3.2: Analytic power for the nonlinearity tests
β 0.1 0.15 0.2 0.25 0.3 0.35
ϕ2

r,α 3 6.75 12 18.75 27 36.75

5%
Optimal (1) 0.392 0.745 0.952 0.997 1.000 1.000
White (3) 0.135 0.403 0.750 0.951 0.996 1.000
Index (2) 0.221 0.547 0.858 0.981 0.999 1.000
1%
Optimal (1) 0.186 0.493 0.822 0.973 0.999 1.000
White (3) 0.051 0.209 0.524 0.839 0.975 0.999
Index (2) 0.092 0.313 0.660 0.914 0.991 1.000

Notes: (.) denotes the degrees of freedom.

which can be solved using:

γ1 + γ2κ
2
2 ≈ β (3.49)

γ1κ
2
1 + γ2 ≈ 0 (3.50)

2γ1κ1 + 2γ2κ2 ≈ 0. (3.51)

Under orthogonality, the analytic non-centrality collapses to that of the optimal test,

3Tγ2
1 , but collinearity impacts on the non-centrality via the κ weighting.

Analytic powers of the tests for the bivariate case under orthogonality are reported in

Table 3.2, where the difference in power arises due to differing degrees of freedom. The

optimal test has 1 degree of freedom, the index test has 2 degrees of freedom and White’s

test has 3 degrees of freedom. While the index test should outperform White’s test under

orthogonality for (3.39) as z2
i,t = x2

i,t and there is one less degree of freedom, in practice

the sampling error in Ω̂ results in a linear combination such that z2
1,t is contaminated by

x2,t, reducing the power to detect x2
1,t. Thus, there is a trade-off between sampling error

in the index test and degrees of freedom gains.

To investigate this impact we undertake a Monte Carlo experiment in which up

to twelve white noise processes are generated, with xi,t ∼ IN [0, 1], ∀i = 1, ..., 12, and

cov [xi,txj,t] = ρ, ∀i 6= j, where ρ = 0 or 0.9.4 n is the number of linear regressors,

increasing from two to twelve in the GUM, of which only two (x1,t and x2,t) are relevant.

The four tests undertaken are outlined below:

4Experiments for an intermediate range of ρ were also undertaken. Results are excluded from the
figures for a clear exposition, but are available on request.
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1. Optimal test, H0 : φ̃ = 0 for:

yt =

n∑

i=1

φixi,t + φ̃x2
1,t + vt. (3.52)

2. White’s test, H0 : δ̃ = 0 for:

yt =

n∑

i=1

δixi,t +

n∑

j=1

n∑

k=1

δ̃jkxj,txk,t + ut. (3.53)

3. Index test, H0 : γ̃ = 0 for:

yt =

n∑

i=1

γixi,t +

n∑

j=1

γ̃jz
2
j,t + et. (3.54)

4. Index test including cubics, H0 : ψ̃ = θ̃ = 0 for:

yt =

n∑

i=1

ψixi,t +

n∑

j=1

ψ̃jz
2
j,t +

n∑

k=1

θ̃kz
3
k,t + ηt. (3.55)

Two sample sizes are considered, T = 100 and 300, and M = 10, 000 replications

are undertaken. We set β1 = β2 = 0.3 and β3 = 0.1732 in the DGP (3.39), which

results in non-centralities of three for all regressors under orthogonality, for T = 100.

The coefficients are fixed for T = 300 to assess the impact of increasing sample size.

The results are reported in Figure 3.3, where the number of linear regressors is recorded

along the horizontal axis and power is recorded on the vertical axis. The top two panels

record results for T = 100, and the bottom two panels record results for T = 300. The

divergence between the analytic and optimal test is evident, as discussed above. Both the

White and index test have a similar power for n = 2, but White’s power declines rapidly

as n increases because the test’s degrees of freedom increase by n(n+1)
2 . The decline in the

index test power as n increases is not as sharp, although the degrees of freedom increase

by n. The index test including cubic terms does have a lower power than the index test

on the squares alone, although the magnitude of the loss in power is not substantial and

is fairly constant across n and ρ. The index test has a marginally higher power under

collinearity than orthogonality, which is counter-intuitive. This is due to the interactions

between sampling error and collinearity, such that if the test was trying to detect x2
1,t,
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Figure 3.3: Power of nonlinearity tests for a quadratic function

but under orthogonality, z2
1,t contained some component of x2

2,t as Ω̂ 6= Ω, a high ρ would

increase the power to detect nonlinearity via x2
2,t. White’s test should, in theory, have a

higher power than the collinear index test, but the costs in terms of the extra degrees of

freedom imply that the index test does have marginally higher power for ρ = 0.9 when

n = 2. As T increases to 300, the power of all tests increase, with a unit power for the

analytic test.

Quadratic DGP including a cross-product

We next consider augmenting the DGP with a cross-product term, given by:

yt = β1x1,t + β2x2,t + β3x
2
1,t + β4x1,tx2,t + ǫt, (3.56)

where ǫt ∼ IN [0, 1] and xt is generated by (3.40). We set β1 = β2 = β4 = 0.2 and

β3 = 0.1155, to result in a non-centrality of two for the individual regressors, for T = 100

under orthogonality. A lower non-centrality is specified because the DGP with two non-

linear terms results in a high probability of detection. The tests are as outlined above,

with the optimal test given by H0 : φ̃1 = φ̃2 = 0 for:

yt =
n∑

i=1

φixi,t + φ̃1x
2
1,t + φ̃2x1,tx2,t + vt. (3.57)

Figure 3.4 records the results for T = 100, with the top two panels corresponding
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to ρ = 0, and the bottom two panels corresponding to ρ = 0.9 for the same parameter

values. As the power of the optimal test depends on:

β3x
2
1,t + β4x1,tx2,t,

under collinearity, the non-centrality of the optimal F-test is:

ϕ2
α,i =

TE
[(
β3x

2
1,t + β4x1,tx2,t

)2]

σ2
ǫ

= T
[
β2

3x
4
1,t + β2

4x
2
1,tx

2
2,t + 2β3β4x

3
1,tx2,t

]

= T
[
3β2

3 + β2
4ρ

2 + 12β3β4ρ
]
. (3.58)

Hence, the non-centrality of the joint F-test is ϕr,α = 5.7 for ρ = 0.9, delivering a much

higher power for all tests under collinearity. Note that the correlation between the linear

and nonlinear regressors is zero regardless of ρ:

E
[
(β1x1,t + β2x2,t)

(
β3x

2
1,t + β4x1,tx2,t

)]
= 0,

as:

E
[
x1,tx

2
1,t

]
= E

[
x3

1,t

]
= 0

E
[
x2

1,tx2,t

]
= E

[
x1,tx

2
2,t

]
= 0

due to zero skewness under Gaussianity.5

Under orthogonality, for n = 2, including
∑2

j=1 αjz
2
j,t will just retain x2

1,t + x2
2,t, as

Ω implies H = I2, and will exclude combinations of x1,t and x2,t. Hence, the test must

have low power against the cross-product term in (3.56). However, as the index is based

on Ω̂, sampling errors will result in a non-zero off-diagonal to result in (3.46) and (3.47).

For the test to have power against (3.56), we require a low weight on the x2
2,t term in the

z2
1,t equation. Consider a weighted average of the regressors:

z2
1,t + δz2

2,t =
(
1 + δκ2

2

)
x2

1,t +
(
δ + κ2

1

)
x2

2,t + 2 (κ1 + δκ2) x1,tx2,t. (3.59)

Hence, a negative δ would downweight the x2
2,t, yielding the highest power for the index

test: regression should select such a weighting. Nevertheless, there is no close approxi-

5As x2
1,t > 0, whereas x2,t is symmetric about zero, their correlation will be zero.
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Figure 3.4: Power of nonlinearity tests for a quadratic and cross-product function

mation to β3x
2
1,t + β4x1,tx2,t since δ = −κ2

1 yields (normalising on z2
1,t):

z2
1,t − κ2

1z
2
2,t =

(
1 − κ2

1κ
2
2

)
x2

1,t + 2κ1 (1 − κ1κ2)x1,tx2,t ≃ x2
1,t + 2κ1x1,tx2,t, (3.60)

which will be close only when β4 = 2κ1β3 for small κ1.

Under orthogonality, White’s test has a higher power than the index test for small n,

with the degrees of freedom advantages of the index test only resulting in a higher power

when n is larger than 8, because the index test has low power to detect the cross-product.

Under collinearity, the index test has a much higher power, outperforming White’s test

for all n.

Cubic DGP

We next consider the case in which a cubic term is included in the DGP:

yt = β1x1,t + β2x2,t + β3x
3
1,t + ǫt, ǫt ∼ IN [0, 1] . (3.61)

To calculate the non-centralities under orthogonality, such that we can analyse x2,t in-

dependently, we shall use partitioning (see, e.g., Hendry, 1995, p.700). If we define

Z = (x1,t, x
3
1,t)

′ where:

Q = I− x1

(
x′

1x1

)−1
x′

1,
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Figure 3.5: Power of nonlinearity tests for a cubic function

this implies:

ϕ2
r,α (β3) =

β2
3E
[
x3

1
′Qx3

1

]

σ2
ǫ

= 6Tβ2
3 . (3.62)

For the converse:

ϕ2
r,α (β1) =

β2
1E
[
x′

1Q̃x1

]

σ2
ǫ

= 0.4Tβ2
1 , (3.63)

where Q̃ = I − x3
1

(
x3

1
′x3

1

)−1
x3

1
′. Under orthogonality, the non-centrality of β2 is as

standard:

ϕ2
r,α (β2) = Tβ2

2 . (3.64)

For the Monte Carlo experiments we shall set β1 = 0.4743, β2 = 0.3 and β3 =

0.1225, which results in a non-centrality of three for all regressors for T = 100 under

orthogonality. We hold the coefficients constant to assess the impact of increasing the

sample size to T = 300.

Figure 3.5 records the powers for T = 100 and 300 over a range of n. The results

demonstrate that the cost of including the cubic term in the index, in terms of degrees

of freedom, is small compared to the loss in power if the cubic terms are excluded, as

this ensures against nonlinearity that manifests itself as a cubic type of function. Both

the index test excluding cubic terms and White’s test have similar powers, and there is

no benefit to using the index test as n increases. The index test including cubic terms
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does decline in power as n increases, suggesting that there are benefits to specifying a

parsimonious model. A high degree of collinearity is again beneficial. This is because

ρ 6= 0 results in combinations of x1,t and x2,t that proxy x3
1,t. The linear combination of

the xts for zt is:

z3
1,t = x3

1,t + 3κ1x
2
1,tx2,t + 3κ2

1x1,tx
2
2,t + κ3

1x
3
2,t (3.65)

z3
2,t = x3

2,t + 3κ2x
2
2,tx1,t + 3κ2

2x2,tx
2
1,t + κ3

2x
3
1,t (3.66)

Therefore, if ρ = 0.9, the index test will gain power to detect x3
1,t via the linear combina-

tions, x2
1,tx2,t and x1,tx

2
2,t. The gap between the analytic and optimal test is larger than

for the quadratic DGP, in keeping with our previous analysis. Furthermore, for small n,

the index test including cubic terms has a power close to that of the optimal, especially

at T = 300, despite the test including all the irrelevant quadratic terms as well.

Quartic DGP

While a quartic function is somewhat extreme, and the small sample distribution of the

t-statistic is poor, we argue that the index test based on quadratic functions should have

power against quartic functions due to the collinearity between the two. Hence, we assess

a quartic DGP given by:

yt = β1x1,t + β2x2,t + β3x
4
1,t + ηt, (3.67)

where β1 = β2 = 0.3 and β3 = 0.0293, which delivers a non-centrality of three for all

regressors under orthogonality, for T = 100.

The results are recorded in Figure 3.6, where the substantial gap between the analytic

and optimal test is evident. While the power is lower than that for the quadratic function,

both White’s test and the index test do have power against a quartic function. The

patterns exhibited by the power functions correspond to those for the quadratic function,

although the power does not decline to the same extent as n increases. Including the

cubic term in the index test does not improve the power as there is no correlation between

the third and fourth order polynomials.
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Figure 3.6: Power of nonlinearity tests for a quartic function

LSTR model

There are many potential feasible nonlinear functional forms. As the index test is de-

signed to be used against a general alternative, it is important to see whether the test

has power against specific functional forms. We shall focus on the LSTR model, as this

model is examined in section 3.3.2. The Monte Carlo is necessarily equation specific, but

it is indicative of the performance of the index test against White’s test. The DGP is

given as:

yt = β0 + β1x1,t + β2x2,t + (δ0 + δ1x1,t + δ2x2,t) [1 + exp (−γ (x1,t − c))]−1 + ǫt, (3.68)

where ǫt ∼ IN [0, 1] and the xt process is generated by (3.40). Two parameterisations are

considered, given by β0 = 0.2, δ0 = 0.8, β1 = δ1 = 0.3, β2 = δ2 = 0.4, γ = 2.5, and

c = 0.5; and alternatively, β0 = 0, δ0 = 0.2, β1 = β2 = 0.2, δ1 = δ2 = 0.4, γ = 2, and

c = 0.1. The first parameterisation delivers ‘strong nonlinearity’, in the sense that the two

regimes are clearly distinct. The second parameterisation delivers ‘weak nonlinearity’, as

the two regimes are closer in mean and the transition function is less rapid. T = 100,

and is increased to T = 200 and T = 300 for the ‘strong’ and ‘weak’ cases respectively,

for M = 10, 000 replications.

While the optimal infeasible test based on the LSTR specification is not computed,
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we do compute the power of the feasible test based on the known Taylor approximation

(discussed in detail in section 3.3.2). We can replace the transition function by a third

order Taylor expansion:

[1 + exp {−γ (x1,t − c)}]−1 ≃ 1

2
+
γ (x1,t − c)

4
− (γ (x1,t − c))3

48
, (3.69)

such that the approximation of (3.68) has the specification:

yt ≃ θ0+θ1x1,t+θ2x2,t+θ3x
2
1,t+θ4x

3
1,t+θ5x

4
1,t+θ6x1,tx2,t+θ7x

2
1,tx2,t+θ8x

3
1,tx2,t+εt. (3.70)

Hence, the Taylor approximation test is highly parameterised, and there may be degrees

of freedom gains from the index test.

The results are recorded in Figures 3.7 and 3.8 for the two alternative DGPs. The

figures record the Taylor approximation test based on (3.70), White’s test and the index

test for ρ = 0 and ρ = 0.9. The non-centralities of all tests differ under ρ 6= 0. All

tests have high power under ‘strong nonlinearity’, indicating that polynomial approxi-

mations do capture nonlinearities that are generated by a smooth transition model. The

power under collinearity is substantially, and consistently, higher than the power under

orthogonality for all tests. The index test including cubic terms does not deliver a higher

power than just including the quadratic terms, which is surprising given the Taylor ap-

proximation specification. Under weaker nonlinearity, the power function for White’s

test exhibits much higher power for T = 300 when ρ = 0.9 than would be anticipated

given the results for T = 100. Alternative LSTR specifications are needed to draw more

rigorous conclusions.

To conclude, we find that White’s test and the index test perform comparatively for

small n, but the power of White’s test declines more sharply as n increases due to the

rapidly increasing degrees of freedom. A preferable test may be to use White’s test for

T >> n2 and small n, and then switch to the index test as n2

T
> k, where k is some

threshold value such as 0.25. Furthermore, while parsimony delivers a higher power, such

that selection prior to implementing the test would appear to be beneficial, this may be

a hazardous strategy if the linear term is irrelevant but it enters the DGP in a nonlinear

105



Nonlinear Models

0.25

0.50

0.75

1.00 T=100, Significance level =5%
po

w
er

2 4 6 8 10 12

12
Taylor Approx (ρ=0) 
Index (ρ=0) 

Taylor Approx (ρ=0.9) 
Index +cubic (ρ=0) 

White (ρ=0) 
Index (ρ=0.9) 

White (ρ=0.9) 
Index +cubic (ρ=0.9) 

0.25

0.50

0.75

1.00 T=100, Significance level =1%

po
w

er

2 4 6 8 10

0.25

0.50

0.75

1.00 T=200, Significance level =5%

po
w

er

2 4 6 8 10

0.25

0.50

0.75

1.00 T=200, Significance level =1%

po
w

er

12

2 4 6 8 10 12

Figure 3.7: Power of nonlinearity tests for an LSTR function: strong nonlinearity
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Figure 3.8: Power of nonlinearity tests for an LSTR function: weak nonlinearity
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function. Thus, there is a trade-off between a higher power after selection and a risk

of eliminating variables that are relevant via a nonlinear transformation, resulting in a

lower power to detect nonlinearity if such a variable is excluded.

When the functional form and the set of relevant variables are both unknown, but

nest the LDGP, the index test using quadratic and cubic terms has power to reject a

false null in a wide range of circumstances: pure quadratic, pure cubic, pure quartic,

and these in combinations, even for highly collinear data. It outperforms White’s test in

most of these situations, and can even be close to the optimal infeasible test. For larger

departures from linearity, where several nonlinear terms occur for several variables, its

power will dominate that in the experiments illustrated here. Thus, it promises to be a

useful mis-specification test prior to undertaking nonlinear model selection.

3.2.8 Inverse uniform random variables

One class of functions that the test may not have power against are inverses. These often

play a role in economic theory and have been implemented, for example, in RETINA,

as a possible class of nonlinear functions. We consider the inverse of uniform random

numbers (standard normal inverses are problematic as extreme realisations can be drawn

with a mean zero process) to determine whether polynomial functions will capture this

nonlinearity. To do this, we derive the correlations between a uniform variable and its

inverse, as well as the correlations between a quadratic uniform and its inverse. If the

LDGP contains an inverse polynomial function, we demonstrate that the polynomial will

detect this form of nonlinearity as there is a high correlation between a variable and its

inverse.

Consider:

xt ∼ IU [a− h, a+ h] , (3.71)

so:

∫ (a+h)

(a−h)
f (x) dx =

1

2h

∫ (a+h)

(a−h)
dx =

1

2h
[x]

(a+h)
(a−h) =

1

2h
((a+ h) − (a− h)) = 1, (3.72)

where E[xt] = a and V[xt] = h2/3. The density of a uniform is given by f (x) = (2h)−1 .
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Let y = g (x) = x−1 so x = g−1 (y) = y−1 and:

∣∣∣∣
∂x

∂y

∣∣∣∣ =

∣∣∣∣
∂y−1

∂y

∣∣∣∣ =
1

y2
,

confirmed by:

1

2h

∫ (a−h)−1

(a+h)−1

1

y2
dy =

1

2h

[
−y−1

](a−h)−1

(a+h)−1 =
1

2h
(− (a− h) + (a+ h)) =

1

2h
(2h) = 1.

We next calculate the moments:

E [yt] =
1

2h

∫ (a−h)−1

(a+h)−1
y−1dy =

1

2h
[log (y)]

(a−h)−1

(a+h)−1 =
1

2h
(log (a+ h) − log (a− h))

≃ 1

2h

(
ln a+

1

a
h− 1

2a2
h2 +

1

3a3
h3 − ln a+

1

a
h+

1

2a2
h2 +

1

3a3
h3

)

=
1

a
+

h2

3a3
=

(
3a2 + h2

3a3

)
(3.73)

and:

V [yt] =
1

2h

∫ (a−h)−1

(a+h)−1

[
1 − 2

y

(
1

2h
(log (a+ h) − log (a− h))

)

+

(
1
2h

(log (a+ h) − log (a− h))
)2

y2

]
dy

=
1

2h

∫ (a−h)−1

(a+h)−1
dy − 2

2h

(
1

2h
(log (a+ h) − log (a− h))

)∫ (a−h)−1

(a+h)−1

1

y
dy

+
1

2h

(
1

2h
(log (a+ h) − log (a− h))

)2 ∫ (a−h)−1

(a+h)−1

1

y2
dy

=
1

2h

(
(a− h)−1 − (a+ h)−1

)
−
(

1

2h
(log (a+ h) − log (a− h))

)2

. (3.74)

Finally we can calculate the correlation coefficient between the uniform variable xt and

its inverse yt as:

ρ2
x,y =

(E [(xt − E [xt]) (yt − E [yt])])
2

V [xt] V [yt]
=

(E [xtyt − E [xt]E [yt]])
2

V [xt] V [yt]
=

(1 − E [xt]E [yt])
2

V [xt] V [yt]

=
3
(
1 − a

(
1
2h

(log (a+ h) − log (a− h))
))2

h2
(

1
2h

(
(a− h)−1 − (a+ h)−1

)
−
(

1
2h

(log (a+ h) − log (a− h))
)2) . (3.75)

Undertaking the same analysis for the quadratic transformation given by:

wt = k (x) = x2
t
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where xt is given by (3.71), and x = k−1 (w) =
√
w, such that:

∣∣∣∣
∂x

∂w

∣∣∣∣ =

∣∣∣∣∣
∂w

1
2

∂w

∣∣∣∣∣ =
1

2
w− 1

2 ,

the moments are given by:

E [wt] =
1

2h

∫ (a+h)2

(a−h)2

1

2
w

1
2dw =

1

6h

[
w

3
2

]a+h2

a−h2

=
1

6h

[
6a2h+ 2h3

]
= a2 +

h2

3
(3.76)

and:

V [wt] =
1

2h

∫ (a+h)2

(a−h)2

[
w −

(
a2 +

h2

3

)]2

w− 1
2 dw

=
1

4h

∫ (a+h)2

(a−h)2
w2dw +

a2 + h2

3

2h

∫ (a−h)2

(a+h)2
w

1
2 dw +

(
a2 +

h2

3

)2 ∫ (a+h)2

(a−h)2
w− 1

2dw

=
1

4h

[
2

5

(
(a+ h)5 − (a− h)5

)
− 4

3

(
(a+ h)3 − (a− h)3

)(
a2 +

h2

3

)

+4h

(
a2 +

h2

3

)2
]
. (3.77)

We also compute the moments for the inverse quadratic function in order to obtain the

correlation coefficient. Let z = h (x) = x−2, where xt is given by (3.71), so h−1 (z) = z−
1
2

and

∣∣∣∣
∂x

∂z

∣∣∣∣ =

∣∣∣∣∣
∂z−

1
2

∂z

∣∣∣∣∣ = −1
2y

− 3
2 . Then:

E [zt] =
1

4h

∫ (a−h)−2

(a+h)−2
z

1
2dz =

1

2h

[
z

1
2

](a−h)−2

(a+h)−2

=
1

2h

[
(a− h)−1 − (a+ h)−1

]
(3.78)

and:

V [zt] =
1

4h

∫ (a−h)−2

(a+h)−2

(
z − 1

2h

[
(a− h)−1 − (a+ h)−1

])2

z−
3
2 dz

=
1

4h

∫ (a−h)−2

(a+h)−2
z

1
2 dz +

(a− h)−1 − (a+ h)−1

4h2

∫ (a+h)−2

(a−h)−2
z−

1
2dz

+

(
(a− h)−1 − (a+ h)−1

)2

16h3

∫ (a−h)−2

(a+h)−2
z−

3
2dz

=
1

4h

[
2

3

(
(a− h)−3 − (a+ h)−3

)
− 1

h

[
(a− h)−1 − (a+ h)−1

]2]
. (3.79)

109



Nonlinear Models

Finally, we compute the correlation coefficient between x2
t and x−2

t as:

ρ2
w,z =

(1 − E [wt]E [zt])
2

V [wt] V [zt]

=

[
1 −

(
a2 + h2

3

) [
1
2h

(
(a− h)−1 − (a+ h)−1

)]]2

V [wt]V [zt]
. (3.80)

Evaluating expressions (3.75) and (3.80) for xt ∼ IU [1, 2], so a = 1.5 and h = 0.5,

yields |ρx,y| = 0.9842 and |ρw,z| = 0.9393. Sample estimates based on 10, 000 draws

yield |ρ̂x,y| = 0.9841 and |ρ̂w,z| = 0.9392, confirming these results. Thus, xt is a close

approximation to x−1
t for this case; the interest of this result is that the linear term may

‘pick up’ inverses, which is not the index test. Furthermore, the quadratic term would

pick up inverse quadratics, as x2
t is a close approximation to x−2

t , although these will

obviously not be uniform. Thus, the index test will have power against inverse polynomial

functions of the type generated by RETINA, and this is yet another generalisation of the

directions in which the index test will have power.

To conclude this section, we find that the index test has a high power (conditional

on the non-centrality parameter) when the degree of collinearity is large and when the

number of regressors is large, as the dimension reduction benefits are most substantial.

The inclusion of the cubic index is recommended as the loss in power is small when

the DGP is quadratic, but the increase in power for cubic DGPs is substantial. Given

that the index test is easily implemented and exhibits excellent power properties for

large dimensional systems, it provides a strong basis for examining the functional form

of the specified GUM, and is recommended to be implemented in the nonlinear selection

strategy.

3.3 Nonlinear functions

Econometric modelling of nonlinear processes presents many problems over and above

those encountered when developing linear models. Identifying a unique nonlinear rep-

resentation of an economic process can be formidable given the complexity of possible

LDGPs. As there are an infinite number of potential functional forms that the LDGP

may take, specifying a GUM that nests the unknown LDGP is problematic. The two
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concerns for the econometrician include identification of the relevant variables and spec-

ification of the functional form.

The methodology suggested by the Gets framework is to explore, conditional on

theory, sufficiently general models to nest a class of LDGPs. If the model does not match

with the conjectured LDGP, the nonlinear GUM is revised to consider another class of

nonlinear models, and the procedure continues iteratively. We focus on polynomials as

they provide a good local approximation for a wide range of nonlinear models. Other

advantages of the polynomial class are that simple operational rules for orthogonalising

can be applied, and the class will retain linearity in the parameters. PcGets uses standard

OLS or IV estimation, and we aim to incorporate a nonlinear capability within this

framework, hence, our preference for linearity in the parameters. In principle, a general

nonlinear, likelihood based, system approach is feasible, but no software yet exists to

implement such a procedure. However, models that are nonlinear in the parameters are

a result of restrictions that are imposed on the parameters, and the gains achieved from

these more complex models are often limited compared to the costs of estimating such

models within a Gets framework.

Other potential approximations that were considered include orthogonal polynomials

such as Hermite polynomials, but these perform poorly in the tails; Fourier series, but

these require a large number of terms to obtain a close approximation; and asymptotic

series, but these tend to be intractable. Confluent hypergeometric functions provide a

very general functional form that can capture a wide range of nonlinearities, see Abadir

(1999), and this warrants further investigation.

3.3.1 Polynomial series

If the functional form of the nonlinear DGP is unknown, a Taylor series expansion delivers

a polynomial specification, see (1.7), which motivates the use of polynomial functions.6

While (1.7) is intractable, the inclusion of more variables than observations in regression

6Polynomial functions are commonly used in economics and are useful because of Weierstrass’s ap-
proximation theorem, which states that any continuous function on a closed and bounded interval can
be approximated by polynomials, i.e. if x ∈ [a, b], for any ǫ > 0 there exists a polynomial p (x) ∈ [a, b]
such that |f (x) − P (x)| < ǫ ∀x ∈ [a, b] .
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analysis is feasible, enabling a greater flexibility when examining nonlinear models as the

number of potential regressors is likely to be large.

3.3.2 Application: Approximation to a LSTR model

STR models are a popular functional form for nonlinear econometric models, capturing

a wide range of regime-switching theories. We undertake a Monte Carlo experiment to

establish the ability of a Taylor expansion to capture the characteristics of a STR model,

therefore providing support for the strategy of approximating unknown nonlinearity by

a polynomial approximation.

A general STR model is outlined in (1.6), repeated here for clarity:

yt = β′Xt +
(
θ′Xt

)
G (γ, c, st) + ut, ut ∼ IN

[
0, σ2

u

]
, (3.81)

for t = 1, ..., T , where G (.) is the transition function. Various distributional assumptions

can be made on the transition function, and we investigate the properties of the LSTR(1)

given by:

G (γ, c, st) =

[
1 + exp

{
−γ
(
st − c

σ̂s

)}]−1

. (3.82)

In this monotonic transition function, γ determines how rapid the transition is from 0 to

1 as a function of the transition variable st, and c determines where the transition occurs.

As γ → ∞ the model becomes a two regime-switching regression model, and γ > 0 is the

identifying restriction. Estimation of γ is particularly difficult as the likelihood function is

not well behaved. It is common for the likelihood function of γ̂ to be fairly flat for a wide

range of γ, particularly if γ is high, resulting in optimisation problems. Furthermore,

a unique optimum may not exist for high γ. Extensive Monte Carlo simulations and

empirical applications suggest an upper bound on γ̂ of approximately five.7 For γ̂ ≥ 5,

the transition function acts as a two regime-switching process, and a simplification to

7Chebyshev’s inequality states that for any density function with finite first two moments:

P (|X − E (X) | ≥ kσx) ≤
1

k2

such that deviations of more than 2σx have a maximum probability of 75%, and more extreme outcomes
of 5σx will only be exceeded 4% of the time (see Hendry, 1995, p.666). Thus, defining G (γ, c, st) =h
1 + e−γs∗

t

i
−1

, where s∗t = st−cbσs
, we can assume s∗t ∼ D [0, 1], and therefore in theory, we could use

Chebyshev’s inequality to derive P (|γs∗t | ≥ kσ) ≤ 1
k2γ2 and solve for γ.

112



Nonlinear Models

a switching regression model can be made. For values of γ̂ close to 0, the increased

uncertainty regarding the regime increases the uncertainty of θ̂, and consequently the

estimates of β̂ that correspond to the variables that also interact with the transition

function.

To provide empirical support for our supposition that γ̂ > 5 can be equivalently mod-

elled as a regime-switching model, we assess evidence from B̊ardsen, Hurn and McHugh

(2003a), who develop an LSTR(1) model of the Australian unemployment rate for the

period 1980q4-2001q1 using a Gets modelling approach. The quarterly change in unem-

ployment (recorded in Figure 3.9a) is modelled as a function of annual output growth,

real unemployment benefits, aggregate labour productivity, and the average real wage.

The transition function is given by:

G (γ, c, st) =

[
1 + exp

{
−γ
(

∆4ut−1 − 0.165

σ̂∆4ut−1

)}]−1

, (3.83)

where the transition variable is the lagged annual change in unemployment (recorded

in Figure 3.9b). Figure 3.9, panels c and d, record the transition function for various

γ. A high γ results in a very rapid transition, such that γ > 5 is effectively a two

regime-switching model. γ in the range 0–5 exhibits smoother behaviour in the transition

function, such that information contained in the transition function is useful in itself as

opposed to just containing information regarding the timing of the switch between the

two regimes. Thus, placing bounds on γ̂ may prove useful for estimating LSTR models.

The model can be approximated by replacing the logistic transition function with a

third order Taylor expansion:8

yt ≃ β′Xt +
(
θ′Xt

) [1

2
+
zt
4
− z3

t

48

]
+ vt, vt ∼ IN

[
0, σ2

v

]
(3.84)

where:
zt = γ

(
st − c

σ̂s

)
. (3.85)

8Observe that G′′ (z) |z=0 = 0, where G (z) =
�
1 + e−z

�
−1

, and so the z2
t term drops out of the Taylor

expansion. There is still a quadratic component in st as the cubic expansion of z3
t = γ3

�
st−cbσs

�3

is

included. G′ (z) |z=0 = 1
4

and G′′′ (z) |z=0 = − 1
8
. Furthermore, the fourth order term is G′′′′ (z) |z=0 = 0,

so the next relevant term is the fifth order term. G′′′′′ (z) |z=0 = 1
4
, and so inserting into the Taylor

expansion results in G (z) ≈ 1
2

+ zt

4
−

z3

t

48
+

z5

t

480
. In practice, the orthogonal component of the fifth

derivative relative to the third derivative is likely to be very small, and therefore the third order Taylor
expansion is sufficient.
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Figure 3.9: Quarterly change in the Australian unemployment rate; annual change in the
Australian unemployment rate; LSTR transition functions for high γ; and LSTR transition

functions for low γ

This approximation results in a linearised model given by:

yt ≃ α′
1Xt +α′

2Xtst +α′
3Xts

2
t +α′

4Xts
3
t + vt, vt ∼ IN

[
0, σ2

v

]
(3.86)

which can be estimated in PcGets.9 In practice, we would wish to start with a more

general approximation.

Selection

The LDGP will consist of two unknown components, the functional form and the relevant

variables. The polynomial approximation overcomes the former and Gets modelling solves

9The transition variable is scaled by bσs. When estimating the polynomial approximation, we can pull
the scale factor into the coefficient estimates. Assuming Xt is a scalar for tractability, the mappings from
the coefficients in (3.81) to (3.86) are given by:

α1 = β +
θ

2
−
θγc

4bσs

+
θγ3c3

48bσ3
s

α2 =
θγ

4bσs

−
3θγ3c2

48bσ3
s

α3 =
3θγ3c

48bσ3
s

α4 = −
θγ3

48bσ3
s

.

Thus, there is a loss of efficiency by not imposing the cross-parameter restrictions, but that is likely to be
very small, and the dominant error is the difference between the LSTR term and its approximation when
the LSTR is the LDGP. However, (3.86) remains an identified approximation if LSTR is the incorrect
functional form, but a nonlinear model is appropriate.
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the latter. We need to formulate a GUM that will include all potentially relevant variables

and transition variables for all possible lag lengths. The general linearised GUM based

on the LSTR(1) model, for a set of n potential regressors Wt (including an intercept),

and m potential transition variables St, is given by:

yt =
n∑

i=1

αiWi,t +
n∑

i=1

m∑

j=1

δijWi,tSj,t +
n∑

i=1

m∑

j=1

λijWi,tS
2
j,t +

n∑

i=1

m∑

j=1

φijWi,tS
3
j,t + ǫt, (3.87)

where ǫt ∼ IN
[
0, σ2

ǫ

]
. There are n + 3nm variables in the GUM. The set of potential

regressors will include variables that enter in either the linear function or the nonlinear

multiplicative function, or both. For variables that enter both components (including a

possible intercept), the Taylor approximation will give a parameter estimate that com-

bines both components.

A direct test of linearity against the LSTR model is whether the PcGets selection

results in the nonlinear functions being retained:

H0 : δ = λ = φ = 0. (3.88)

The model selected by PcGets should capture the nonlinearity inherent in an LSTR

model while enabling a much more general specification to be tested. The approximation

to the LSTR model can be tested by estimating the corresponding LSTR model, and

then augmenting the final model selected by PcGets with the nonlinear component of

the LSTR model. Suppose k relevant variables were retained (k ≤ n) and one transition

variable was selected, given by s1, then the test of the approximation to the LSTR model

would be:

H0 : κ = µ = ψ = 0, (3.89)

for the regression:

yt =
k∑

i=1

τiWi,t +
k∑

i=1

κiWi,ts1,t +
k∑

i=1

µiWi,ts
2
1,t +

k∑

i=1

ψiWi,ts
3
1,t

+

k∑

i=1

(
θ̃iWi,t

)[
1 + exp

{
−γ̃
(
s1,t − c̃

σ̂s1

)}]−1

+ ηt. (3.90)

where ˜ denotes the estimated parameters from the estimated LSTR model. Thus,
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our proposed procedure allows a general test for nonlinearity without the attendant

identification problems of the Granger and Teräsvirta (1993) approach, yet allows one to

conclude with an LSTR model if that is the best representation.

Monte Carlo results

To examine the ability of the Taylor expansion to approximate an LSTR model, we

undertake a simple Monte Carlo experiment based on Granger and Teräsvirta (1993,

ch.7). The DGP is given by:

yt = 1 + 2xt + xt−1 + 0.5xt−1 − (2xt + xt−1 + 0.5xt−2) [1 + exp {−4 (xt−1 + 3)}]−1 + ut,

(3.91)

where xt is generated as a stationary AR(1) process:

xt = αxt−1 + vt, vt ∼ IN
[
0, σ2

v

]
. (3.92)

α = 0, 0.8 and V [xt] = 2.78. Hence, σ2
v = 1 if α = 0.8. ut ∼ IN

[
0, σ2

u

]
, in which we

set σ2
u = 0.0625, 0.25, 1, and cov [ut, vs] = 0 ∀t, s. T = 100 and the first 100 generated

observations are discarded to avoid initialisation effects. M = 1, 000 replications are

undertaken. The models estimated include the LSTR model (3.93), the linear model

derived by setting the transition function equal to zero (3.94), and the polynomial ap-

proximation in (3.95). Furthermore, selection using the PcGets liberal and conservative

strategies is conducted on (3.95).

yt = β0 + β1xt + β2xt−1 + β3xt−2

− (β4xt + β5xt−1 + β6xt−2) [1 + exp {−γ (xt−1 − c)}]−1 + ǫt (3.93)

yt = δ0 + δ1xt + δ2xt−1 + δ3xt−2 + ηt (3.94)

yt = φ0 + φ1xt + φ2xt−1 + φ3xt−2 + φ4xtxt−1 + φ5xtx
2
t−1 + φ6xtx

3
t−1 + φ7x

2
t−1

+φ8x
3
t−1 + φ9x

4
t−1 + φ10xt−2xt−1 + φ11xt−2x

2
t−1 + φ12xt−2x

3
t−1 + εt. (3.95)

Table 3.3 records the equation standard errors for the models outlined above. The

Monte Carlo LSTR model is an excellent fit, with the equation standard error equal to

the true error in all cases. This is because the functional form of (3.93) is known in the

116



Nonlinear Models

Table 3.3: Equation standard errors for models approximating an LSTR(1) DGP
σu LSTR(1) Linear Polynomial Liberal Conservative

α = 0.8
0.25 0.251

(0.018)
1.261
(0.784)

0.414
(0.186)

0.451
(0.204)

0.457
(0.209)

0.5 0.506
(0.067)

1.365
(0.725)

0.609
(0.147)

0.625
(0.209)

0.634
(0.217)

1 0.995
(0.074)

1.660
(0.613)

1.060
(0.120)

1.066
(0.267)

1.083
(0.277)

α = 0
0.25 0.250

(0.018)
0.734
(0.281)

0.310
(0.053)

0.318
(0.037)

0.322
(0.039)

0.5 0.501
(0.036)

0.864
(0.245)

0.533
(0.050)

0.536
(0.054)

0.543
(0.056)

1 1.01
(0.084)

1.234
(0.194)

1.015
(0.079)

1.015
(0.158)

1.033
(0.166)

Notes: standard deviations of the errors are reported in parentheses.

experiments and so the only error comes through estimation uncertainty. In practice, it

is unlikely that the exact specification of the LDGP is known, but it provides the optimal

infeasible baseline.

The linear model is a poor approximation in all cases. The polynomial approximation

performs extremely well when σ2
u is large, with an equation standard error just 6% and 2%

larger than the true DGP for the α = 0.8 and α = 0 cases respectively. The approximation

is much poorer when the error variance is small, with an equation standard error that

is more than 60% larger than the true DGP for σ2
u = 0.0625 and α = 0.8. The residual

is a composite of the squared approximation error and the DGP shock, so as the latter

falls, the former dominates. The squared approximation error is approximately 0.1 for

α = 0.8, and 0.04 for α = 0. This would be large empirically in a log model, although is

dependent on the scaling of σ. Undertaking selection on the polynomial LDGP slightly

increases the equation standard error but it delivers a more parsimonious model. There

is very little cost to selection and the non-deletion probabilities for PcGets are close to

the theoretical upper bounds. A further extension would be to see how well PcGets

performs when commencing from a more general model. The ability of the polynomial

class of functions to approximate nonlinear models will clearly depend on the specific

LDGP that is modelled. However, for LDGPs in which there is more uncertainty, the

polynomial model performs extremely well.
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3.4 Problems of selecting nonlinear models

There are a number of problems that arise when selecting from a GUM that consists of a

large set of polynomial regressors. These problems include collinearity, non-normality and

excess retention of irrelevant regressors. Solutions to all of these problems are proposed

below, confirming the feasibility of the nonlinear model selection strategy.

3.4.1 Collinearity

Multicollinearity was first outlined by Frisch (1934) within the context of static general

equilibrium linear relations. Confluence analysis was developed to address the problem,

although this method is not in common practice now (see Hendry and Morgan, 1989). The

definition of collinearity has shifted over the years, and we can define perfect collinearity

as |X′X| = 0, and perfect orthogonality as a diagonal (X′X) matrix. Since collinearity

is not invariant under linear transformations, it is difficult to identify the degree of

collinearity. A linear model is invariant under linear transformations, and so a model

could be defined by various isomorphic representations, which nevertheless deliver very

different inter-correlations. Hence, collinearity is a property of the parameterisation of

the model, and not the variables per se.

Nonlinear transformations can generate substantial collinearity between the linear

and nonlinear functions. We initially consider a simple case of a transformation given by

f (x) = x2. This polynomial transform is common in economics; e.g., age and the square

of age often enter in labour force participation models. The degree of collinearity varies

as the statistical properties of the process vary. For example, the collinearity between x

and x2 is 0 when E [x] = 0, but increases to near perfect collinearity as E [x] increases.

Both analytic and Monte Carlo results are assessed.

3.4.2 Analytical results for the correlation of x and x2

We formulate the DGP as the linear conditional relation:

yi = xi + ei = 0 + xi + 0x2
i + ei (3.96)
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with:

xi ∼ IN
[
0, σ2

x

]
(3.97)

ei ∼ IN
[
0, σ2

e

]
(3.98)

E [xi, ei] = 0, ∀i. (3.99)

Since (3.96) is invariant under linear transformations, it can also be written for zi = xi+µ:

yi = −µ+ (xi + µ) + 0 (xi + µ)2 + ei

= −z + zi + 0z2
i + ei

= 0 + (zi − z) + 0 (zi − z)2 + ei. (3.100)

We consider three models, including the zero-mean case:

yi = β0 + β1xi + β2x
2
i + ui, (3.101)

the complete zero-mean case:

yi = λ0 + λ1xi + λ2

(
x2

i − x2
)

+ ui = λ0 + λ1xi + λ2wi + ui, (3.102)

and the non-zero mean case:

yi = γ0 + γ1zi + γ2z
2
i + ui. (3.103)

First, examining the general case (3.103), in which there is a non-zero mean:

E
[
T−1X′X(µ)

]
= E






1.0 z z2

z T−1
∑
z2
i T−1

∑
z3
i

z2 T−1
∑
z3
i T−1

∑
z4
i






=




1.0 µ µ2 + σ2
x

µ µ2 + σ2
x µ3 + 3µσ2

x

µ2 + σ2
x µ3 + 3µσ2

x 3σ4
x + µ4 + 6µ2σ2

x


 (3.104)

with the inverse computed as:

(
E
[
T−1X′X(µ)

])−1
=

1

2σ6
x



µ4σ2

x + 3σ6
x −2µ3σ2

x µ2σ2
x − σ4

x

−2µ3σ2
x 2σ4

x + 4µ2σ2
x −2µσ2

x

µ2σ2
x − σ4

x −2µσ2
x σ2

x


 . (3.105)

There is substantial collinearity between the variables, except for the squared term which
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is irrelevant in the DGP.

Next, consider the zero-mean model in equation (3.101):

E
[
T−1X′X(0)

]
= E






1.0 x x2

x T−1
∑
x2

i T−1
∑
x3

i

x2 T−1
∑
x3

i T−1
∑
x4

i




 =




1.0 0.0 σ2
x

0.0 σ2
x 0.0

σ2
x 0.0 3σ4

x


 (3.106)

so the inverse is:

(
E
[
T−1X′X(0)

])−1
=

1

2σ6
x




3σ6
x 0 −σ4

x

0 2σ4
x 0

−σ4
x 0 σ2

x


 . (3.107)

There is no collinearity between x and x2. There is an effect on the intercept, as the

‘correlation’ between the intercept and x2 is −0.577, but this does not cause a problem

for the PcGets selection algorithm.

Then, examining the complete zero-mean model in equation (3.102):

E
[
T−1X′X(0,0)

]
= E






1.0 x w
x T−1

∑
x2

i T−1
∑
xiwi

w T−1
∑
xiwi T−1

∑
w2

i






=




1.0 0.0 0.0
0.0 σ2

x 0.0
0.0 0.0 3σ4

x


 (3.108)

as:

T−1
∑

xiwi = T−1
∑

xi

(
x2

i − x2
)

= T−1
∑

x3
i − x2T−1

∑
xi = T−1

∑
x3

i − xx2,

so the inverse is:

(
E
[
T−1X′X(0,0)

])−1
=

1

3σ6
x




3σ6
x 0.0 0.0

0.0 3σ4
x 0.0

0.0 0.0 σ2
x


 . (3.109)

We noted that collinearity is a property of the parameterisation of the model, and

so we seek a near orthogonal representation of the general model. This can be achieved

simply by taking deviations from means, which re-creates the specification in terms of

the original variables x and x2. Observe that zi = xi + µ where z = µ and z2 = µ2 + σ2
x.

Hence, we can calculate:

E
[
T−1X′X(µ)

]
= E







1.0 zi − z z2
i − z2

zi − z T−1
∑

(zi − z)2 T−1
∑

(zi − z)
(
z2
i − z2

)

z2
i − z2 T−1

∑
(zi − z)

(
z2
i − z2

)
T−1

∑(
z2
i − z2

)2
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=




1.0 0.0 0.0
0.0 σ2

x 2µσ2
x

0.0 2µσ2
x 3σ6

x − σ4
x + 4µ2σ2

x


 (3.110)

with the inverse:

(
E
[
T−1X′X(µ)

])−1
=

1

σ6
x (3σ2

x − 1)




3σ8
x − σ6

x 0.0 0.0
0.0 3σ6

x − σ4
x + 4µ2σ2

x −2µσ2
x

0.0 −2µσ2
x σ2

x


 . (3.111)

Taking deviations from means delivers some reduction in collinearity, which is particularly

marked for the intercept, but worse for the linear term (zi − z), demonstrating that

‘single’ de-meaning is not sufficient to obtain a near orthogonal representation. Again

the irrelevant squared term ‘benefits’.

Figure 3.10a records the correlation coefficients between the intercept, z and z2 for

the general case, with σ2
x = 1 and varying µ. Figure 3.10b records the correlation coef-

ficients with µ = 1 and σx varying.10 The degree of collinearity increases sharply as µ

increases: e.g., when µ = 10 and σx = 1, the correlation between z and z2 is −0.9775, the

‘correlation’ of z with the intercept is −0.99735 and the ‘correlation’ of z2 with the in-

tercept is 0.98985. Hence, the general case can generate near perfect collinearity. Taking

deviations from means, as in (3.110), results in a correlation of 0.99875 for z and z2, and

so this correlation is higher after undertaking an ‘orthogonalising’ transform with the in-

tercept. To remove the collinearity between z and z2, we also need to de-mean z2. Hence,

the linear term remains (zi − z), but the squared term becomes (zi − z)2 − [E (zi − z)]2 ,

which will result in a model that is identical to (3.102). Double de-meaning has removed

the collinearity generated by the non-zero mean in the white-noise process.

3.4.3 Monte Carlo evidence on collinearity

We next examine Monte Carlo evidence for PcGets when selecting from a GUM con-

taining highly collinear nonlinear variables. We consider three models in which the DGP

is a static process, a stationary dynamic process, and a unit-root process, and focus on

quadratic functions to match the analytics. Results for both the liberal and conservative

strategies are reported.

10The absolute values of the correlations are recorded.
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Figure 3.10: Correlations between the intercept, z and z2 for the general model. Varying
µ with σ2

x = 1, and varying σx with µ = 1

A static model

The DGP is given by:

yt = βxt + ut, ut ∼ IN
[
0, σ2

u

]
(3.112)

xt = µ+ νt, νt ∼ IN
[
0, σ2

v

]
(3.113)

for t = 1, ..., T. We set σ2
u = σ2

v = 1 and µ = 0 or 10. Two sample sizes are assessed,

T = 100 and 1, 000. The number of replications, M , is 10,000. To ensure the probability of

retaining the relevant variable is near unity we set E [|tβ|] = ψβ = 5, which corresponds to

β = 0.5 for T = 100 and β = 0.158 for T = 1, 000 in the orthogonal case. The theoretical

maximum power is 0.9987 at the 5% significance level and 0.9912 at the 1% significance

level. The GUM contains three variables, two of which are nuisance, and is given by:

yt = α0 + α1xt + α2x
2
t + ǫt, ǫt ∼ IN

[
0, σ2

ǫ

]
. (3.114)

To overcome the collinearity problem induced by the non-zero mean, we seek a near

orthogonal representation of the model. As E [xt] = µ and E
[
x2

t

]
= µ2 + σ2

v , we would

ideally de-mean using the rules:

x̃t = xt − µ, and x̃2
t = (xt − µ)2 − σ2

v . (3.115)

However, in practice population values are unknown and sample estimates are used in-
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stead:

x̃ = xt − µ̂, and x̃2 = (xt − µ̂)2 − σ̂2
v . (3.116)

Results Figure 3.11 records the probability of retaining variables for µ = 0, µ = 10, and

the de-meaned case using both rules (3.115) and (3.116). For µ = 0, the probability of

retaining xt is almost unity and is higher for the liberal strategy than the conservative

strategy. The probability of retaining the irrelevant variables is marginally higher than

5% and 1%, but it is essentially controlled at the selected significance levels, and reliability

weighting would reduce this size further. However, for µ = 10, there is a dramatic fall

in the probability of retaining xt to below 60%, and a corresponding increase in the

probability of retaining the intercept and x2
t to over 40%. The conservative strategy

can deliver higher power than the liberal strategy (for the T = 100 case), implying

that it deletes the irrelevant collinear variable more often and so finds the DGP variable

slightly more often. The transformation to an orthogonal representation results in correct

retention probabilities for the liberal and conservative strategies, matching the µ = 0

results. Furthermore, using sample moments as opposed to population moments does not

impact on the retention probabilities. Hence, by undertaking these simple operational

rules, the adverse selection properties resulting from the collinearity between xt and x2
t

are mitigated.

Varying non-centralities for the DGP variables

We next consider the properties of PcGets when the non-centralities, ψ, of the DGP

variables vary. The DGP is formulated in (3.117), in which two linear variables enter the

DGP:

yt = β1x1,t + β2x2,t + ut, ut ∼ IN
[
0, σ2

u

]
(3.117)

xt = µ+ νt, νt ∼ IN2 [0,Ων ] (3.118)

for t = 1, ..., T, where Ων,ij = 0 for i 6= j and Ων,ii = σ2
u = 1 for i = 1, 2. The GUM

contains three nuisance parameters and is given by:

yt = α0 + α1x1,t + α2x2,t + α3x
2
1,t + α4x

2
2,t + ǫt, ǫt ∼ IN

[
0, σ2

ǫ

]
. (3.119)
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Figure 3.11: The probability of PcGets retaining variables after selection for the static non-
linear case, comparing orthogonal and collinear models for both the liberal and conservative

strategies

Four cases are considered: defining E [|tβi
|] = ψβi

, under orthogonality the cases include

(i) ψβ1 = ψβ2 = 2; (ii) ψβ1 = ψβ2 = 3; (iii) ψβ1 = ψβ2 = 4; and (iv) ψβ1 = 3, ψβ2 = 6.

Results are reported for T=100 and M =10,000 replications.11

Results Figure 3.12 records the retention probabilities of the liberal and conservative

strategies for the four cases outlined, when µ = 10 and after de-meaning using rule

(3.116). Transforming to an orthogonal representation increases the probability of re-

taining the relevant variables (other than for the conservative strategy with ψβi
= 2),

and tightens the probability of retaining the irrelevant variables to 5% and 1% for the

liberal and conservative strategies respectively. Figure 3.13 records the power for a t-test

of a single null hypothesis, H0, where ψβi
= 0 under the null, using a 2-sided test at

critical value cα. To calculate the power to reject the null when ψβi
> 0, we use:

P (tβi
≥ cα | E [|tβi

|] = ψβi
) ≃ P (tβi

− ψβi
≥ cα − ψβi

| H0) . (3.120)

There is a 50% chance of retaining a single variable with |t| = 2 when α = 0.05, but this

falls to 27% when α = 0.01. The power to detect relevant variables increases with the

non-centrality, and |t|s of 4 are retained more than 90% of the time. We also consider

11Results for T = 1, 000 are analogous to those for T = 100, and are available on request.
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Figure 3.12: The probability of retaining relevant and irrelevant variables for the static
nonlinear case with two exogenous variables

the theoretical probability of retaining two relevant variables, matching the four cases

examined. PcGets retention rates for the de-meaned variables are comparable to the

theoretical single t-test results, matching the linear studies by Hendry and Krolzig (1999,

2003b).

A stationary AR(1) process

Consider a stationary AR(1) process for the regressor, in which the DGP is given by:

yt = βxt + ut, ut ∼ IN
[
0, σ2

u

]
(3.121)

xt = µ+ ρxt−1 + νt, νt ∼ IN
[
0, σ2

v

]
(3.122)

for t = 1, ..., T. We set σ2
u = σ2

v = 1 and ρ = 0.8. We examine the zero mean case (µ = 0),

and the case where E [xt] = µ
1−ρ

= 10, setting µ = 2. We use two rules to de-mean, the

first removes the population means and the second removes the sample means:

1) x̃t = xt −
µ

1 − ρ
, and x̃2

t =

(
xt −

µ

1 − ρ

)2

− σ2
v

1 − ρ2
(3.123)

2) x̃t = xt −
µ̂

1 − ρ̂
, and x̃2

t =

(
xt −

µ̂

1 − ρ̂

)2

− σ̂2
v

1 − ρ̂2
. (3.124)

The first 50 generated observations are discarded for each replication. We set β = 0.5 for

T = 100 and β = 0.158 for T = 1, 000, with M = 10, 000 replications. We consider two
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Figure 3.13: t-test powers for a single null hypothesis test and two null hypothesis tests

GUMs, (3.125) in which there are five nuisance parameters and (3.125) with no dynamics,

where α1 = α3 = α5 = 0.

yt = α0 + α1yt−1 + α2xt + α3xt−1 + α4x
2
t + α5x

2
t−1 + ǫt, ǫt ∼ IN

[
0, σ2

ǫ

]
. (3.125)

Results Figure 3.14 records the retention probabilities of PcGets for the AR(1) process

when T = 100.12 The retention probabilities for the GUM containing three variables

and six variables are almost identical, indicating that exogenous dynamics do not affect

the selection probabilities to the extent that the nonlinear functions do. With a zero

mean process, the probability of retaining xt is near unity for both strategies, and the

probability of retaining irrelevant variables corresponds to 5% and 1% for the liberal

and conservative strategies respectively. A non-zero mean results in a decrease in the

probability of retaining xt to below 70%. The probability of retaining irrelevant variables

is much higher for the three-variable GUM than the six-variable GUM. The correlation

between xt and x2
t is much higher than the correlation between the variables dated t and

t− 1. Therefore, averaging retention probabilities across two variables results in a higher

null rejection frequency than averaging across five variables. The collinearity between

variables dated t and t−1 is significant, with retention probabilities of approximately 14%

12Results for T = 1, 000 are similar and are therefore not reported, but are available on request.
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Figure 3.14: The probability of retaining relevant and irrelevant variables for the stationary
dynamic nonlinear case, T = 100. GUM=6 includes lagged variables and GUM=3 excludes

lagged variables

for the liberal strategy and 3% for the conservative strategy, but the average retention

probabilities for x2
t and intercept are approximately 35% and 33% respectively. The

use of sample means has no impact on retention probabilities compared to population

values, providing easily implementable, operational rules for orthogonalisation: the last

two columns of Figure 3.11 and Figure 3.14 illustrate.

A unit-root process

Finally, we consider a DGP that consists of a unit-root process outlined in (3.127).

yt = βxt + ut, ut ∼ IN
[
0, σ2

u

]
(3.126)

xt = xt−1 + νt, νt ∼ IN
[
0, σ2

v

]
(3.127)

for t = 1, ..., T. We consider two initial conditions, x0 = 0 and 10 and set σ2
u = σ2

v = 1.

β = 0.5 for T = 100, and β = 0.158 for T = 1, 000, with M = 10, 000. The GUM is given

by (3.125), and we consider both the full equation, and setting α1 = α3 = α5 = 0.

In order to de-mean the data, we remove sample means, outlined in rule (3.128):

x̃t = xt −
1

T

T∑

t=1

xt, and x̃2
t =

(
xt −

1

T

T∑

t=1

xt

)2

− 1

T

T∑

t=1

(
xt −

1

T

T∑

t=1

xt

)2

. (3.128)

127



Nonlinear Models

Results Figure 3.15 records retention probabilities for the unit-root process for T = 100.

For an initial condition of zero, the probability of retaining xt for both the liberal and

conservative strategy is unity, and the probability of retaining irrelevant variables is ap-

proximately 5% and 1% respectively. Hence, I(1)ness has no impact on selection when

there are nonlinear functions. However, imposing an initial condition of 10 dramatically

reduces the probability of retaining relevant variables and increases the probability of

retaining irrelevant variables, and, for a GUM of six, the probability of retaining xt is

marginally higher for the conservative strategy compared to the liberal strategy. Rule

(3.128) results in a retention probability of unity for xt, with corresponding correct prob-

abilities for the retention of the irrelevant variables. Thus, rule (3.128) ensures near

orthogonal nonlinear regressors for I(1) variables. Observe that removing the initial con-

dition would deliver results analogous to those in which there is a zero initial condition.13

Removing the initial condition would result in a retention probability of approximately

5% and 1% for irrelevant variables and a retention probability near to the theoretical

upper bound for relevant variables.

Figure 3.16 records the retention probabilities for the unit root process for T =

1, 000. The adverse retention probabilities are mitigated as the sample size increases.

The random walk has deviated from the initial condition substantially, and while the

correlations do still depend on x0, the impact is rapidly declining with T . As de-meaning

using the sample average yields no cost, it would be recommended regardless of the

sample size.

A differenced I(1) process

While we have identified the primary difficulty in this aspect of model selection to be

collinearity between variables and their corresponding nonlinear transformations, the

correlation between variables and their lags is also significant. Retention of xt−1 and

x2
t−1 is approximately three times higher than the 5% and 1% size of the liberal and

conservative strategies respectively, for both the stationary process when E [xt] = 10 and

13In practice the initial condition will be unknown and the first observation, x1, could be used as an
estimate of the initial condition x0.
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Figure 3.15: Probability of retaining relevant and irrelevant variables for the unit-root
case, T = 100

the non-stationary process when x0 = 10 for T = 100. Hence, we next consider the

impact of differencing to remove the collinearity between the variables and their lags.

The DGP is given as:

yt = βxt−1 + ut, ut ∼ IN
[
0, σ2

u

]
(3.129)

for t = 1, ..., T , with xt generated by (3.127). Again, we set σ2
u = σ2

v = 1, β = 0.5 for

T = 100 and β = 0.158 for T = 1, 000, with M = 10, 000. The GUM is given by:

yt = α0 + α1yt−1 + α2∆xt + α3xt−1 + α4∆x
2
t + α5x

2
t−1 + ǫt, ǫt ∼ IN

[
0, σ2

ǫ

]
, (3.130)

where cov [∆xt, xt−1] = cov
[
∆x2

t , x
2
t−1

]
= 0. We consider the case in which x0 = 10 and

we use rule (3.128) to de-mean the data.

Results Figure 3.17 records the retention probabilities of the unit-root process for

T = 100. The first column is in levels, where the DGP is (3.129) but the GUM is

(3.125). PcGets struggles to identify the DGP variable and the retention probability

is substantially larger than 5% and 1% for the irrelevant variables, for the two strate-

gies. The second column uses the GUM in which the lagged variables are orthogonalised,

given in (3.130), and the retention probabilities are analogous to the levels model. Thus,
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Figure 3.16: Probability of retaining relevant and irrelevant variables for the unit-root
case, T = 1, 000

orthogonalising the lagged variables alone without ensuring orthogonality of the contem-

poraneous variables yields no improvement in selection. The final column removes sample

means from the data and orthogonalises by differencing, and this results in a retention

probability of near unity for the relevant variable and a retention probability of approxi-

mately 5% and 1% for the irrelevant variables, for the liberal and conservative strategies

respectively. Hence, all forms of collinearity need to be removed when undertaking model

selection.

Figure 3.18 provides more detail to Figure 3.17, recording the retention probabilities

of all GUM variables for the three cases outlined. Retention of the lagged dependent

variable has the appropriate probabilities, indicating that LDVs are not problematic for

model selection when they do not enter the DGP. In levels, xt is retained approximately

three times too often, at 15% and 4% respectively. Taking differences halves the retention

probabilities to 7% and 2%, but de-meaning as well as taking differences reduces the

retention probabilities further, to 5% and 1%. The same pattern is evident with x2
t . The

DGP variable is retained about 70% of the time for the levels GUM, with the conservative

strategy delivering a higher power than the liberal strategy. Taking differences does not

alter this probability, but de-meaning does increase the probability of retaining the DGP

variable to unity. Both x2
t−1 and the intercept are retained far too often at about 30%,
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Figure 3.17: Retention probabilities for the relevant and irrelevant variables for the unit
root case with a differenced GUM, T = 100

which is analogous to the above results. Orthogonalising by differencing does not alter

these probabilities as the collinearity between xt−1 and x2
t−1 is unaffected, but de-meaning

reduces the retention probability to appropriate levels.

The nonlinear selection strategy will automatically double de-mean the generated

polynomial functions prior to formulating the GUM. Two caveats apply. First, the or-

thogonalising rules will not remove all collinearity between higher order polynomials.

Orthogonalisation using the Choleski method of solving a system of linear simultane-

ous algebraic equations (see Rushton, 1951) has been considered, but the simple double

de-meaning removes enough collinearity to ensure the PcGets selection has the appropri-

ate properties and so this strategy is implemented. Second, any information contained

in the intercepts of the explanatory variables will be removed, although this concern is

not fundamental as there is rarely a theory of the intercept postulated when developing

econometric models.

3.4.4 Non-normality

Normality is a basic assumption in PcGets, as conventional critical values are used for

selection and null rejection frequencies would be incorrect for non-normality. Normality

tends to be more vital for selection (when many decisions are made) than inference. A test
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Figure 3.18: Retention probabilities of the GUM variables for the unit root case, T = 100

for normality based on Doornik and Hansen (1994) is performed on the GUM, and the

diagnostics are checked at every subsequent reduction stage. If a reduction brings about

a rejection of a diagnostic test, the search is terminated at the preceeding level. When

we consider nonlinear models, normality becomes an essential requirement. Problems

arise when extreme observations result in fat-tailed distributions, as there is an increased

probability that nonlinear functions will align with extreme observations, effectively act-

ing as indicators and therefore being retained too often. This can be demonstrated by

considering a simple case (of relevance below) in which an outlier is modelled as an in-

dicator variable, I{t=s}, which takes the value 1 in period s and 0 otherwise. Consider a

regression between two unconnected variables:

yt = βxt + δI{t=s} + ut (3.131)

xt = γI{t=s} + vt, (3.132)

where β = 0. If the indicator is omitted from the model, so yt = βxt + ut, we can

calculate the coefficient β̂ as:

β̂ =

∑
xtyt∑
x2

t

=
δγ
∑
I2
{t=s} +

∑
(δvt + γut) I{t=s} +

∑
vtut

γ2
∑
I2
{t=s} + 2γ

∑
vtI{t=s} +

∑
v2
t

=
δγ + (δvs + γus) +

∑
vtut

γ2 + 2γvs +
∑
v2
t

(3.133)
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as
∑
I2
{t=s} = 1. Also:

V
[
β̂
]

=
σ̂2

u∑
x2

t

(3.134)

and:

tbβ =
β̂
√∑

x2
t

σ̂u
=

∑
xtyt

σ̂u

√∑
x2

t

. (3.135)

Hence, if we approximate by vs = us = 0, σ̂u = 1, γbσv
= 1 and

∑
vtut ≃ 0 we can

calculate:

t2bβ =
δ2γ2

γ2 + T
. (3.136)

To illustrate this phenomenon, suppose δ = 6, γ = 5, and T = 100. Then:

t2bβ =
62 × 52

52 + 100
= 7.2. (3.137)

Thus, outliers need to be quite large for this effect. This is plausible when considering

nonlinear transformations. For example, in one draw of an IN [0, 1] process with T = 100,

the standard deviation of the inverse transformation is σ = 25.608 and the largest outlier

is −169.2, which RETINA could well confront.

Extreme observations: Monte Carlo example

Monte Carlo evidence illustrates the outlier problem. Consider a DGP given by:

xi,t = νi,t νi,t ∼ IN [0, 1] for i = 1, . . . , 4. (3.138)

We shall generate nonlinear functions given by the inverses of these normal distributions:

x−1
i,t =

1

xi,t
. (3.139)

The GUM, which contains twenty irrelevant variables, is given by:

x−1
i,t = α0 +

4∑

k=1

αi,t−kx
−1
i,t−k +

4∑

j=1 (j 6=i)

4∑

m=0

αj,t−mx
−1
j,t−m + ǫt, (3.140)

for t = 1, ..., T , with M = 10, 000 replications.

Equation (3.140) leads to |t|-values as large as 19 for variables with zero population

non-centralities. The variable would unequivocally, but incorrectly, be retained as a

DGP variable. On average, two of the twenty irrelevant regressors are retained at the 1%

133



Nonlinear Models

significance level. This implies that a fat-tailed distribution would have a null rejection

frequency of 10% at the 1% significance level. If the dependent variable is xi,t rather than

x−1
i,t , the retention probabilities are correct. Non-normal errors can also pose a similar

problem. Hence, the problem of model selection when there are extreme observations is

exacerbated by the inclusion of nonlinear functions such as inverses.

Solution: Indicator saturation techniques

To overcome the problem of fat tails, we draw on the technique proposed by Hendry et al.

(2004), outlined in Chapter 2, in which the data are saturated with as many indicators

as observations and the indicators are selected at a chosen significance level to identify

outliers. Once we have identified the outliers we can remove them, and the selection

process will not be biased in favour of nonlinear functions that are proxying indicators

for the outliers. Crucially, the indicators will not be retained if nonlinearity is the correct

LDGP.

This technique also overcomes the problem of undetectable outliers. One concern with

nonlinearity is that it is difficult to distinguish between extreme observations that are

outliers and extreme observations that are due to the nonlinearity in the data. Methods

that remove extreme observations could be in danger of removing the underlying nonlin-

earity that should be modelled. Indicator saturation techniques can avoid this problem

by including all potentially relevant variables as well as indicators for all observations

in the initial GUM. By removing the extreme observations in conjunction with selecting

the nonlinear functions we avoid the problem of removing observations that generate the

nonlinearity.

3.4.5 Super-conservative strategy

Irrelevant nonlinear functions are likely to be detrimental to both modelling and fore-

casting, hence, nonlinear functions should only be retained if there is definite evidence

of nonlinearity because these models are much less robust than linear models, both to

changes in collinearity between regressors and location shifts within the equation or in

any retained but irrelevant variable. Given a preference for linear models unless strong
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evidence for nonlinearity is presented, and the possible excess retention of irrelevant

functions due to the large number of nonlinear functions tested, we propose a ‘super-

conservative’ strategy for PcGets. This strategy would use more stringent critical values

for the nonlinear functions compared to the linear functions, which would all be tested

within the same procedure. Hence, diagnostic tests would apply to the full GUM, but

pre-search tests and multipath search tests would be conducted at more stringent critical

values for the nonlinear functions. The critical value would depend on the number of

functions included in the model and, as with all significance levels, the choice will depend

on the preferences of the econometrician.

Block F-tests on classes of nonlinear functions could be incorporated into the pre-

search stage in PcGets. Tight significance levels would again be used, and a sequential

testing procedure on classes of nonlinear functions entering the GUM would be under-

taken until just those classes that are significant are retained to formulate the GUM. This

would narrow down the number of nonlinear functions in the multipath search stage.

3.5 Conclusion

This chapter develops a coherent general-to-specific strategy for the selection of nonlinear

models which is designed to be embedded within the automatic model selection algorithm

of PcGets. First, a GUM is formulated in which all potential variables that are thought

to explain the phenomenon of interest are included, assuming a linear functional form.

Second, a test of linearity is applied to the GUM to test the linear approximation. The

proposed index test is designed to handle large dimensional systems and is therefore

appropriate for testing the GUM. The test generates quadratic and cubic functions of

all regressors and tests for their joint significance at an appropriate significance level; we

propose 1%. If the null is accepted, standard PcGets selection procedures are applied to

the linear GUM. However, if the null is rejected, a nonlinear functional form is generated

using polynomial transformations of the regressors, and selection follows an alternative

procedure.

The PcGets selection procedure for nonlinear models would be implemented as fol-

lows. A set of polynomial transformations of the regressors is generated. This would
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consist of the quadratic and cubic functions, as in the index test, but could include more

general transformations such as cross-products. All polynomial functions are double de-

meaned prior to inclusion in the GUM to remove potential collinearity. Observe that the

index test performs well if there is collinearity, and so orthogonalising transformations

are only undertaken at this later stage. Under collinearity, the index test has power

against cross-product terms, but as the nonlinear functions are now orthogonalised, in-

clusion of cross-product terms in the GUM may be preferable. A set of T indicators are

also generated and included in the GUM in order to detect outliers concurrently with

selection of the specific model, and selection is performed using the techniques developed

to handle more variables than observations.

An F-test on all nonlinear functions in the GUM is redundant as the index test

has found evidence of nonlinearity. However, F-tests are undertaken on subsets of the

nonlinear functions, commencing from the highest order terms, to remove any highly

irrelevant nonlinear functions. A potential problem arises if the F-tests on all subsets of

nonlinear functions are accepted, contradicting the results of the index test. Hence, we

propose the use of a multi-stage strategy, analogous to that implemented in the PcGets

pre-search stage, in which tests are undertaken at consecutively tighter significance levels.

We recommend commencing with the significance level used in the index test, and so if a

1% level was used in the test, we would propose using a 0.01 significance level, followed

by a 0.005 significance level, and finally a 0.001 significance level. It is feasible that the

p-value ellipsoid for the 0.01 level does not nest the origin, whereas the ellipsoid for the

0.001 level does, and the resulting model after the pre-search stage must retain nonlinear

functions to correspond to the findings of the index test. The multipath search is then

implemented. If the general model contains a large number of nonlinear functions, i.e.,

the pre-search stage did not substantially reduce GUM, the super-conservative strategy is

proposed for the nonlinear functions. Again, the final model must contain nonlinearities

to justify the results of the index test, and so the multi-stage strategy is implemented

within the multipath search procedure. Rules for the super-conservative strategy would

be similar to those implemented for the Schwarz information criteria (see Campos et al.,
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2003), and the selection strategy should deliver the undominated, congruent, specific,

nonlinear model. A comprehensive Monte Carlo simulation study across a wide range of

states of nature is required to calibrate the super-conservative strategy.

Solutions to three potential difficulties are proposed. Collinearity is one of the most

fundamental problems with model selection. We show the correlation magnitudes be-

tween linear and nonlinear functions can be extremely high, causing selection algorithms

to struggle to identify the relevant variables. This is due to non-zero means in the data.

We propose a solution of de-meaning both the linear term prior to the transformation,

and after the nonlinear function has been generated. This removes an important compo-

nent of the collinearity, and PcGets is shown to have good selection properties with this

partial orthogonalisation. We emphasise the importance of normality for model selection,

and show that the null rejection frequency can be greatly increased relative to the nomi-

nal significance level if nonlinear functions capture extreme observations: the solution of

indicator saturation is proposed. Further, both this, and the many nonlinear functions

created, together always necessitate the use of the multi-stage selection process described

earlier for handling more variables than observations. Finally, the potential problem of

excess retention of irrelevant variables is addressed, and a super-conservative strategy

is proposed. The chapter has shown that it is essential to implement all four of these

developments to achieve a successful algorithm, and that removing any one component

can be seriously deleterious. Since previous modelling of nonlinearities has not done so,

many empirical studies merit a revisit to check their validity.
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Chapter 4

Modelling Quarterly UK Inflation,

1967q1-1998q2

4.1 Introduction

The importance of a clear understanding of the determinants of inflation is undisputed

given its role in economic policy, and yet there are a plethora of theories regarding its

determination. Hence, there is an obvious role for model selection techniques in ascer-

taining the most relevant causes of inflation. Given the range of plausible explanations,

a Gets approach that tests the relevance of all possible causes would be the most ap-

propriate methodology to adopt, and this approach is embodied in the automatic model

selection algorithm of PcGets, assessed in Chapters 2 and 3. This chapter develops a

dominant congruent model of inflation within a dynamic, single-equation framework that

encompasses almost all relevant theories and Chapter 5 assesses the model’s forecasting

performance. The application provides the basis for an assessment of Gets model se-

lection techniques, both for in-sample and forecasting models, in an empirical setting.

Furthermore, as UK inflation has experienced many structural breaks and regime changes

over the past 40 years, we test the modelling and forecasting techniques used against such

non-stationarities.

The key determinants of inflation are the pressures arising from excess demands in

all sectors of the economy and so measures of excess demand for both goods and labour

are developed.1 The output gap, as a proxy for excess demand for goods and services, is

widely used but is notoriously difficult to measure due to it being a latent variable. Three

measures of the output gap are derived to establish robustness of the measure used. First,

a standard production function (PF) approach is undertaken. Second, an alternative PF

approach is proposed, modelling the production function within a dynamic framework in

1Hendry (2001) develops excess demands for both money and debt but finds them to be insignificant
in explaining inflation, and so we exclude these measures from our analysis.
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which total factor productivity (TFP) is modelled as a random walk with drift. Third, a

split trend is used to capture TFP in a simple Solow residual framework. In theory the

gaps should be identical, but there are some differences due to measurement error, and

the Solow residual gap is used in the resulting analysis. The excess demand for labour

measure is based on the disequilibrium unemployment generated when the real interest

rate exceeds the real growth rate and vice versa.

A congruent model of quarterly UK inflation is developed in which most extant theo-

ries of inflation play a role in its determination, including unit labour costs, import prices,

producer prices, exchange rates, foreign prices, and excess demand for both goods and

labour. The model selection technique allows all individual variables to partially explain

inflation. This is based on the assumption that the DGP is a complex distribution func-

tion, Du

(
U1

T |U0,ψ
1
T

)
, of all potential variables in the economic mechanism, but it can

be reduced to a LDGP via the theory of reduction, see Chapter 1. The LDGP consists of

the relevant variables for the phenemenon under analysis, see Hendry (1995, ch.9), which

is mapped from a joint distribution function to an empirical model. However, under

an alternative paradigm, the marginalization and conditioning required in the theory of

reduction are not imposed. Instead of individual variables contributing to inflation, there

are underlying generic factors capturing the information in Du

(
U1

T |U0,ψ
1
T

)
. Stock and

Watson (1998, 1999a, 1999c) propose that inflation is driven by general business cycle

factors that capture all demand and supply pressures in the economy. We test whether

there is a generic ‘business cycle’ factor driving inflation, but find that evidence is lim-

ited. A business cycle component does not negate the individual variables included, and

very few principal components are retained, with little explanatory power. The lack of

interpretability and non-robustness to changes in the information set further limit the

use of a broad cyclical factor.

The chapter is structured as follows. Section 4.2 discusses the data, developing mea-

sures of the output gap in detail. Section 4.3 presents the model of quarterly UK inflation.

Section 4.4 assesses whether there is a generic business cycle component to inflation, and

finally, section 4.5 concludes.
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4.2 Data

The data set consists of quarterly data for the UK over 1965q1-2003q2 and is derived from

a number of sources detailed in Appendix 4.A. All data are seasonally adjusted and lower

cases represent logarithms. Indicator variables, given by Idate, take the value 1 in the

quarter indexed and 0 otherwise. Dummy variables combine two indicators, taking the

values -1 and +1 in the indexed quarters. The estimation sample period for the inflation

model is 1967q1-1998q2, resulting in 126 observations, with 20 observations retained

for the forecasting exercise undertaken in Chapter 5, extending from 1998q3-2003q2.

Restricting the sample endpoint in this chapter to 1998q2 enables ex ante forecasts to be

computed, thereby avoiding any bias in the forecasts due to a preliminary examination of

the out-of-sample data. The excess demand measures are estimated over 1966q2-2003q2

to facilitate forecasts over the full forecast horizon.

The order of integration of price level data has been discussed extensively in the lit-

erature. Hendry (2001) concludes that the price level is I(1) but contains deterministic

shifts, giving the impression that the series is I(2). Dickey-Fuller tests are rarely conclu-

sive due to their low power, and results differ across countries and time periods. However,

the ADF test statistics for the implicit GDP deflator suggest that the price level is I(2)

and the inflation rate is I(1).2 This implies that there are two forms of cointegration.

First, the price measures cointegrate to I(1) and secondly, the I(1) cointegrating price

measures drive fluctuations in the inflation rate, yielding a polynomially cointegrating

relation. This will give a long-run solution for the price level and a long-run solution for

the inflation rate based on relative prices. The evidence for deterministic shifts in an

I(0) process is also convincing. Labhard, Kapetanios and Price (2005) apply the Bai and

Perron (1998) break test to UK CPI inflation over 1984q1-2005q1 and they identify three

breaks. Removing these mean shifts results in an I(0) inflation process. If we apply both

the Bai and Perron test and the Hendry et al. (2004) indicator saturation test to the

GDP deflator over the sample 1967q1-2003q2, we find breaks at approximately 1972q4,

1979q1 and 1992q1. The deterministic shifts in the GDP deflator could conceivably co-

2ADF test results with constant and trend: H0 = I(1) : ADF τ = −0.906, H0 = I(2) : ADF
τ = −2.884, H0 = I(3) : ADF τ = −13.82∗∗.
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Figure 4.1: GDP deflator; quarterly inflation rate; producer prices, unit labour
costs, imports and housing rent; and the external and internal price levels

break with the explanatory variables, resulting in an I(0) model. Note that many studies

examine the consumer price deflator or the net national income deflator as opposed to

the GDP deflator. Hendry (2001) finds that these series do not mutually cointegrate, and

so empirical models are specific to the price measure used. Figure 4.1a records the log of

the GDP deflator (p) and panel b records the quarterly inflation rate (∆p). There is a

substantial negative inflation outlier of -2.2% in 1973q2. This is thought to be measure-

ment error as the change in inflation exhibits a blip, with an initial fall and subsequent

rise of similar magnitude, hence an indicator variable is included for this outlier.

The equilibrium correction model of inflation is based on a mark-up model, with excess

demand pressures causing short-run cyclical movements in inflation while the long-run

price level is determined by sectoral price levels. The main series include producer prices

(ppi), import prices (imp), housing rent (rent), unit labour costs scaled for the decline in

average hours (c∗), oil prices (oil), national debt (n) and external prices (pw). The short-

run pressures are captured by the output gap
(
yd
)
, excess demand for unemployment

(
Ud
)
, the growth rate of broad money (∆m4), the short-term interest rate (Rs), the

long-term interest rate (Rl), the short-long real interest rate spread (s), and the real

effective exchange rate (er).
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4.2.1 Sectoral prices

Figure 4.1c records the levels of ppi, imp, c∗, and rent, and Figure 4.2 records the

quarterly growth rates of ppi, imp, c∗, and rent in panels a to d respectively, recorded

with the inflation rate for comparison. ∆ppi follows price inflation fairly closely, but both

∆imp and ∆rent are much more volatile than inflation. Housing market volatility has

increased substantially since the late 1980s boom and subsequent recession. Unit labour

costs for the whole economy are adjusted for the gradual decline in average working hours

by 0.0625% per quarter from 1965q1-1984q4, and for a decline of 0.03% hours per quarter

from 1985q1-2003q2. This accords with the data on normal hours taken from the national

statistics figures on average actual weekly hours of work. Data limitations prevent a more

disaggregated approach that also controls for the effects of self-employment and for the

slower evolvement of wage-price linkages in the public sector.

Figure 4.3a records the real oil price scaled for a zero mean (oil − p). The 1973 and

1979 oil price shocks are evident, as are large swings in the late 1990s. Real unit labour

costs (c∗ − p) are recorded in panel b, and real producer prices are recorded in panel c,

exhibiting a systematic decline since the mid-1970s. Finally, panel d records the mark-

up, π∗, derived in (4.19) as the profit over and above unit labour costs, producer prices,

and world prices in sterling.

4.2.2 World prices and exchange rates

Theories of inflation based on purchasing power parity (PPP) argue that in the long-run,

exchange rates should adjust to eliminate arbitrage opportunities, and hence inflation

will be imported via pass-through effects. The external price level is based on the OECD

consumer price index and therefore will not be fully external as the measure will contain

UK inflation. Furthermore, the measure will exclude important growth countries such as

China and India. pw£,t = pwt − et, where et is the nominal exchange rate, denotes world

prices in sterling, and therefore er is derived (setting the sample mean to zero) as:

er,t = pt − pw£,t + 0.02. (4.1)

142



Modelling UK Inflation

1970 1980 1990 2000

0.000

0.025

0.050

0.075
∆pt ∆ppit 

1970 1980 1990 2000

0.00

0.05

0.10

0.15
∆pt ∆impt 

1970 1980 1990 2000

0.00

0.05

0.10 ∆pt ∆ct
∗ 

1970 1980 1990 2000

−0.025

0.000

0.025

0.050

0.075

0.100
∆rentt ∆pt 

Figure 4.2: Quarterly growth rates of the producer price index; import prices; unit
labour costs; and housing rent
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markup
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Figure 4.1d records the external price level against the UK price level for comparison:

UK prices have grown faster on average. Figure 4.5a records the external inflation rate

which shows that patterns of inflation are similar to those for the UK.

Figure 4.4, panels a and b, record the nominal and real exchange rates respectively.

There are substantial and persistent deviations from PPP over the period, with a range

extending from +20% to -30%. While er is judged to be I(0) over very long data sets,

the ADF statistics for the period 1965q1-2003q2 find er to be I(1).

4.2.3 Interest rates and monetary aggregates

The short-long real interest rate spread captures the inflationary pressures arising from

an increase in the cost of capital relative to the borrowing rate, assuming the short rate

is the control variable and the long rate is a proxy for the cost of capital. As the interest

rates are annual measures, the spread is scaled to represent a quarterly measure and is

adjusted for a zero sample mean. The spread is recorded in Figure 4.4c.

Monetary theories of inflation stem from the ‘quantity theory’ of Friedman (1956),

in which money is treated as exogenous, enabling the money demand equation to be

inverted in order to solve for the price level. There is a vast literature looking at money

causing inflation, but Hendry (2000a) finds no support for this theory. The growth rate

of broad money, recorded in 4.4d, tends to exceed price inflation over the 1980s as people

transferred their holdings from narrow money to broad money due to the tightening

operated via the Medium Term Financial Strategy, and again over the latter part of the

1990s. A measure of excess money holdings is not developed but the inclusion of the

growth rate of broad money does test this theory in the inflation model.

4.2.4 Excess demand for labour

There is a substantial literature examining the importance of labour market pressures on

inflation. We use a measure of excess demand for unemployment based on an equilibrium

correction model, which models the change in the unemployment rate, ∆Ur,t, as a function

of the gap between the real interest rate and the real growth rate, following Hendry

(2001). In this model, disequilibrium unemployment is based on steady state growth,

144



Modelling UK Inflation

1970 1980 1990 2000

0.00

0.25

0.50

et 

1970 1980 1990 2000

−0.2

−0.1

0.0

0.1

0.2
er,t 

1970 1980 1990 2000

−0.01

0.00

0.01

st 

1970 1980 1990 2000

−0.025

0.000

0.025

0.050

0.075 ∆pt ∆m4t 

Figure 4.4: The nominal effective exchange rate; real effective exchange rate; short-
long interest rate spread; and the growth rate of broad money

with unemployment rising when the real interest rate exceeds the real growth rate and

vice versa. Disequilibrium unemployment is described as:

∆Ur,t = 0.010
(0.004)

∆4 (Rl − ∆p− ∆y)t + 0.869
(0.034)

∆Ur,t−1

+0.008
(0.003)

(Rl − ∆p− ∆y)t−1 − 0.010
(0.003)

Ur,t−1 − 0.005
(0.001)

I71:1

+0.007
(0.001)

I71:2 − 0.003
(0.001)

I76:1 + 0.003
(0.001)

I90:3 + 0.003
(0.001)

I91:1 (4.2)

R2 = 0.860 σ̂ = 0.110% SIC = −13.524 Far(5, 135) = 0.924

Farch(4, 132) = 2.684∗ Fhet(13, 126) = 1.379 χ2
nd (2) = 0.475

Freset (1, 139) = 0.204 FChow(10, 130) = 0.445 T = 1966q2 − 2003q2.

The model provides a reasonable fit and passes all diagnostics apart from ARCH at 5%

significance. Five indicators are included in the model but do not enter into the long-run

solution. The resulting excess demand for labour measure is given by:

Ud
t = Ur,t − 0.73 (Rl,t − ∆pt − ∆yt) . (4.3)

Figure 4.5 records the quarterly change in the unemployment rate and excess demand

for labour in panels b and c respectively. The excess demand for labour measure follows

a similar pattern to measures of the UK NAIRU estimated by, inter alia, Batini and
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Figure 4.5: The external quarterly inflation rate; the quarterly change in the unem-
ployment rate; excess demand for labour; and excess demand for goods and services

Greenslade (2006).

4.2.5 Excess demand for goods and services

One of the fundamental driving forces of inflation is excess demand for goods and services,

but it is extremely difficult to measure accurately, see De-Brouwer (1998) and Hendry

(2000c). This section derives estimates of the gap based on a static production function,

a dynamic production function and a Solow residual measure with split time trend to

capture productivity gains. The third measure is used in the subsequent inflation model.

Static production function

Assuming a Cobb-Douglas technology with constant returns to scale, an elasticity of

substitution equal to unity, and Hicks-neutral productivity, the production function is

given as:

Yt = AtL
α
t K

1−α
t , (4.4)

where Lt is labour input, Kt is capital input, At is total factor productivity (TFP), or the

efficiency with which both capital and labour are used to produce output, and α is the

elasticity of output with respect to labour (0 < α < 1). Under the assumption of perfect

competition, where the marginal products of labour and capital are equal to the wage
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rate and profit rate, α is equal to the share of output going to labour, or equivalently

the share of wages (Wt) in total income (Zt). Over the sample period α lies in the range

[0.68, 0.72], with a mean of 0.702. Hence, we set α = 0.7.

Lt comprises employment (Lt) and the number of paid hours worked per employee

(Ht). Lt is broken down into three components:

lt = wpopt + partr,t + empr,t, (4.5)

where wpopt is the population of working age, partr,t is the participation rate and empr,t

is the employment rate. Lt should be adjusted for labour quality but such data is un-

available and so any changes to labour quality will be picked up in the residual. lt is

recorded in Figure 4.6a, along with trend employment. Ht is approximated by the dif-

ference between average overtime hours and average undertime hours, but as the impact

of short-time is negligible, hours can be calculated as:

ht ≈ ln
[
Ht (1 +OHt)

]
, (4.6)

where Ht is the normal number of hours worked per week and OHt is the number of

overtime hours worked per week. Ht declined from 39 hours in 1965 to 32 hours in 2002.

The implied fall in output is offset by an increase in efficiency that will be captured

in At. ht and OHt are recorded in Figure 4.6, panels c and d respectively, and it is

evident that an increase in systematic overtime has accompanied the fall in normal hours.

Muellbauer (1984) finds that data on average hours provides a good approximation to

labour utilisation.

Capital input (Kt) is measured by the net capital stock excluding the dwellings sector

(Jt). This is a wealth measure of capital that weights different types of capital by their

asset prices. The theoretical concept requires a measure of capital services that captures

the flow of productive input from capital. Thus, we assume that capital services are

proportional to the asset value measure of capital stock. If capital is thought of as

an overhead, Jt may not need to be adjusted for the degree of capacity utilisation, Uc,t.

However, Uc,t substantially reduces the procyclicality of the residual, and so capital input
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Figure 4.6: Employment; capital stock and utilisation of capital; normal number of
hours worked per week; and number of overtime hours

is measured as:

kt = jt + Uc,t. (4.7)

kt and jt are recorded in Figure 4.6b. The capacity utilisation measure is constructed

from the CBI industrial trends survey in which firms report whether they are operating

below normal capacity levels, see the Appendix for details. Full capacity is assumed to use

approximately 91% of the total capital stock available. The data applies to manufacturing

output, but as services have increased dramatically over the period of estimation and

the relationship between utilisation rates for manufacturing and services is ambiguous,

the utilisation measure may be a poor approximation. A shortage of data on capacity

utilisation levels in the service sector prevents a more rigorous, disaggregated measure

being derived.

Estimates of the latent variables including potential capital, potential labour, and

TFP (denoted by superscript ∗) are required to calculate potential output. For capital

input, it is assumed that capital operates at full capacity, hence Uc,t = 0 and k∗t = jt.

Even though net investment per annum is very volatile, it is such a small fraction of net

capital stock as to have a very limited impact on the stock of capital.

The working population is assumed to be at trend. Most movements in the working

population are long-run or permanent changes caused by, for example, a change in pen-
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sion provisions, changes in the age of retirement, or an increase in the number of women

who work. There may be a small cyclical component to the working population, for

example, in the climate of a recession some members may choose to remove themselves

from the working population pool by retiring early or choosing not to search for a job,

but it is assumed that this effect is negligible. The trend employment rate is derived from

the trend unemployment rate, which is used as a proxy for the NAIRU. This is calculated

using the unobserved components (UC) method of decomposition based on a stochastic

level and cycle.3 To estimate the trend participation rate, the total number in employ-

ment is smoothed using a Hodrick Prescott (HP) filter, and the level of unemployment

is derived from the trend unemployment rate.4 The sum is then divided by the actual

working population to result in the potential participation rate. H is assumed to pick

up long-run trends only, as any cyclical fluctuations will not be captured due to labour

hoarding. Also, overtime hours are assumed to be 0, therefore h∗t = ht.

The calculation of trend at depends on the assumptions made regarding the nature

of TFP growth. The most appropriate method for detrending at depends crucially on

whether technical innovations are thought to be random shocks due to a burst of new

ideas, or whether ideas diffuse gradually as learning is slowly accumulated. One may

expect productivity shocks to take their time feeding through as the learning process,

along with research and development, occurs. Also, shocks that are specific to sectors

are likely to only impact gradually in the aggregate. Hence, a plausible trend would

be smooth but would also allow for random productivity shocks. at will also pick up

3The univariate UC model is given as:

yt = µt + ψt + εt

µt = µt−1 + βt−1 + ηt

βt = βt−1 + ζt�
ψt

ψ∗

t

�
= ρ

�
cosλc sin λc

− sinλc cos λc

��
ψt−1

ψ∗

t−1

�
+

�
κt

κ∗

t

�
where t = 1, ..., T. λc is the frequency in radians, 0 < λc < π, ρ is the dampening factor, 0 < ρ ≤ 1, and
εt ∼ IN

�
0, σ2

ε

�
, ηt ∼ IN

�
0, σ2

η

�
, ζt ∼ IN[0, σ2

ζ ] and κt, κ
∗

t ∼ IN
�
0, σ2

κ

�
. The disturbances of each of the

components are assumed to be mutually uncorrelated. See Koopman et al. (1995) for a detailed outline.
4The HP filter is a two-sided symmetric moving average filter that decomposes a series into a trend

and cycle by optimising:

y
∗

t = arg min
y∗

t

TX
t=1

(yt − y
∗

t )
2

+ λ

TX
t=3

�
∆2
y
∗

t

�2
,

where λ is the smoothness parameter. For quarterly data, λ=1600 is used as a rule of thumb.
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Figure 4.7: The static production function output gap; TFP estimated by the
static production function; the dynamic production function output gap; and TFP

estimated by the dynamic production function

efficiency gains in the quality of capital and labour. Given these assumptions, a UC

model is used to detrend at based on a smooth trend.

The resulting output gap, defined as yt − y∗t , where y∗t = a∗t + αl
∗
t + (1 − α) k∗t , is

recorded in Figure 4.7a. The 1980s recession is estimated to be a lot deeper than the 1990s

recession, reaching a magnitude of 3.6% compared to 2.0% of output in the early 1990s.

One explanation for the smaller recession in the 1990s is the sharp drop in normal hours

at the beginning of the 1990s that is unlikely to be offset by increasing productivity due

to efficiency gains, causing lower potential output and reducing the size of the negative

gap. Panel b records at and the smoothed estimate based on a UC model with fixed level

and stochastic slope, a∗UC
t . The actual and trend estimates are very similar, and the lack

of cyclicality in TFP shows that the utilisation rates have accounted for business cycle

fluctuations. Productivity declined following the first oil price shock but then picked

up again in the mid-1980s. Productivity does flatten off from 2000 onwards, although

caveats regarding end-of-sample estimates from such decomposition techniques apply.

Dynamic production function

The production function is a static and cointegrating concept. Hence, the standard

growth accounting framework should be sufficient. However, the presence of substantial
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measurement errors in K, L, and A imply that a stable relationship may be difficult to

identify. Haavelmo (1944) highlights the problem by distinguishing between the latent

variables identified in economic theory, their correctly measured empirical counterparts,

and the actual data available that contains substantial measurement error. With regard

to capital, theoretical models require a measure of the flow of capital services in the

economy, but empirical data is a measure of the capital stock, containing errors due to

the assumptions made about depreciation, scrapping, aggregation, etc. In order to allow

for measurement error, we shall analyse the PF in a log-linear dynamic setting, resulting

in a stable solution for potential output. This approach has the added advantage of

setting the PF in the long-run context. Firms do not produce to the PF constraint on

a short-run basis. The magnitude and volatility of inventories highlight this fact. In

the short-run, firms tend to produce to inventory or order and then sell from these.

However, in the long-run the PF constraints will bite, so a dynamic model that allows

for adjustments over the short and medium term is appropriate.

The dynamic PF model is set in the single-equation framework with a time-varying

regression intercept that captures unobserved TFP, and is augmented by I(0) cyclical

factors. The long-run solution, proxying potential output, will be based on the static PF

model:

y∗t = Ψt + γ1kt + γ2lt, (4.8)

where Ψt is a local level with drift intercept term capturing at. We assume that a single-

equation analysis of ∆yt is valid, requiring lt, and kt to be weakly exogenous for yt. Given

an ADL(1,1) model:

yt = ψat + β1yt−1 + β2kt + β3kt−1 + β4lt + β5lt−1 + δ′ (cyclical factors) + εt, (4.9)

where εt ∼ IN
[
0, σ2

ε

]
, we can estimate the model in EqCM form:

∆yt = ψat + β2∆kt + β4∆lt + (β1 − 1)
[
yt−1 − κ1kt−1 − κ2lt−1

]

+δ′∆ (cyclical factors) + εt, (4.10)

where κ1 = β2+β3

1−β1
and κ2 = β4+β5

1−β1
. The time-varying intercept evolves according to the
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transition equation:

at = at−1 + µ+ ηt, ηt ∼ IN
[
0, σ2

η

]
. (4.11)

We assume σ2
ε and σ2

η are independently distributed. The model is formulated in state

space form and is estimated using the Kalman (1960) Filter. The time-varying trend,

modelled as a random walk with drift, allows for permanent shifts in TFP. This will

robustify the coefficient estimates against the effects of structural change. The time-

varying trend will proxy advances in human capital, including knowledge accumulation,

experience and educational improvements. Human capital is captured by the process of

cohort arrival and departure in the labour force. Retirements from the workforce tend

to have a lot of experience but education occurred a long time ago, whereas new arrivals

have a recent education but a lack of experience. Aggregating across all individuals,

given that workers are at different stages in their lifecycles, implies a smooth growth in

the effective labour force. Furthermore, a random walk with drift will capture the effect

of human capital using a physical capital stock that embodies technological progress.

Equation (4.10) is generalised to allow for a broader dynamic structure, which is

identified using a Gets modelling strategy. The GUM consists of the lagged levels of

output, capital and labour, contemporaneous values and four lags of ∆k and ∆l, cyclical

factors including the change in overtime hours (∆OH), change in capacity utilisation

(∆Uc), change in inventories, (∆invent), real interest rates (Rr
l and Rr

s) the real exchange

rate (er), and a convex investment adjustment cost given by
(
I2
t /Kt

)
, and impulse and

blip dummies for the large outliers. The model is estimated using STAMP (Koopman

et al., 1995) and the Gets reduction is implemented manually to mimic PcGets. The

resulting model is given by:

∆yt = 1.103
(1.90)

at + 0.002
(0.0013)

µ− 0.413
(0.06)

yt−1 + 0.098
(0.05)

kt−1 + 0.302
(0.11)

lt−1

+0.555
(0.25)

∆lt + 0.031
(0.007)

∆inventt + 0.156
(0.05)

∆Uc,t

+0.027
(0.006)

I68:1 + 0.035
(0.006)

I73:1 + 0.027
(0.01)

D79:2 (4.12)

R2 = 0.776 σ̂ = 0.664% χ2
nd (2) = 1.347 Qbl (11, 10) = 12.088

SCr (1) = 0.020 F
np
het (49, 49) = 0.095 DW = 1.986 T = 1966q2 − 2003q2.
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Figure 4.8: Actual and fitted values, residuals, density and correlogram for the
dynamic production function

The model represents a good fit with an equation standard error of 0.66% and the model

passes all diagnostics. Figure 4.8 records the actual and fitted values, residuals, density,

and correlogram. The resulting model is remarkably parsimonious given the number of

explanatory variables in the GUM. The random walk and drift components are insignif-

icant, with a very large standard error on at, due to collinearity. Hence, we seek a more

orthogonal representation in equation (4.13).

The model has an adjustment coefficient of 0.41, implying that two fifths of the

disequilibrium at t−1 is removed in the following quarter. The current dated adjustment

in k is insignificant and so all adjustment to capital takes place in the error correction

term. The adjustment term on ∆lt is large. In period t, firms will not only consider

whether they were in equilibrium last period but also whether there is a change in labour

input in the current period, and so current decisions have a direct impact on ∆yt. D79:2

is a blip dummy taking the values 1 in 1979q2 and -1 in 1979q3, and hence integrates

to an impulse dummy which does not enter into the long-run solution. I68:1 and I73:1

are impulse dummies but are not persistent. Instead, they are capturing one-off shocks

or outliers and should not enter the long-run solution as level shifts.5 The time-varying

5The indicators are not included as blip dummies because the counteracting residuals do not occur in
the immediate quarter following the positive shock but over the following year: summing the residuals
over the following four quarters removes the majority of the shock.
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trend will capture the persistent shocks to output.

Equation (4.12) suggests that we can impose a restriction of constant returns to scale.

Reparameterising the model to derive output per unit of labour results in a cointegrating

relation with coefficients of 0.7 on labour and 0.3 on capital. The model is given by:

∆
(
y − l

)
t

= 0.975
(0.557)

at + 0.001
(0.0004)

µ− 0.375
(0.055)

(
y − 0.7l − 0.3k

)
t−1

+ 0.027
(0.007)

∆inventt

+0.137
(0.053)

∆Uc,t + 0.025
(0.007)

I68:1 + 0.030
(0.007)

I73:1 + 0.027
(0.005)

D79:2 (4.13)

R2 = 0.743 σ̂ = 0.70% χ2
nd (2) = 4.016 Qbl (11, 10) = 5.095.

SCr (1) = 0.019 Fnd
het (49, 49) = 0.163 DW = 1.992 T = 1966q2 − 2003q2.

The model passes all diagnostics and the equation standard error is only marginally

increased to 0.7%. The q-ratio, determined as the ratio of the variance of the unobserved

component to the variance of the model residuals, is 0.14. The parameters are relatively

stable when imposing the restriction and the drift of 0.1% is now significant. Furthermore,

the standard error of at has dramatically reduced due to the orthogonal representation,

with TFP entering the short-run dynamic model with a near unit coefficient resulting

in growth of approximately 20% over the period of estimation. The long-run solution

determines the total growth in TFP over the period.

Figure 4.7d records the estimated local level, proxying TFP. The productivity slow-

down in the 1970s, the increase in the second half of the 1980s, and the ‘new economy’

productivity increases of the late 1990s correspond closely to those of the static estimates

in panel b. Again, evidence of a slowdown is observed from 2000. The static estimate of

TFP is smoother than the random walk with drift, and this is reflected in a trend that

tracks output more closely in the dynamic case, resulting in a smaller gap.

The long-run solution is given as:

y∗t = 0.3kt + 0.7lt + 2.6at. (4.14)

The coefficients on capital and labour match those of the static model, in which strong

assumptions were made to derive estimates of α. Figure 4.7c records the output gap from

the dynamic PF. While the gaps in the 1970s match those of the static PF gap, the late
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1980s boom and early 1990s recession are estimated to be much smaller in the dynamic

setting. The shocks in the 1970s are quite clearly attributable to short-run shocks and

so are not picked up in the long-run trend, whereas the local level component estimates

a slowdown in productivity between 1988 and 1992 that is not picked up in the residual

based estimation of TFP to the same extent. The static estimates of TFP growth are

approximately 50% over the period. A comparable TFP growth of approximately 53%

is found in the dynamic model. Output growth between 1966 and 2003 is approximately

130% and so TFP growth accounts for about two fifths of output growth over the period.

This is plausible given the large increases in labour participation over the period of

estimation.

Solow residual method

The final measure of excess demand overcomes some of the difficulties in estimating a

complex PF with stochastic TFP by focusing on the Solow residual (SR), using deviations

from a measure of potential capacity to calculate the gap, in which changes in TFP are

captured by a segmented linear trend. To determine the impact of technical progress,

the coefficient on capital is set at 0.36, which is marginally larger than the coefficient of

0.30 found in the static and dynamic production approaches but it coincides with the

annual analogue in Hendry (2001). Robustness of the results is confirmed by varying the

coefficient between [0.3, 0.4], which had little impact on the resulting trend estimates.

The PF approaches clearly show the trend productivity rate fluctuates over time. A

segmented linear trend attempts to capture this, but too many segments will result in

a volatile growth rate and sub-sample estimates will be based on very few observations.

Separate trends were estimated for the 1960s and 1970s, compared with the 1980s and

1990s. This closely matches the breakpoint found in the early 1980s in the PF approaches,

although it does not fully capture the fast growth of the late 1960s, or the acceleration

in the late 1990s. The resulting measure of capacity is given in (4.15):

capt =

{
2.53 + 0.0026t + 0.36(kt − wpopt) 1966q2 − 1980q4
2.46 + 0.0033t + 0.36(kt − wpopt) 1981q1 − 2003q2

(4.15)
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From this measure of capacity, we calculate excess demand for goods and services as:

yd
t = yl

t − capt, (4.16)

where yl
t is output per worker. The gap measure, recorded in Figure 4.5d, matches

the historical record of recessions and booms, both in terms of magnitude and timing,

better than the PF approaches. Furthermore, the gap measure is preferable to univariate

statistical procedures such as the HP filter. Hence, it is the preferred measure of the

output gap used in the inflation analysis below.

Figure 4.9 records all three gap measures for comparison. The volatility of excess

demand in the 1970s is captured by all three measures. The movements in the gaps are

similar, except for 1971-1973, when the SR gap is positive but the PF gaps are negative.

The magnitude of positive excess demand following the 1973 oil shock is much larger for

the SR gap, as the stochastic trend measures attribute a proportion of the shock towards

higher potential output. The gaps are almost identical over the second half of the 1970s.

The early 1980s recession is deepest using the SR and static PF measures, but although

they are of similar magnitude, the timing of the static PF trough is approximately one

year later. The SR measure shows a faster recovery than the static PF gap, with the

late 1980s boom occuring one to two years in advance of the static PF gap. The SR

measure has a much deeper recession in the 1990s than either PF measure, reaching a

trough of over 3% of GDP. The economy does not recover until the late 1990s, when all

three measures estimate a positive gap of approximately 1.5%. The magnitude of the

swings for the dynamic PF suggest that changes in TFP are capturing many of the shifts

that would be attributed to short-run fluctuations in the two other measures. Despite

obvious differences in the estimates of the gaps, there is a consensus as to general excess

demand or supply side pressures, and the gap is a key component in explaining inflation.

One could think of the true output gap as a weighted average of the three measures.

If each measure of the gap is a combination of the true output gap plus some error:

ŷgap
i,t = ygap

t + ei,t, (4.17)
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Figure 4.9: The static PF, dynamic PF and Solow residual estimates of the output
gap

for i = 1, ..., 3, and we postulate ei,t ∼ N
[
0, σ2

ei

]
, a classic signal extraction problem

exists, where the signal to noise ratio is given by
σ2byi

σ2
ei

. Principal components analysis

should extract the signal relative to the errors, although as this argument requires many

strong assumptions, we prefer to work with one estimate of the output gap to maintain

interpretability. However, set within this framework, the gap measure we use is given by:

ŷgap
t = 1

(
y

d(SR)
t

)
+ 0

(
y

gap(Stat)
t

)
+ 0

(
y

gap(Dyn)
t

)
. (4.18)

PcGets could, in principle, solve for the weights on each measure of the gap within the

inflation equation, although collinearity between the measures may be problematic.

4.3 Empirical model of UK inflation

Hendry (2001) argues that there is no single-cause explanation of inflation. In order to

test the relevance of all possible causes of inflation we use the Gets approach adopted

by PcGets. The use of the single-equation framework requires weak exogeneity in the

regressors. A failure of weak exogeneity requires a system in which all variables are

modelled explicitly, capturing the variety of channels through which correction to the

long-run equilibrium takes place. However, the single-equation framework tends to be

more robust, and enables a broader analysis, and so we concentrate on this methodology.

A VEqCM model is built for the purpose of forecasting in Chapter 5.

The initial model of ∆pt includes three lags of yd, Ud, er, (c∗ − p), s, (ppi− p),

(rent− p), (imp− p), (oil − p), (n− p), Rl, ∆ppi, ∆rent, ∆imp, ∆oil, ∆p, ∆c∗, ∆m4,
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Table 4.1: Indicator variables for the quarterly inflation model
Label Values Explanation

D(73:2,79:3) −1 in 1973q2 +1 in 1979q3 Measurement error, VAT increase

D(72:4,74:1) +1 in 1972q4 −1 in 1974q1 Oil price shocks

D(84:1,84:2) −1 in 1984q1 +1 in 1984q2 Exchange rate fluctuations

∆n, ∆Rs, ∆Rl, ∆pw, two lags of the PPP interaction terms ∆eter,t−j and ∆ete
2
r,t−j ,

and an intercept and trend. The PPP interaction terms capture nonlinear exchange rate

adjustment asymmetries. These are computed by the difference of the effective exchange

rate multiplied by the lagged real exchange rate [∆eter,t−j] and the difference of the

effective exchange rate multiplied by the lagged real exchange rate squared
[
∆ete

2
r,t−j

]

for j = 1, 2. Three blip indicators are included, listed in Table 4.1.

Contemporaneous covariates are excluded from the initial general model in order to

reduce the possibility of reverse causation bias in the results. If some of the variables were

not pre-determined, a shock may cause a contemporaneous effect on inflation and other

t−dated variables. For example, an exchange rate shock may impact upon import prices

and inflation simultaneously, biasing the results from the inflation model. Furthermore,

exclusion of contemporaneous covariates from the model allows us to derive ex ante

forecasts in Chapter 5. Their inclusion would require known values of the covariates

at the forecast horizon, biasing the forecast errors of the partial model downwards in

comparison to the VEqCM.

The initial reduction was undertaken by PcGets using the liberal strategy, and a

further reduction was imposed by replacing pt−1, c
∗
t−1, ppit−1 and er,t−1 with the mark-up,

π∗t−1, reported in (4.19). We make the assumptions of long-run linear price homogeneity

and the adjustment speeds are the same in response to c∗, ppi and er.

π∗t = pt − 0.70c∗t − 0.10ppit − 0.20pw£,t + 0.03. (4.19)

Imposing this restriction yields Freduct(2, 112) = 0.26 and so the restriction is accepted.

Unit labour costs feed through to the GDP deflator with a coefficient of 0.7, which is

equivalent to that found in both the production function approaches. Unit labour costs

are dominant in determining the price level, and this is consistent with Batini et al. (2000),
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who find that the labour share (represented by c) is an important leading indicator of

UK inflation. The mark-up is adjusted for a zero mean.6

The final model is reported in (4.20). The model represents a good fit with a standard

error of 0.61%, which is low in view of the turbulence in inflation over the period. All

diagnostic and constancy tests are passed. The actual and fitted values are recorded in

Figure 4.10, along with the scaled residuals, their correlogram and residual density. The

recursive coefficients, 1-step residuals and constancy tests are recorded in Figure 4.11.

The recursive graphics show remarkable parameter stability since 1980, other than for

a steady gradual decline in the coefficient on the growth rate of producer prices, which

is encouraging given its incorrect sign. The 1-step residuals mostly lie within the ±2σ

bands, other than in 1997q1. As the model is relatively stable over time despite many

regime changes we can conclude that the implications of the Lucas critique are limited.

∆pt = 0.064
(0.029)

∆impt−1 − 0.081
(0.023)

∆ppit−2 + 0.223
(0.033)

yd
t−1 − 0.128

(0.025)
Ud

t−3

+0.483
(0.176)

∆eter,t−1 + 0.845
(0.115)

∆pwt−2 + 0.105
(0.038)

∆2
4pt−1 − 0.133

(0.022)
π∗t−1

+0.049
(0.005)

D73:2,79:3 + 0.020
(0.005)

D72:4,74:1 + 0.016
(0.004)

D84:1,84:2 + 0.006
(0.002)

(4.20)

R2 = 0.858 σ̂ = 0.613% SIC = −9.829

Far(5, 109) = 0.422 Farch(4, 106) = 0.513 Fhet(22, 91) = 0.904 χ2
nd (2) = 0.926

Freset (1, 113) = 1.311 FChow(20, 114) = 0.755 T = 1967q1 − 1998q2.

4.3.1 Model interpretation

The resulting model contains variables representing most theories of inflation with inter-

pretable signs, other than the growth rate of the producer price index. The results for

quarterly post-war inflation are essentially very close to those obtained by Hendry (2001)

for annual inflation over the period 1875-1991, suggesting that the modelling approach

used does explain inflation well. No evidence of inflation persistence is found, refuting

much of the literature that suggests that coefficients of the lagged dependent variable are

statistically insignificant from 1. Observed inflation persistence in these models may well

6As the prices are indices there is no natural metric for measuring π∗

t .
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Figure 4.10: Fitted and actual values, residuals, density, and correlogram for the
EqCM model of quarterly inflation
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Figure 4.11: Single-equation model of quarterly inflation; recursive coefficients with
±2σ, 1-step residuals and constancy tests
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be due to second round effects in explanatory variables that are not modelled. There

is a small but significant constant of 0.6%. This is unlikely to be autonomous inflation,

and, given the difficulty of estimating the potential levels of the mark-up variables, the

most plausible explanation for the non-zero intercept is that π∗ 6= 0 in equilibrium for

the units used. Figure 4.3d records π∗t , which is adjusted for a zero in-sample mean, and

this may not directly correspond to the equilibrium over the sample period.

The output gap has a substantial effect upon inflation of 22%, which is highly sig-

nificant. Replacing the output gap measure by the static production function measure

yields a smaller impact of 19%, also entering significantly with one lag, which indicates

that the timing of the transmission of a shock from the gap onto inflation is captured

consistently. The production function measure does yield a slightly poorer model, with

σ̂ = 0.64% and a log-likelihood = 457.79, compared to a log-likelihood of 469.45 for the

Solow residual method. We conclude that excess demand for goods and services is a

fundamental explanatory variable for the determination of inflation.

Excess demand for unemployment has a significant effect of 13%. To test the robust-

ness of this measure, replacing Ud with the NAIRU calculated using a HP filter led to

a significant but smaller impact upon inflation. Unit labour costs enter significantly via

the mark-up and the growth rate. The mark-up variable is highly significant, with an

effect of 13%. Hence, c∗, er and ppi are all important determinants of inflation. Both

an acceleration of annual inflation term and a nonlinear PPP disequilibrium term are

significant. The nonlinear term represents a larger impact from devaluations when there

is a greater PPP disequilibrium, particularly with overvaluations.

World inflation has a substantial impact on the UK inflation rate, entering with a two

quarter lag. Import prices have a small but significant effect on inflation, and producer

prices enter significantly but with the wrong sign. This is likely to be driven by its

collinearity with import prices, and the primary input price effect will be driven by the

mark-up. Moreover, any mis-measurement in the input price indices could be reflected in

opposing signs. The dummies are all highly significant, and as they are capturing one-off

shocks or outliers, they should not enter the long-run solution as level shifts. Monetary
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terms including the growth rate of broad money and the interest rate are not retained in

the model selection process.

The evidence suggests that there is no single cause of inflation. Inflationary pressures

arise via many different channels, which can be captured in terms of excess demand or

supply pressures in different markets.

4.4 A ‘business cycle’ factor

An alternative theory proposes that inflation is driven by general ‘business cycle’ factors

that capture all demand and supply pressures, see Stock and Watson (1999a). To examine

this theory we test whether it is possible to explain inflation by a few composite factors.

Principal components (PC), originating in Hotelling (1933), are statistical techniques

used for data reduction by finding linear combinations of the variables that contain most

information. We shall estimate a composite measure of the business cycle based on PC

analysis in order to assess whether information is lost by explaining inflation by general

business cycle factors, as opposed to excess demand and supply pressures from all sectors

of the economy.

4.4.1 Principal component analysis

Muirhead (1982) and Anderson (1994) provide outlines of the PC approach. Assume a

random m× 1 vector X has a normal distribution, N (µ,Σ), and let λ1,≥ λ2 ≥ · · · ≥ λm

(> 0) be the latent roots of Σ. The m × m orthogonal matrix of eigenvectors, H =

[h1...hm] , implies:

H′ΣH = Λ = diag (λ1, ..., λm) . (4.21)

U is defined as:

U = H′X = (U1, ..., Um)′ , (4.22)

where cov [U] = Λ, and hence, U1, ..., Um are uncorrelated and V [Ui] = λi, i = 1, ...,m.

The components U1, ..., Um of U are the PCs of X, and the first PC is given as U1 = h′
1X

with variance λ1. This is the normalised linear combination of the components of X with

the largest possible variance. The second PC will then account for the maximum of the
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remaining variance, and all the components are derived in this manner. The method

serves to combine all variables into a composite variable that reflects the maximum

possible proportion of the total variation in the set.

The PCs are determined under the condition that they are orthogonal. If we define

an arbitrary linear function as α′X with V [α′X] = α′Σα, the condition that α′X is

uncorrelated with the ith PC, Ui, is:

0 = cov
[
α′X,h′

iX
]

= α′Σhi = λiα
′hi, (4.23)

as Σhi = λihi, so α must be orthogonal to hi. Two measures that explain the variability

in X are trΣ and detΣ, where:

trΣ = trH′ΣH = trΛ =

m∑

i=1

λi, (4.24)

detΣ = detH′ΣH = detΛ =
m∏

i=1

λi. (4.25)

For the sample PCs, suppose X1, ...,XN is a random sample of size N = n+ 1 on X.

We can define the sample covariance matrix, S, by:

A = nS =

N∑

i=1

(
Xi − X

) (
Xi − X

)′
. (4.26)

The latent roots of S (labelled l1, ..., lm) are estimates of the latent roots λ1,≥ · · · ≥ λm

of Σ. Defining the matrix of normalised eigenvectors, Q = [q1...qm] such that:

Q′SQ = L = diag (l1, ..., lm) , (4.27)

we can estimate the eigenvector hi by the sample. The sample PCs are given as Û1, ..., Ûm

of Û = Q′X.

While the decision as to how many factors to extract is arbitrary (because of the lack

of interpretation that can be given to the factors), two methods often used include the

Scree test (Cattell, 1966) and the Kaiser (1960) criterion. The Kaiser criterion suggests

retaining factors with eigenvalues greater than one, as the factor is only then extracting

at least as much information as the original variable. The Scree test suggests plotting

the eigenvalues and determining the number of factors occularly based on where the plot
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smoothes out horizontally.

4.4.2 Modelling inflation with principal components

We develop two PC models of inflation. First, a model of inflation based on the PCs

and lagged dependent variable is developed, and its performance is compared with the

inflation model in (4.20). Second, the dominant congruent inflation model (4.20) is

augmented by PCs and selection is then undertaken, allowing both individual variables

and PCs to explain inflation. To avoid perfect collinearity between the PCs and individual

regressors if commencing from the full information set, the GUM will consist of only those

variables retained in (4.20), along with the first seven PCs. The theoretical underpinnings

of the PC approach lie in the decision as to which variables to include. Stock and Watson

(1998) adopt a very general approach, whereby they include 216 variables in the analysis.

As the main aim of our analysis is to detect a general structure in the combined variables,

a smaller subset of data is used. This ensures the results are comparable with those of

section 4.3, and avoids cluttering with irrelevant variables that may pick up spurious

correlations.

Table 4.2 reports the estimated eigenvalues for the first seven PCs based on the

variables: ppi, wpi, c∗, oil, rent, n, imp, Ur, Rs, Rl, m4, er, asset, U
d and yd. Two

additional variables are included compared to the GUM in section 4.3; the FTSE all share

index (asset), and the manufacturing wholesale price index (wpi). Both levels and first

differences are included in order to detect trend and cycle components.7 The variables

are normalised by x∗i =
(xi−µxi)

σxi
to avoid the series with the greatest amplitude in cycle

exerting too much pressure on the PC. The Kaiser criterion and Scree test suggest that

six or seven components should be retained.

Figure 4.12 records the first four PCs, recorded with the price level for PC1 and

quarterly inflation for PC2, PC3 and PC4. The first component closely follows the trend

in the price level, although it is much more volatile, the second component matches

inflation reasonably well (ρ= 0.67), and the third and fourth components are picking up

7The first difference of both housing rent and national debt are excluded from the principal component
analysis as the levels of these variables are very smooth, and hence the low variance of the differences
adversely biases the components. Furthermore, pt−1 and ∆pt−1 are excluded to avoid biasing the results.
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Figure 4.12: Leading four principal components for quarterly inflation

Table 4.2: Estimated eigenvalues: first seven principal components of inflation.
Eigenvalues Cumulative %

PC1 8.994 32.12
PC2 4.250 47.30
PC3 2.877 57.58
PC4 2.647 67.03
PC5 1.718 73.16
PC6 1.374 78.07
PC7 1.216 82.42

Notes: cumulative % reports the cumulative percentage

of variation explained by the principal components.

innovations in the data.

The PcGets conservative strategy is used to estimate an inflation model based on

the principal components. The GUM consists of 33 regressors, including four lags of the

first seven PCs, imposing the restriction that the first component enters in differences,

along with lags of the dependent variable, an intercept, and three indicator dummies for

outliers. Contemporaneous PCs are excluded to ensure comparability with (4.20). The

resulting model is reported in (4.28).
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∆pt = 0.004
(0.001)

+ 0.240
(0.065)

∆pt−1 + 0.508
(0.064)

∆pt−3 + 0.778
(0.238)

∆PC1,t−1 − 0.198
(0.050)

PC3,t−1

−0.248
(0.054)

PC3,t−3 − 0.154
(0.055)

PC4,t−3 − 0.045
(0.009)

I73:2 + 0.036
(0.009)

I75:2 + 0.050
(0.009)

I79:3

R2 = 0.729 σ̂ = 0.841% SIC = −6.418 Far(5, 111) = 1.599 (4.28)

χ2
nd(2) = 1.860 Farch(4, 108) = 1.094 Freset(1, 115) = 3.448

Fhet(15, 100) = 0.805 FChow(20, 116) = 0.457 T = 1967q1 − 1998q2.

The model fit is poorer than the inflation model in (4.20), with a residual standard

error of 0.84% compared to 0.61%. Hence, the PCs do not explain inflation as well as

the individual regressors. One concern with principal component models is that as the

PC weights are fixed throughout the sample, any structural change in the relationships

between the individual regressors will be forced to manifest itself through parameter non-

constancy. The large coefficients on the lagged dependent variables suggest that the LDV

is capturing shifts in the underlying inflation process as opposed to the PCs. The second

PC is not retained, but as the lagged dependent variables are highly significant, this is

consistent with our view that PC2,t is proxying inflation. While the composite measure

does model inflation reasonably well, the inability to interpret the model implies that the

model is of limited value to policy-makers, and we conclude that modelling inflation with

individual explanatory variables, selected within a Gets framework, provides the more

coherent and sagacious strategy.

A further experiment undertaken to test the explanatory power of the PCs is to

include the business cycle factors in the inflation model derived in (4.20), and then select

the dominant model using PcGets. This allows both the individual variables and business

cycle factors to explain inflation, with the selection algorithm determining which variables

have the most explanatory power. The GUM consists of the union of the twelve variables

in (4.20) and four lags of the first seven principal components, excluding contemporaneous
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regressors. A conservative strategy is used to select the resulting model:

∆pt = 0.121
(0.030)

∆impt−1 − 0.098
(0.023)

∆ppit−1 + 0.211
(0.031)

yd
t−1 + 0.404

(0.168)
∆eter,t−1

+1.336
(0.049)

∆pwt−2 + 0.097
(0.036)

∆2
4pt−1 − 0.154

(0.025)
π∗t−1 − 0.184

(0.044)
PC2,t−1

+0.109
(0.038)

∆PC5,t−1 − 0.198
(0.047)

PC6,t−2 + 0.053
(0.004)

D73:2,79:3

+0.017
(0.004)

D72:4,74:1 + 0.015
(0.004)

D84:1,84:2 (4.29)

σ̂ = 0.585% SIC = −9.891 Far(5, 108) = 1.021

χ2
nd(2) = 0.885 Farch(4, 105) = 1.525 Freset(1, 112) = 0.589

Fhet(26, 86) = 0.524 FChow(20, 113) = 1.633 T = 1967q1 − 1998q2.

The model passes all diagnostics and is almost equivalent to (4.20), with a residual

standard error of 0.59% compared to 0.61%. The model retains all but one of the original

regressors, excluding excess demand for unemployment. Given the significance of Ud in

(4.20), high correlations between Ud and the PCs must explain this result. The model,

with thirteen parameters, only retains four principal components (the restriction that

PC5,t−1 and PC5,t−2 are reparameterised to enter as ∆PC5,t−1 is accepted and therefore

implemented), although selection using the liberal strategy would increase this to nine.

The main determinants of inflation mostly have similar coefficients to (4.20). Two no-

table exceptions are ∆pwt−2 and ∆impt−1. The coefficient on import prices has almost

doubled, and world inflation has a coefficient of 1.3, a consequence of the substantial re-

duction in the coefficient standard error for ∆pwt−2. It is difficult to interpret the model

coefficients because the principal components will contain combinations of all regressors,

generating collinearity between the PCs and individual regressors, although in principle,

the factor loadings could be used to calculate the overall effect for each relevant variable.

The PCs do not negate the dummies, suggesting that these are modelling effects that are

not captured by the economic variables included.

The evidence does suggest that while this data reduction method does capture useful

information, it cannot substitute well-specified reduced form equations that attempt to

model all significant theories of inflation. The single-cause explanation of inflation, in
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this case represented by what we term general ‘business cycle characteristics’, is again

refuted. The problems of a lack of interpretability and non-robustness to changes in

the information set considerably hinder the use of principal component methods. The

similarity between (4.20) and (4.29) provides strong evidence for undertaking selection

on individual variables as opposed to principal components. Furthermore, given the

techniques to handle more variables than observations discussed in Chapter 2, the need

for PCs as data reduction methods is abated.

4.5 Conclusion

The chapter develops a dominant congruent model of quarterly UK inflation from 1967q1-

1998q2 that encompasses all relevant theories of inflation and is a good representation of

the data. The central contribution of the chapter is the use of general-to-specific method-

ology to select an in-sample model. The Gets methodology is based on data informing

the model specification, as opposed to the testing of theoretical priors on the data. This

enables all possible theories to be tested within the same framework, increasing the prob-

ability of locating the underlying LDGP. However, theory has played a fundamental role

in the specification of the inflation equation through the choice of variables entering

the GUM. All the explanatory variables are based on theoretical models, including the

specification of the excess demand variables for both the goods and labour markets, the

mark-up, and the nonlinear PPP interaction term. The use of an automatic model selec-

tion procedure such as PcGets enables many more paths to be explored and this avoids

potential path dependence. The initial GUM contains 75 potential explanatory variables,

and it would be almost impossible to undertake a full search by hand. The algorithm

not only ensures a rigorous search procedure, but it also undertakes specification tests

at every stage to ensure the final model is well-specified. Hence, all extant theories of

inflation can be tested within a systematic and coherent framework, enabling us to make

clear statements about the determinants of inflation.

Three measures of goods market pressures, or the output gap, are developed. A pro-

duction function method is initially undertaken in a static and cointegrating framework.

The residual estimate of TFP accords with our priors regarding this latent variable, and
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the lack of cyclicality suggests that efforts to correct for labour hoarding and capacity

utilisation are successful. Given the presence of substantial and systematic measurement

error in the capital stock, potential output is then modelled as the long-run solution to

a dynamic model with a time-varying intercept that proxies TFP. The dynamic model

attributes more of the fluctuations in output to changes in potential output, resulting

in a smaller gap. Finally, the gap is measured as the Solow residual from a measure

of capacity that uses a split time trend to capture changes in productivity. Removing

the stochastic TFP component results in a larger gap, and this measure is used in the

inflation model.

Key determinants of inflation are identified as the mark-up, capturing impacts from

unit labour costs, producer prices, exchange rates and foreign prices, excess demands for

both goods and services and labour, foreign inflation and import prices. The change in

domestic inflation and a nonlinear term capturing exchange rate adjustment asymmetries

are also significant. The results concur with those for annual UK inflation over 1875-1991

derived in Hendry (2001), and therefore suggest that the modelling approach used does

explain inflation well.

The Gets framework enables us to test the hypothesis that inflation is driven by a

general ‘business cycle’ component. Principal components are derived from the informa-

tion set used in the inflation model and a model of inflation is developed using PcGets.

A substantial increase in the residual standard error of 23% indicates that a general

‘business cycle’ explanation of inflation is not sufficient, and the inability to interpret

the results further hampers the modelling approach. Pitting both potential explana-

tions (individual variables and principal components) against each other within the Gets

framework results in the selection of almost all individual determinants of inflation and

very few principal components. Hence, the information gained by including the principal

components is relatively minimal, and we conclude that the channels by which various

sectoral pressures feed through to inflation need to be modelled individually.
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4.A Appendix

Table 4.3: Data Appendix
Variable Description Source Code

Yt Gross domestic product: chained volume measure NS ABMI
Pt Gross domestic product (expenditure) at market prices deflator NS YBGB
PPIt PPI manufacturing input - raw materials DS UKOPP029F
IMPt Import price index DS UKIMPPRCF
RENTt Actual rentals for housing∗ + imputed rentals for housing∗, £m. NS ADFT+ADFU
Ct Unit labour cost index for the whole economy NS LNNL
PWt OECD consumer price index DS OCICP009F
OILt World market price of crude petroleum DS WD176AAZA
Nt Public sector net debt, £m. NS BKQK
M4t Nominal broad money stock (end period), £m. NS AUYN
Rs,t Three-month treasury bill rate DS UKGBILL3
Rl,t Yield on 20-year gilts DS UKGBOND
Et Sterling effective exchange rate index DS UKXTW..NF
GV At Gross value added at basic prices: chained volume measure NS ABMM
ASSETt FTSE all share index/(GV A× P ) DS UKSHRPRCF
WPIt Wholesale price index of materials and fuel in manufacturing DS UKPPIMMNF
Wt Total compensation of employees, current price, £m. NS DTWM
Zt Total gross operating surplus∗, current price, £m. NS ABNF
Jt Net capital stock for whole economy exc. dwellings sector, £m. BoE –
It Total gross fixed capital formation, constant price, £m. NS NPQT
∆INVt Changes in inventories, constant price NS CAFU

OHt Weekly overtime hours per operative × fraction on overtime
average hours EPG, DEG, EG, LMT

Uc,t Capacity utilisation based on CBI index: % working below ca-
pacity, see derivation in appendix

DS UKCBICAB

NHt Ave. actual weekly hours of work (all workers: main & 2nd job) NS YBUV from 1992
Pre-1992: EPG, DEG, EG

WPOPt Population aged 16-59/64, ‘000s NS YBTF from 1992
Pre-1992: EPG, DEG, EG

EMPt Total number in employment, aged 16+, ‘000s NS MGRZ from 1992
Pre-1992: EPG, DEG, EG

INACTr,tEconomically inactive population / population, 16+, ‘000s NS MGSI / MGSL
EMPr,t EMPt/WPOPt

Ut WPOPt − EMPt

Ur,t Ut/WPOPt

PARTr,t 1 − INACTr,t

Lt WPOPt × EMPr,t × PARTr,t

Notes: All data are seasonally adjusted. ∗ denotes variable has been seasonally adjusted
using X11.
Sources include [NS] National Statistics database; [IFS] International Financial Statistics
Database; [BoE] Bank of England; [DS] Datastream; [EPG] Employment and Productivity
Gazette, pre-1971; [DEG] Department of Employment Gazette, 1971-79; [EG] Employment
Gazette, 1980-1995; [LMT] Labour Market Trends, 1996-present.

Calculation of a capacity utilisation index

The CBI industrial trends survey reports the response of firms in the manufacturing

sector to the question: “Is your present level of output below capacity?” (defined as a

satisfactory or full rate of operation). Following Muellbauer (1984), we can define the
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proportionate deviation of capacity utilisation Uc by:

−Uc = lnY (max) − lnY. (4.30)

If different firms have the same view regarding satisfactory levels of operation, we can

define Z as:

Z = lnY (max) − lnY (sat). (4.31)

Assuming a distribution of utilisation across firms, measured by lnY (max)− ln Y , which

shifts through time with a limit fixed at zero, we can calculate the proportion of firms

operating below the usual level of capacity π which is observed, and link this with the

unobserved mean of the distribution E (−Uc). If the distribution of capacity is lognormal:

ln (−Uc) ∼ N
[
µ, σ2

Uc

]
, (4.32)

then

π = 1 − Φ

(
lnZ − µ

σUc

)
. (4.33)

Therefore,

E [ln (−Uc)] = µ = lnZ − σUcΦ
−1 (1 − π) , (4.34)

where Φ(.) is the standard normal distribution. Due to the normality assumption, we

can derive E (−Uc) from E [ln (−Uc)]:

E (−Uc) = exp
1

2
σ2

Uc
expµ = β exp

[
−σUcΦ

−1 (1 − π)
]
, (4.35)

where β = Z exp 1
2σ

2
Uc

. Amemiya (1981) suggests approximating by a logistic distribu-

tion:

Φ (x) ≈ exp (1.6x)

1 + exp (1.6x)
∼
[
0,

1.62

π2/3

]
. (4.36)

to deliver:

E (−Uc) = β

(
π

1 − π

)σUc
1.6

. (4.37)

Muellbauer (1984) recommends empirical magnitudes of σUc = 0.64 and Z = 0.09, which

suggests that full capacity is approximately 91% of the physical maximum. These values

were found by estimating a production function with
(σUc

1.6

)
ranging from 0.2 to 0.6.
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Chapter 5

Forecasting UK Inflation: Empirical Evidence

on Robust Forecasting Devices

5.1 Introduction

Systematic mis-forecasting of economic outcomes has led to extensive research on eco-

nomic forecasting, culminating in a new theory of forecasting developed by Clements

and Hendry (1998b, 1999, 2002a). This theory refutes the common assumption that the

econometric model coincides with the DGP in a stationary world. The forecast error tax-

onomy developed allows for a mis-specified model with measurement error in the data,

within a non-stationary world that is subject to structural breaks. This is more repre-

sentative of the conditions in which forecasts of UK inflation are derived. This chapter

examines the forecast performance of both econometric models and forecasting rules for

UK annual and quarterly inflation, using the Clements and Hendry forecast theory to

explain the subsequent results.

We utilise the model of UK inflation built in Chapter 4 to forecast inflation. However,

concerns over the weak exogeneity assumptions made in developing the single-equation

model in order to sustain the conditioning on the non-modelled variables, and the subse-

quent requirement of strong exogeneity needed to forecast more than 1-step ahead (see

Engle et al., 1983) suggests that endogenizing all variables in the form of a VAR may

yield preferable results. Furthermore, the VAR framework enables dynamic forecasts to

be computed. While, in principle, the size of the VAR should not be prohibited by the

sample size available, as the techniques developed to handle more variables than observa-

tions (discussed in Chapter 2) are also applicable to the VAR framework, in practice the

current software is more restrictive. Multi-stage estimation using subsets of regressors

would enable a VAR in the 23 exogenous variables conditioned on in the single-equation

framework to be constructed. Indeed, one could think of the single-equation EqCM de-

veloped in Chapter 4 as one equation of a VEqCM, as it only uses lagged variables.
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However, we build a VAR model of inflation outside of the Gets framework in which only

five endogenous variables are modelled, and this abstracts from the degrees of freedom

problems associated with a more general VAR. A congruent VEqCM model of inflation is

built over the same in-sample period, and both the single-equation and vector equilibrium

correction models are used to forecast inflation over the period 1998-2003. Furthermore,

various robust transformations of the models are undertaken in an attempt to ‘robus-

tify’ forecasts to structural breaks, and we consider various differencing devices, rapid

updating tools, and forecast pooling, to overcome the problem of forecast failure.

We tentatively conclude that robust forecasting devices do prove useful in forecasting

macroeconomic time-series, and they often outperform the dominant congruent in-sample

model, both when there are structural breaks in the data and when the underlying process

appears to be stable but with probable breaks in the explanatory variables. We also

conclude that increasing the information set does lead to improvements in forecasting

performance, suggesting that disaggregation can yield benefits. Finally, we observe that

much of the forecast error in the structural models is driven by the deterministic terms.

Breaks in the mean of the cointegrating vector or the growth rate of the system will cause

forecast ‘failure’, and results show how sensitive forecasts are to errors in these terms.

The structure of the chapter is as follows. Section 5.2 develops a multi-equation

model of inflation based on various input prices and conditioning on excess demand. An

analysis of measurement error in the output gap is undertaken to justify exclusion of

the cumulated gap from the cointegrating space. Cointegration analysis is conducted

on the unrestricted VAR allowing for a partial system, and a parsimonious VEqCM

model is derived. Section 5.3 examines the 1-step and 4-step forecast performance of

the single-equation and vector EqCMs of UK inflation against robust forecasting devices,

ranking the models in an attempt to predict which models should forecast well. Section

5.4 addresses the theory of predictability, presenting evidence for this by deriving two

models of annual inflation, including a lower frequency model using annual analogues

and a higher frequency model using quarterly data. The forecasting performance of

these annual inflation models are assessed against robust forecasting devices in Section
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5.5. Section 5.6 concludes. This chapter draws on the data outlined in Appendix 4.A.

5.2 Model of quarterly inflation

Our single-equation analysis of quarterly inflation led to a mark-up model with an equi-

librium correction mechanism involving the real exchange rate, world prices in sterling,

unit labour costs and producer prices. We now move to the vector-equation framework

by examining a five variable system of inflation based on input prices and conditioning

on excess demand. The dynamic system framework allows us to test the restriction of

weak exogeneity that is automatically imposed in a single-equation framework, especially

with contemporaneous variables. However, we retain the restriction of no contemporane-

ous covariates to ensure the results are comparable with the single-equation model. By

conditioning on excess demand we require the output gap to be weakly exogenous, which

is tested for. Furthermore, monetary variables are not included as they are found to be

insignificant in the single-equation analysis.

5.2.1 Conditioning on the output gap

Inclusion of the output gap, a stationary explanatory variable, results in a nuisance

parameter. Rahbek and Mosconi (1999) show that the cumulated output gap should

be included in the equilibrium correction mechanism, enabling the critical values for the

trace test computed in Harbo, Johansen, Nielsen and Rahbek (1998) to be used. Without

the cumulated gap in the cointegration space, the asymptotic distribution of the trace

test is affected by nuisance parameters. However, this analysis shall proceed by just

including the lagged output gap outside the cointegration space, and so the trace test

statistics are used as an indication of the rank of the cointegrating vector and caution

should be applied as the critical values are not exact. This avoids cumulating the I(0)

measurement error in the output gap to an I(1) measurement error.

The standard errors associated with the output gap estimates are large, as is demon-

strated by the disparity between the three gap estimates derived in Chapter 4 and

recorded in Figure 4.9, reproduced in Figure 5.1a for clarity. Hence, the cumulated gaps,

recorded in Figure 5.1, panels b–d, for the Solow residual, static production function and

174



Forecasting UK Inflation

dynamic production function respectively, differ substantially. The cumulated gaps are

recorded on the same axes for comparison. The initial conditions have a large impact on

the cumulated gap, and yet it is extremely difficult to estimate the origin accurately. The

resulting cumulated gap estimates are very different if an alternative date is selected as

the origin, and while the gap should be in equilibrium at t = 0 (i.e., a zero gap estimate),

even conditioning on this still results in different cumulated gap estimates. The dynamic

production function gap is permanently negative, which is implausible. The cumulated

Solow residual gap does correspond to the booms and recessions observed historically,

but the magnitudes are difficult to justify, particularly with regard to the late 1980s

boom and subsequent recession. The vastly differing cumulated gap estimates support

our decision to exclude the variable from the cointegration analysis.

Results of the augmented Dickey-Fuller (ADF) test for the cumulated output gaps

are reported in Table 5.1. The ADF tests are based on a restricted constant and no

trend, as Nielsen and Rahbek (2000) argue that a restricted constant is preferable to

an unrestricted constant. Inclusion of an unrestricted constant results in a linear trend

plus random walk under the null, whereas the restricted constant delivers a random walk

under the null. The test statistic is the F-test of H0 : µ = γ = 0, for:

∆yt = µ+ γyt−1 + ǫt, (5.1)

where ǫt ∼ IN
[
0, σ2

ǫ

]
for t = 1, ..., T , and γ = β− 1 for the regression yt = µ+βyt−1 + ǫt.

The critical values are taken from Patterson (2000, Table 6.5), for T = 150. The dynamic

production function gap is I(0), such that the cumulated gap is I(1). Results for the Solow

residual gap and the static production function gap are less clear. There is evidence that

the static PF gap is I(1), resulting in an I(2) cumulated gap. The Solow residual gap is

marginal; we conclude that it is I(0) at the 5% significance level but not at the 1% level.

If the cumulated gap is I(1), but is close to being I(2), its inclusion in the cointegrating

space may generate a cointegrating vector that is close to I(1). Caveats regarding the

power of the ADF test apply.
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Figure 5.1: Estimates of the output gap and corresponding cumulated gaps

Table 5.1: Augmented Dickey-Fuller tests for the cumulated output gap
Null Solow residual gap Static PF gap Dynamic PF gap

β̂ τ̂ lag β̂ τ̂ lag β̂ τ̂ lag

I(1) 0.991 0.758 0 0.992 0.493 0 0.985 4.081 1
I(2) 0.869 6.623∗ 1 0.872 4.640 2 0.759 15.19∗∗ 1
I(3) -0.172 208.3∗∗ 1 -0.220 42.25∗∗ 3 -0.484 124.8∗∗ 1

Notes: ADF statistics based on a restricted constant and no trend. H0 : µ = γ = 0, with test
statistic: τ̂ ∼ DFτ . Critical values are 6.73 at 5% significance and 4.72 at 1% significance,
for T = 150. ∗ and ∗∗ denote rejection at the 5% and 1% significance levels.

5.2.2 Measurement errors in the cumulated output gap

One explanation for the empirical results suggesting the cumulated gap is close to I(2)

is due to pernicious measurement errors in the estimates of the output gap. All three

estimates comprise of labour and capital inputs, which are difficult to measure accu-

rately, not just as is well known with regard to the capital stock, where scrapping and

technological change effects are important, but also for labour which should be measured

by ‘human capital hours’. Hence, we shall assess the impact of measurement error on

the cumulated gap, undertaking a Monte Carlo experiment to derive the null rejection

frequencies of the ADF test statistic on the cumulated gap. For reasonable levels of

persistence we find that it is often difficult to reject the null that the cumulated gap is

I(2).

We proxy the output gap with an autoregressive DGP that is contaminated with
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measurement error from both capital and labour input:

yt = ρyt−1 + u1,t + u2,t + ǫt, 0 < ρ < 1, (5.2)

where ǫt ∼ IN
[
0, σ2

ǫ

]
for t = 1, ..., T , and the initial condition is given by y0 = 0. u1,t

corresponds to measurement error in labour input, such that u1,t ∼ IN [0, σ11]. u2,t

corresponds to measurement error in the capital stock, which exhibits some persistence

but is stationary:

u2,t = λu2,t−1 + vt, vt ∼ IN [0, σ22] , 0 < λ < 1, (5.3)

with cov [u1,t, u2,t] = 0. The measurement error, u1,t + u2,t, is unobserved, and therefore

is compounded into the error term, such that we observe:

yt = ρ̂yt−1 + ǫ̂ ∗
t (5.4)

where ǫ∗t = u1,t + u2,t + ǫt. Empirical estimates of ρ̂ based on the three output gap

measures suggest ρ̂ ≈ 0.8.1

Given our estimate of ρ̂, and postulating a sensible value of λ = 0.75, implies we can

obtain an estimate of ρ to parameterise the Monte Carlo DGP. Observe that:

ρ̂ =

∑T
t=1 (ytyt−1)∑T
t=1

(
y2

t−1

) . (5.5)

Using:

1

T

T∑

t=1

(ytu2,t)
p−→ E (ytu2,t) =

σ22

1 − λ2
, (5.6)

we can obtain:

1

T

T∑

t=1

(ytyt−1)
p−→ E (ytyt−1) = ρ2σ2

y + λE (yt−1u2,t−1)

= ρ2σ2
y +

λσ22

1 − λ2
, (5.7)

where σ2
y = E

(
y2

t

)
. Also:

1

T

T∑

t=1

(
y2

t

) p−→ E
(
y2

t

)
= ρ2σ2

y + σ11 +
σ22

1 − λ2
+ σ2

ǫ +
2λρσ22

1 − λ2
, (5.8)

1bρ = 0.85 for the Solow residual gap, 0.84 for the static production function gap, and 0.72 for the
dynamic production function gap.
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to deliver:

σ2
y =

σ11 +
(

1+2λρ
1−λ2

)
σ22 + σ2

ǫ

1 − ρ2
. (5.9)

Inserting (5.7) and (5.9) into (5.5) results in:

plimρ̂ = ρ+
λσ22

(
1 − ρ2

)

(1 − λ2)
(
σ11 + σ22(1+2ρλ)

(1−λ2)
+ σ2

ǫ

) . (5.10)

Setting λ = 0.75 and ρ̂ = 0.8, we can solve for ρ = 0.538. The ADF null rejection

frequency for the null of I(2), i.e., the power to reject the null for the cumulated gap based

on (5.2) given the specified parameterisation, setting σ11 = σ22 = σ2
ǫ = 1 and undertaking

M = 10, 000 replications for T = 100 observations, is 83% at the 5% significance level and

42% at the 1% significance level.2 Thus, there is a considerable probability of accepting

the null of an I(2) cumulated gap, despite it being I(1).

We can derive the conditions to ensure the output gap is I(0), and thus, the cumulated

gap is I(1), from (5.2):

yt − ρyt−1 − u1,t − ǫt − vt = λ (yt−1 − ρyt−2 − u1,t−1 − ǫt−1) , (5.11)

such that:

yt = (ρ+ λ) yt−1 − λρyt−2 + (u1,t − λu1,t−1) + (ǫt − λǫt−1) + vt︸ ︷︷ ︸
wt

. (5.12)

Reparameterising the model in differences results in:

∆yt = (ρ+ λ− λρ− 1) yt−1 + λρ∆yt−1 + wt. (5.13)

Observe that this derivation requires orthogonalisation of the error with yt−1 to obtain

the autoregressive parameter implicit in the model. Instead, we use the estimate of ρ

from (5.10) to calculate the autoregressive parameter. For an I(1) output gap, we require:

ρ+ λ− λρ− 1 = 0, (5.14)

and hence, either ρ = 1 or λ = 1. Under our assumption that λ = 0.75 and ρ = 0.538,

ρ + λ − λρ = 0.89, which is close to a unit root while the individual coefficients are far

2Small sample critical values are obtained from Patterson (2000, Table 6.5).
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from unity. Furthermore, empirical estimates of λ could be near unity given that the

capital stock is I(2).

Table 5.2 records the null rejection frequencies of the ADF test under the null of an

I(2) process for the cumulated yt based on (5.2), i.e. for
∑t

i=1 yi for t = 1, ..., T . The

ADF test includes 1 lag of the dependent variable and a restricted intercept. We set

σ11 = σ22 = σ2
ǫ = 1. Two sample sizes are examined, T = 100 and T = 500, with

critical values given by 4.740 and 4.646 at the 5% significance level for T = 100 and

500, and 6.732 and 6.387 at the 1% significance level for T = 100 and 500, respectively.

M = 10, 000 replications are undertaken.

When either λ or ρ is equal to unity, the null hypothesis is correct. The null rejection

frequency is close to the nominal size when one of the parameters is unity and the other

parameter is far from unity. However, if one of ρ or λ is unity and the other is close to

unity, the process is close to I(3), and hence the null rejection frequency is incorrect. For

a process that is I(1) (ρ < 1 and λ < 1) but is close to I(2), the ability to distinguish

between an I(1) and an I(2) process is very difficult in small samples. For either ρ or λ

close to unity, the probability of incorrectly accepting the null hypothesis of I(2) is very

high. This problem is mitigated in large samples, as the results for T = 500 demonstrate,

but sample sizes of this magnitude are rarely available for macroeconomic data. Hence,

despite an I(0) DGP, its cumulant can display characteristics close to I(2)ness in small

samples, and we argue that this is plausible for the output gap such that its exclusion

from the cointegrating space has a strong basis. In effect, the systematic measurement

errors in the gap are already a serious difficulty, well-known to policy-makers like the

MPC, and adding these cumulated to the model is likely to swamp the variability of

other I(1) effects.3

5.2.3 Cointegration analysis of a partial system

For partial cointegration analysis we adopt the framework outlined in Harbo et al. (1998).

Consider a p-dimensional VAR with linear deterministic terms for xt, where xt is a (p× 1)

3These conclusions were confirmed by inclusion of the cumulated gap in the cointegrating space as
the subsequent results proved uninterpretable, delivering two cointegrating vectors in which one was I(1),
based on ADF tests.
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Table 5.2: Null rejection frequencies of the Augmented Dickey-Fuller test for H0 :
I(2)

5% 1%
λ\ρ 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
T = 100
0.6 0.901 0.693 0.358 0.089 0.053 0.585 0.308 0.100 0.015 0.013
0.7 0.737 0.492 0.218 0.052 0.067 0.353 0.160 0.044 0.007 0.021
0.8 0.429 0.237 0.088 0.023 0.103 0.131 0.051 0.014 0.003 0.041
0.9 0.114 0.057 0.024 0.011 0.197 0.024 0.008 0.003 0.001 0.108
1.0 0.051 0.066 0.109 0.197 - 0.012 0.019 0.042 0.108 -
T = 500
0.6 1.000 1.000 1.000 0.999 0.052 1.000 1.000 1.000 0.951 0.014
0.7 1.000 1.000 1.000 0.981 0.065 1.000 1.000 1.000 0.800 0.022
0.8 1.000 1.000 1.000 0.800 0.097 1.000 1.000 0.990 0.355 0.040
0.9 1.000 0.988 0.796 0.150 0.172 0.984 0.834 0.350 0.016 0.096
1.0 0.052 0.066 0.105 0.184 - 0.013 0.024 0.045 0.104 -

Notes: ADF test based on a restricted constant and one lag of the dependent variable.

vector of variables at time t:

∆xt = Πxt−1 +

k−1∑

i=1

Γi∆xt−i + µ+ δt+ ǫt, ǫt ∼ INp [0,Σ] , (5.15)

for t = 1, ..., T . The starting values, (x1−k, ...,x0) are fixed, Γi are (p× p) matrices and

Π = αβ′, where α and β are (p× r) matrices of full rank. For I(1) cointegration analysis

we require the roots of the characteristic polynomial to lie on or outside the unit circle:

A (z) = (1 − z) Ip − Πz −
k−1∑

i=1

Γi (1 − z) zi.

We also require the reduced rank condition for xt to be I(1) with r cointegrating vectors

given by:

rank
(
α′

⊥Γβ⊥

)
= p− r,

where α⊥ and β⊥ are orthogonal complements defined as [p× (p− r)] matrices such that

α′α⊥ = 0 and (α,α⊥) has full rank, and similarly (α′
⊥β⊥) has full rank.

To assess the partial model, we decompose xt into yt of dimension p1 and zt of

dimension p2: x′
t = (y′

t, z
′
t) . The parameter and error terms are decomposed similarly:

α =

(
αy

αz

)
, Γi =

(
Γy,i

Γz,i

)
, µ =

(
µy

µz

)
, δ =

(
δy

δz

)
, ǫt =

(
ǫy,t

ǫz,t

)
, Σ =

(
Σyy Σyz

Σzy Σzz

)
.
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The conditional model for ∆yt is given by the equation:

∆yt = ω∆zt + (αy − ωαz)β
′xt−1 +

k−1∑

i=1

(Γy,i − ωΓz,i) ∆xt−i +
(
µy − ωµz

)

+ (δy − ωδz) t+ (ǫy,t − ωǫz,t) , (5.16)

where ω = ΣyzΣ
−1
zz . The marginal model for zt is given by:

∆zt = αzβ
′xt−1 +

k−1∑

i=1

Γz,i∆xt−i + µz + δzt+ ǫz,t. (5.17)

If αz = 0, the long-run parameters in the conditional and marginal models are variation

free. In this case, ∆zt is said to be weakly exogenous and β can be estimated efficiently

from the conditional model.4 Observe that other failures of weak exogeneity can arise; the

formal definition of weak exogeneity given by Engle et al. (1983) is that the parameters

of interest are a function of the conditional distribution alone, and that the parameters

of the conditional and marginal distributions are variation free.

We include a constant, trend and indicator variables in the analysis. Hence, the

model is specified by (5.18), in which the contemporaneous output gap is excluded for

forecasting purposes. The level of the exogenous variable is included as it is assumed to be

an I(0) variable. The trend is restricted to lie in the cointegrating space allowing a linear

trend in the cointegrating relations, whereas the constant and dummies are unrestricted.

The impact of the dummies will be negligible as long as
(
1/
√
T
)
φ
∑t

i=1Di → 0 for

T → ∞. Subscripts correspond to the parameters in (5.16).

∆yt = (Πy,Πy,l)

(
yt−1

t

)
+

k−1∑

i=1

Γyi∆yt−i +

l∑

i=1

Γzizt−i + µx + φDt + ǫxt. (5.18)

4Rahbek and Mosconi (1999) suggest that, rather than using the general case in which exogenous
stationary regressors are added to the model given by:

H(r) : ∆yt = αβ
′

yt−1 +

k−1X
i=1

Γi∆yt−i +
lX

j=0

Ψjzt−j + µ + δt+ ǫt,

we can extend the model to give:

H
∗(r) : ∆yt = α

 
β

′

yt−1 + β′

z

tX
i=1

zi + β′

lt

!
+ Φzt +

k−1X
i=1

Γi∆yt−i +

l−1X
j=0

Φi∆zt−i + µ + ǫt,

where Φ =
Pl

j=0 Ψj and Φi = −
Pl

j=i+1 Ψj , i = 0, ..., l − 1. This results in a more general model as
the cumulated zt appears in both the common trends and cointegrating relations. We do not adopt this
approach because of the measurement errors in the cumulated output gap, but it should be noted that
the critical values correctly apply to this model.
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Table 5.3: Descriptive statistics for quarterly inflation
unconditional -dummies 1966q1-1992q4 1993q1-1998q2

Mean 0.0185 0.0186 0.0209 0.0068
St. dev. 0.0154 0.0012 0.0157 0.0050

5.2.4 Empirical analysis

In the empirical analysis the initial unrestricted VAR for T = 1966q1− 1998q2 is defined

as:

yt = [pt, c
∗
t , ppit, pwt, et]

′ .

where the data are outlined in Chapter 4, (see Appendix 4.A for details). The VAR is

augmented by yd
t−1, and five indicator variables are included to account for special events.

These are given by:

Dt = [I74:1, I79:2,D73:1,75:1,D73:2,79:3,D83:1,92:4]
′ .

I74:1 is an impulse dummy controlling for fluctuations in world prices, producer prices

and the price level arising at the time of the first oil shock. I79:2 is another impulse

dummy accounting for the rise in VAT. D73:1,75:1 is a blip dummy taking the values -1,1,

to account for the political effects of the Heath fiscal expansion and the Wilson-Callaghan

‘social contract’ applied to labour market bargaining. D73:2,79:3 is a blip dummy taking

the values -1,1, accounting the measurement error and the Thatcher VAT increase and

finally D83:1,92:4 takes the value 1 to control for exchange rate fluctuations following a

sharp decline in the exchange rate in 1983q1 and the fall out of the ERM in 1992. Table

5.3 provides descriptive statistics of quarterly inflation to show the shift towards lower

inflation during the inflation targeting regime.

The lag length for the unrestricted VAR is determined by sequential tests of model

reduction, commencing from the longest lag length of four. Table 5.4 records the F-

tests of model reduction. Two statistics are reported, including the F-test against the

previous lag and the F-test against the longest lag, i.e. p = 4. Information criteria

are also reported. Eliminating the fourth lag is accepted, but further lag reductions are

rejected. A lag specification of three is supported by the Akaike information criterion,

although both the Schwarz and Hannan-Quinn criteria select more parsimonious models.
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Table 5.4: Determination of the VAR lag length
F (p to p− 1) F (4 to p− 1) SIC HQ AIC

p = 4 - - -27.564 -29.679 -31.123
p = 3 1.465 [0.074] 1.465 [0.074] -28.186 -29.938 -31.132
p = 2 1.705 [0.021]∗ 1.603 [0.008]∗∗ -28.771 -30.157 -31.103
p = 1 3.797 [0.000]∗∗ 2.394 [0.000]∗∗ -28.886 -29.908 -30.605
p = 0 744.5 [0.000]∗∗ 114.9 [0.000]∗∗ -15.053 -15.709 -16.158

Notes: F-test of model reduction, where p = lag length of VAR, with p-values
reported in brackets. ∗ and ∗∗ indicate significance at the 5% and 1% signific-
ance level respectively.

Table 5.5: Tests for mis-specification of the unrestricted VAR(3)
AR(1 − 4)

F(4,102), F(100,404)

ARCH(4)
F(4,98)

Normality
χ2(2), χ2(10)

Hetero
F(32,73), F(480,863)

pt 1.801 [0.134] 0.937 [0.446] 1.047 [0.593] 0.981 [0.510]
c∗t 1.890 [0.118] 1.194 [0.319] 1.591 [0.451] 0.947 [0.557]
ppit 0.908 [0.462] 0.612 [0.655] 0.768 [0.681] 1.383 [0.128]
pwt 2.653∗ [0.037] 0.339 [0.851] 0.360 [0.835] 1.145 [0.312]
et 0.872 [0.483] 1.280 [0.283] 3.269 [0.195] 0.786 [0.772]

Multivariate tests 1.283∗ [0.050] ... 10.141 [0.428] 0.746 [0.999]

Notes: Tests include up to fourth order autocorrelation, fourth order ARCH, normality and
heteroskedasticity. Both single and multivariate tests are reported, with p−values given in
brackets. ∗ denotes significance at the 5% level.

Tests on lags of the exogenous variable yd indicate that only one lag is required.

Tests for evidence of mis-specification for the unrestricted VAR with a lag length of

three are reported in Table 5.5, with a residual analysis of the VAR recorded in Figure 5.2.

The tests are, in general, satisfactory, although there is some evidence of autocorrelation

in world prices. This implies that the multivariate test fails residual correlation up to

the fourth order at the 5% significance level. Including additional lags does not solve the

problem.5 The residuals and their corresponding densities, correlograms and QQ-plots

support the evidence for a reasonably well-specified model. The recursive graphics are

also examined to ensure that there is no evidence of parameter change. Overall, the

unrestricted VAR is congruent and we proceed with the analysis.

5Scheffe’s S procedure (see Savin, 1984) can be used for multiple testing, commencing with the overall
F-statistic for the multivariate test and proceeding to the individual tests, allowing for all combinatorial
comparisons. Scheffe’s procedure tends to be conservative, and multiple testing procedures can deliver
contrasting results, implying that the interpretation of the multivariate and single-equation test results
is not straightforward if disparities emerge.
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Figure 5.2: Residual analysis of the unrestricted VAR, including scaled residuals,
residual densities and histograms, residual correlograms, and QQ plots.

Table 5.6: I(1) cointegration analysis


r 0 1 2 3 4 5
l 2097.81 2131.37 2146.401 2154.95 2160.20 2161.30
λ 0.403 0.207 0.123 0.078 0.017

r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4
Q (r) 126.98∗∗ 59.85 29.78 12.70 2.19
p−val 0.000∗∗ 0.103 0.521 0.762 0.942




Notes: Log-likelihoods (l), eigenvalues (λ), trace statistics (Q(r)) and p−values
of the trace statistic (p−val) for all possible cointegrating ranks.

5.2.5 I(1) analysis

To determine the cointegrating rank, Table 5.6 reports the log-likelihood values (l), eigen-

values (λ), and trace statistics (Q(r)) for the VAR(3). Standard p−values are reported,

based on Doornik (1998), although we focus on the critical values for the partial cointe-

gration model given by Harbo et al. (1998), which are reported in Table 5.7. The roots of

the companion matrix indicate that there is no eigenvalue > 1, which suggests that there

is no explosive root. We do not consider an I(2) analysis as inference using standard

critical values cannot be made due to the partial model in which there are nuisance para-

meters. We work within the I(1) framework and conclude that there is one cointegrating

vector.

To identify the long-run structure within the model, the unrestricted factor loadings

and cointegrating relations are reported in (5.19), in which we normalise on p.

184



Forecasting UK Inflation

Table 5.7: Cointegration analysis critical values for a partial system
Critical Values

50% 80% 90% 95% 97.5%
54.8 63.0 67.9 71.7 75.2

Notes: Critical values from Harbo et al. (1998).
Quantiles for r = 1 with one exogenous variable
and five endogenous variables.

Table 5.8: Tests for weak exogeneity
Test statistic p−value

pt 24.616 0.000∗∗

c∗t 0.041 0.839
ppit 8.481 0.004∗∗

et 14.089 0.002∗∗

pwt 0.578 0.447

Notes: The test statistic is distributed as χ2(1) under
the assumption that the correct cointegrating rank is

imposed.

αβ′ =




−0.282
(0.049)

−0.018
(0.198)

−0.670
(0.225)

0.849
(0.025)

−0.020
(0.025)




(
1
...

−0.873
(0.058)

−0.094
(0.025)

−0.050
(0.030)

0.039
(0.104)

−0.0012
(0.0006)

)
. (5.19)

We test the restriction that the coefficient on world prices is equal to the negative coef-

ficient on the exchange rate. The restriction is accepted; χ2(1) = 0.0107[0.918]; giving

world prices in sterling.6 We also test the restriction that the trend does not enter the

cointegrating vector. This restriction is marginally accepted; χ2(1) = 3.6253[0.057]; and

we impose a zero coefficient on the trend. Furthermore, tests of weak exogeneity, which

imply a zero coefficient on the α parameter, are reported in Table 5.8. We accept the

weak exogeneity hypothesis for unit labour costs and world prices. Imposing all restric-

tions is accepted; χ2(4) = 5.5150[0.238]; and the resulting restricted estimate of αβ′ is

given by:

αβ′ =




−0.228
(0.043)

0
−0.711
(0.170)

0.789
(0.216)

0




(
1
...

−0.925
(0.022)

−0.048
(0.015)

−0.024
(0.012)

0.024
...

)
. (5.20)

6[.] reports p−values.
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Figure 5.3: The VAR cointegrating vector and the single-equation counterpart.

This is analogous to the single-equation mark-up found in (4.19). The trend is insignifi-

cant in both the VAR cointegrating relation and the single-equation model. The coeffi-

cient on unit labour costs is larger than in the single-equation model and the coefficient

on world prices in sterling is much smaller. The cointegrating vector is recorded in Figure

5.3, along with the single-equation mark-up in (4.19). Both cointegrating relations have

a zero mean for the in-sample period.

We next map the data to I(0) space to forecast inflation. In order to implement the

reductions to a more parsimonious model, we use the reduced form VAR framework in

PcGets. This algorithm implements the Gets selection strategy analogous to that used

in the single-equation model but applied to a multivariate GUM, see Hendry and Krolzig

(2001, ch.8) for a discussion, although currently the algorithm is applied individually to

each equation and so omits cross-equation restrictions. The GUM is in VEqCM form,

containing 18 regressors in each equation, including two lags of the differenced variables,

the lagged cointegrating vector, an intercept, and five dummies. The dominant congruent

model is derived, reported in equations (5.21) to (5.24). The test of model reduction from

the full VEqCM to the model specification outlined is accepted; χ2(55) = 68.358[0.107].

Figure 5.4 records the fitted and actual values, residuals, density, and correlogram for

quarterly inflation; the variable of focus in the forecasting exercise.
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There is evidence of autocorrelation within the system that is not removed by includ-

ing extra lags, hence we report HACSE estimates (see Andrews, 1991). If the equations

are estimated independently there is no evidence of autocorrelation. The model represents

a reasonable fit. The equation standard error of 0.72% is larger than the single-equation

model with a standard error of 0.61%, due to the smaller variable set and restricted

dynamics. The Chow test is accepted; FChow (100, 123) = 0.851 [0.798].

∆pt = 0.496
(0.156)

∆pwt−1 + 0.647
(0.161)

∆pwt−2 + 0.168
(0.035)

yd
t−1 + 0.157

(0.044)
∆c∗t−1

−0.045
(0.017)

cvt−1 − 0.028
(0.007)

I74:1 + 0.043
(0.005)

D73:2,79:3 + 0.014
(0.005)

D73:1,75:1 (5.21)

σ̂ = 0.718% Far(5, 107) = 5.780∗∗ Fhet(31, 91) = 0.778

χ2
nd (2) = 0.685 Farch(4, 115) = 0.482 T = 1966q1 − 1998q2.

∆c∗t = 0.231
(0.083)

∆pt−1 + 0.338
(0.053)

yd
t−1 + 0.120

(0.062)
∆c∗t−2 + 1.028

(0.145)
∆pwt−1 − 0.108

(0.028)
∆ppit−1

+0.065
(0.028)

∆ppit−2 + 0.050
(0.007)

D73:1,75:1 + 0.019
(0.007)

D73:2,79:3 (5.22)

σ̂ = 1.030% Far(5, 107) = 2.372∗ Fhet(31, 91) = 1.452

χ2
nd (2) = 0.947 Farch(4, 115) = 1.365 T = 1966q1 − 1998q2.

∆ppit = 0.286
(0.060)

∆ppit−1 + 0.341
(0.116)

yd
t−1 − 0.189

(0.063)
cvt−1

+0.214
(0.023)

I74:1 + 0.051
(0.017)

D83:1,92:4 + 0.008
(0.002)

(5.23)

σ̂ = 2.617% Far(5, 107) = 10.363∗∗ Fhet(31, 91) = 4.760∗∗

χ2
nd (2) = 5.568 Farch(4, 115) = 5.281∗∗ T = 1966q1 − 1998q2.

∆pwt = 0.076
(0.022)

∆pt−2 + 0.040
(0.016)

yd
t−1 + 0.477

(0.077)
∆pwt−1 + 0.253

(0.070)
∆pwt−2

+0.029
(0.009)

∆ppit−1 + 0.009
(0.003)

I74:1 + 0.010
(0.003)

I79:2 + 0.002
(0.0005)

(5.24)

σ̂ = 0.315% Far(5, 107) = 4.492∗∗ Fhet(31, 91) = 1.444

χ2
nd (2) = 0.754 Farch(4, 115) = 0.546 T = 1966q1 − 1998q2.

187



Forecasting UK Inflation

1970 1980 1990 2000

0.000

0.025

0.050

0.075 Dp Fitted 

1970 1980 1990 2000

−2

−1

0

1

2 r:Dp (scaled) forc.error 

−4 −3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

Density
r:Dp N(0,1) 

0 5 10

−0.5

0.0

0.5

1.0
ACF−r:Dp 

Figure 5.4: Fitted and actual values, residuals, density, and correlogram for the
VEqCM model of quarterly inflation.

∆et = 1.219
(0.412)

∆pwt−2 + 0.400
(0.094)

cvt−1 + 0.075
(0.024)

I79:2 − 0.113
(0.020)

D83:1,92:4 − 0.021
(0.006)

(5.25)

σ̂ = 2.889% Far(5, 107) = 5.265∗∗ Fhet(31, 91) = 0.595

χ2
nd (2) = 3.270 Farch(4, 115) = 1.238 T = 1966q1 − 1998q2.

There is a substantial impact from external prices feeding through to domestic infla-

tion with both lags corresponding to a coefficient of approximately unity. This may well

be reflecting collinearity with domestic prices as well, as the lagged dependent variable

is not retained. The output gap has a 17% effect, so is an important source of infla-

tion. The cointegrating vector enters with an impact of 5%, and so the exchange rate,

unit labour costs and producer prices all enter significantly. This is much smaller than

the 13% impact found in the single-equation model, and is indeed much smaller than

(5.20) would suggest. An intercept is not retained, suggesting that there is no evidence

of autonomous inflation. The output gap feeds into unit labour costs and producer prices

with a greater impact than inflation at 34%, suggesting that excess demand pressures are

recognised more fully at the intermediate stage. The cointegrating vector does not enter

into the equation for unit labour costs, reflecting the evidence found for weak exogeneity.

External inflation has a substantial impact on unit labour costs, with a coefficient of ap-

proximately one. The exchange rate equation contains the lagged external inflation rate
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and the mark-up which is difficult to explain, but an equation standard error of 2.89%

suggests that the model is poor. The exchange rate is difficult to model; often a random

walk provides the best fit, although it is marginally inferior to (5.25) for this sample.

5.3 Quarterly inflation forecasts

To assess the forecast performance of the inflation models, we undertake a forecast com-

parison exercise in which their ex ante forecasts are compared with the forecasts from

alternative forecasting devices. Conventional forecasting theory from the seminal works

of Box and Jenkins (1970), Klein (1971), and Granger and Newbold (1986) assume that

the best in-sample model is the best out-of-sample model, delivering the lowest MSFE

matrix. Hence, we would assume the econometric models developed would produce the

best forecasts. However, the empirical forecasts produced in this section show that there

is no definitive ranking of forecasting models, and often models with little or no eco-

nomic content can outperform well-specified econometric models. Section 5.3.1 outlines

the forecasting methods and evaluation criteria, section 5.3.2 discusses the forecasting

models and section 5.3.3 reports the results for quarterly inflation.

5.3.1 Forecasting methods

Estimating a model over t = 1, ..., T , with a forecast horizon of t = T + 1, ..., T + H,

the forecast at T + h is given in (5.26), where IT is the information set at time T , θT is

the set of estimated model parameters at time T , and the forecast is a function h steps

ahead, ψh. The resulting forecast error in period T + h is given in (5.27).

ŷT+h|T = ψh

(
IT , θ̂T

)
(5.26)

eT+h|t = yT+h|T − ŷT+h|T . (5.27)

To compare the accuracy of forecasts we shall examine the bias (ME), efficiency

(MAE), and a composite of these (RMSFE), for the forecasts derived from each model.7

As forecast accuracy rankings can change over different forecast horizons (based on

7The MAPE is not reported for quarterly inflation as MAPE = ∞ for yt = 0, and two of the forecast
horizon realisations of ∆pT+h = 0.
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MSFE), multi-step forecasts are also examined for 4-steps ahead. Clements and Hendry

(1993a, 1993b) demonstrate that MSFEs are not invariant under non-singular, scale-

preserving linear transformations, and instead propose the GFESM criterion (see Chapter

1), although as we compare many forecast models the calculation of all intermediate fore-

cast horizons is computationally intensive, and consequently we report RMSFE instead

of GFESM, but the caveats of such an evaluation criterion must be noted.

Multi-step forecasting techniques, including the iterated 1-step estimator and the

direct h-step estimator, are outlined in (1.17) and (1.18). Only the direct h-step forecast

can be used in the single-equation framework, and so a model must be developed to

produce direct 4-step ahead forecasts. The Gets technique used in Chapter 4 is applied

to derive a model of quarterly inflation using information lagged one year. The initial

GUM contains lags 4 to 7 of yd, Ud, er, (c∗ − p), s, (ppi− p), (rent− p), (imp− p),

(oil − p), (n− p), Rl, ∆ppi, ∆rent, ∆imp, ∆oil, ∆p, ∆c∗, ∆m4, ∆n, ∆Rs, ∆Rl, ∆pw,

lags 4 and 5 of ∆eter,t−j and ∆ete
2
r,t−j , and an intercept, trend, and indicators.8 As

information in periods t−1 to t−3 are excluded, residual autocorrelation is likely to bias

the estimated coefficient standard errors. In order to overcome this, looser significance

levels are used to select the model (using the expert-users strategy in PcGets) and the

autocorrelation mis-specification test is excluded from the test battery. The resulting

specific model is estimated in PcGive to establish HACSEs based on Andrews (1991),

reported in parentheses.9

∆pt = 0.329
(0.144)

∆pwt−4 + 0.086
(0.015)

∆ppit−4 + 0.298
(0.030)

yd
t−4 − 0.120

(0.028)
Ud

t−7

+0.016
(0.004)

∆oilt−5 + 0.157
(0.052)

∆rentt−4 − 0.060
(0.022)

π∗t−4 + 0.051
(0.002)

D73:2,79:3

+0.025
(0.003)

D72:4,74:1 + 0.021
(0.002)

D84:1,84:2 + 0.0075
(0.0018)

(5.28)

R2 = 0.814 σ̂ = 0.698% SIC = −9.597

Far(5, 110) = 0.884 Farch(4, 107) = 0.990 Fhet(20, 94) = 0.642 χ2
nd (2) = 2.239

Freset (1, 114) = 2.703 FChow(20, 115) = 0.991 T = 1967q1 − 1998q2.

8The indicators included are those reported in Table 4.1.
9In practice, further selection may be undertaken if the t-statistics from the HACSE estimates result

in insignificant coefficients, and we use an iterative procedure between PcGive and PcGets to determine
the appropriate significance levels for selection, as opposed to resorting to stepwise regression.
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Figure 5.5: Fitted and actual values, residuals, density, and correlogram for the
EqCM model of quarterly inflation to forecast 4-steps ahead.

The model is similar to the quarterly model, with a remarkably small rise in the

equation standard error from 0.61% to 0.70% due to the reduced information set. Neither

the acceleration of inflation nor the PPP interaction term enter the model, implying these

effects are short-term occurring within one year. The intercept is larger at 0.0075, and

the impact of the mark-up is much smaller as it is lagged by four periods. Even with the

reduced information set, the model passes all diagnostics, including autocorrelation and

heteroskedasticity, and the marginal decline in the equation standard error suggests that

inflation may well correspond to an annual process because of time lags, where changes

in input prices feed through to final prices slowly due to menu costs etc. The model fit

is recorded in Figure 5.5, along with the scaled residuals, their correlogram and residual

density.

5.3.2 Forecasting models

A range of forecasting models is assessed, including the single-equation and vector equi-

librium correction models in equations (4.20) and (5.21). These econometric models are

compared with various robust forecasting devices including a differenced VAR based on

a five-year rolling average growth rate (DV); a differenced EqCM (∆EqCM) and VE-

qCM (∆VEqCM), in which the coefficients from the equilibrium correction models are
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imposed; differenced EqCM and VEqCM equations that exclude the I(-1) double differ-

enced terms and therefore just consist of the differenced cointegrating vector (∆EqCMβ,

∆VEqCMβ); a random walk, or equivalently a double differenced VAR (DDV); a rapid

updating device, given by a smoothed difference (SMD); an autoregressive model (AR);

and a pooled forecast (Pool).

Clements and Hendry (1998b, 1999) demonstrate that non-causal models can outper-

form well-specified econometric models in a forecasting context if there are non-modelled

structural breaks, as non-causal models may be more robust to breaks in the determin-

istic terms. We shall briefly outline the forecasting models using a simplified VAR(1) for

exposition, numbering the models for clarity.

1. Assume xt = τ + Γxt−1 + ǫt. Taking differences results in:

∆xt = αβ′xt−1 + τ + ǫt (5.29)

= γ +α
(
β′xt−1 − µ

)
+ ǫt. (5.30)

where Γ = I+αβ′ and τ = γ−αµ.10 It is clear from (5.30) that breaks occurring

in the deterministic terms can arise through µ, where E
[
β′xt

]
= µ, or via breaks

in the unconditional growth rate of the system, γ, where E [∆xt] = γ.11 Clements

and Hendry (1999) outline the forecast errors and variances of (5.30) when a break

occurs in µ, γ or α, along with the analogous forecast errors and variances for a

variety of forecasting devices. The success of robust forecasting devices highlight

the presence of breaks in the deterministic terms. Shifts in the mean are the most

problematic for forecasting. If there occurs a shift in the equilibrium mean that is

unaccounted for, forecasts will be adjusting to the old mean and will therefore be

off-target for the entire adjustment period.

2. Using (5.30) as the in-sample DGP, the VAR in differences is given by:

∆xt = γ + ξt. (5.31)

10To map (5.18) to this simple form we set Πy,l = 0, Γyi = 0 for i = 1, ..., k− 1, Γzi = 0 for i = 1, ..., l
and φ = 0, where Πy = αβ′, µx = τ and ǫx,t = ǫ.

11A third possibility for deterministic breaks arise from shifts in α, the adjustment coefficients affecting
τ . We abstract from this case in the following analysis.
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This will be mis-specified unless the cointegrating rank is 0. The elimination of

µ and α robustifies the model to changes in these parameters over the forecast

horizon. In practice, a five-year rolling average is used rather than the in-sample

inflation rate because of the regime changes over the sample period.12

3. The double differenced VAR (DDV) is given by:

∆2xt = ζt (5.32)

and this will track inflation by one quarter, see (1.12). This device eliminates γ, µ

and α; all the potentially damaging terms. A further advantage of differencing is

that the forecast retains the structural information. We can rewrite (5.32) as:

∆xt = ∆xt−1 + ζt, (5.33)

where ∆xt−1 = γ + α
(
β′xt−2 − µ

)
+ ǫt−1, and so, if there are no breaks, the

structural model is included in the forecast (albeit with a one period lag) and the

only extra cost is an additional error term, ζt.

4. Another adaptive device that may be used is differencing the VEqCM:

∆xt = ∆xt−1 +αβ′∆xt−1 + ∆ǫt =
(
I +αβ′

)
∆xt−1 + νt, (5.34)

which is the first difference of the initial VAR with the rank restrictions from

cointegration imposed. Alternatively, writing (5.34) as:

∆2xt = αβ′∆xt−1 + νt (5.35)

shows that the DDV can be augmented by αβ′∆xt−1. As the device differences the

mean, a shift in µ will imply the forecast will fail in the period following the break,

but will then correct as ∆µ = 0 in subsequent periods. Hence, as in the case of the

DDV, a differenced VEqCM or EqCM will robustify forecasts to deterministic shifts.

On a note of caution, unnecessary differencing will lead to increased uncertainty,

12Determination of the optimal in-sample period for developing a forecasting model will depend on the
trade-off between the benefits of a large sample period and the increased probability of structural breaks.
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which may increase the MSFE.

5. In empirical models, the VEqCM is usually augmented by differenced lagged re-

gressors to allow for more complex dynamics, and so (5.30) would be:13

∆xt = γ +α
(
β′xt−1 − µ

)
+ δ′∆xt−1 + ǫt, (5.36)

for a VAR(2), and hence the differenced VEqCM contains I(-1) terms:

∆xt =
(
I +αβ′

)
∆xt−1 + δ′∆2xt−1 + νt, (5.37)

The ∆EqCMβ and ∆VEqCMβ models set δ = 0 to avoid inflating the MSFE by

highly volatile I(-1) variables.

6. The lag length of the autoregressive model is selected using AIC. A lag length of

three is selected and the model is estimated over the full in-sample period.

7. The longer period difference attempts to capture a more rapid updating of the coef-

ficients on the deterministic terms such that structural breaks are picked up faster.

Clements and Hendry (2005a) outline the ideas behind rapid updating. Assume

a moving average of past actual growth rates given by θ̃T = 1
m+1

∑m
i=0 ∆xT−i, so

that the forecast at T + 1 is:

∆̃xT+1|T = θ̃T . (5.38)

Then:

(m+ 1) θ̃T =

m∑

i=0

∆xT−i = ∆xT − ∆xT−(m+1) + (m+ 1) θ̃T−1, (5.39)

so:

θ̃T = θ̃T−1 +
1

m+ 1
∆∆m+1xT , (5.40)

reflecting aspects of Kalman filtering. When m=0 we obtain the DDV, which

corresponds to updating the intercept, whereas larger values of m smooth intercept

estimates but adapt more slowly. Setting m = 3, the SMD for quarterly data is

13This model corresponds to δ = Γy1 in (5.18).
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given by:

∆xT+i|T+i−1 =
1

4

4∑

j=1

∆xT+i−j =
1

4
∆4xT+i−1. (5.41)

8. The pooled forecast is computed as an unweighted average. Hendry and Clements

(2004) show that in the presence of structural breaks, simple averaging may domi-

nate over estimating the weights for the forecast combination.

5.3.3 Forecasting results

A comparison of the forecast results for the models considered, over the period 1998q3-

2003q2, is provided in Table 5.9. This records the 1-step and 4-step ME, MAE, and

RMSFE for the various forecasting models. First, assessing the 1-step forecasts, Figure

5.6a shows the reasonable performance of the VEqCM for quarterly inflation, in which

all of the realised outcomes lie within the ±2σ̂f error bars.14 The model does overpredict

inflation over 2000 and 2001, with an average prediction of 3.2% p.a. compared to

an actual average inflation rate of 2.1%. However, the forecast error variance is not

substantial (note that all graphs are on the same scale for comparison) and the RMSFE

of 0.55% is fairly good. The ∆VEqCM, imposing the coefficients from equation (5.21) are

recorded in Figure 5.6b along with ∆VEqCMβ. The MAE of the ∆VEqCM compared to

the ∆VEqCMβ reflects the inflated forecast variance due to the inclusion of I(-1) terms.

Comparing these results to two other robust forecasting devices, Figures 5.6c and

5.6d record the forecasts from the DDV and DV respectively. The DV is based on a

5-year rolling average mean growth rate as opposed to the sample mean (which yields

a RMSFE of 1.31%). Both adaptive devices perform well, with mean errors of 0.03%.

The DDV tracks inflation by one quarter, demonstrating that not only should the DDV

perform well when there are breaks to adjust to, but the device is also successful when

there are no breaks as the method is tracking a stable series. The DV does particularly

well as inflation has been very stable over the forecast horizon, demonstrating that if

breaks cannot be pre-empted and the series is stationary, a forecast based on the mean

unconditional growth rate is a good model. In contrast, if inflation were I(1), as in

14Note that the forecast standard error bars are incorrectly estimated by PcGive when the 1-step errors
are not homoskedastic innovation errors over the forecast period with constant parameters.
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Table 5.9: Summary of quarterly inflation forecasts
ME MAE RMSFE

Horizon 1-step 4-step 1-step 4-step 1-step 4-step

VEqCM 0.06 -0.20 0.45 0.47 0.55 0.58
∆VEqCM -0.06 -0.18 0.61 0.63 0.69 0.73
∆VEqCMβ -0.03 -0.08 0.46 0.42 0.54 0.51
DV -0.03 -0.03 0.34 0.34 0.41 0.40
DDV -0.03 0.01 0.47 0.40 0.55 0.49
EqCM -0.08 -0.38 0.42 0.60 0.54 0.75
∆EqCM -0.03 -0.01 0.68 0.65 0.79 0.73
∆EqCMβ -0.03 -0.02 0.46 0.38 0.55 0.47
AR(3) -0.24 -0.53 0.39 0.55 0.47 0.66
SMD 0.01 0.02 0.34 0.35 0.40 0.43
Pool -0.09 -0.12 0.37 0.37 0.43 0.43

Notes: Results for 1-step and 4-step ahead forecasts over 1998q3-2003q2.

Figures reported as percentages, with the best forecasting performance

highlighted in bold.

the 1970s and 1980s, this forecasting device would not be as successful as a further

differencing using the DDV device.

Examining the performance of the single-equation model, Figure 5.7a records the

forecasts from the EqCM. The RMSFE of 0.54% is comparable to that of the VEqCM.

Differencing the EqCM, as shown in Figure 5.7b, does not yield any improvement as the

variance is inflated, but removing the short-run dynamics does improve the forecasts.

Both adaptive devices given by the AR(3) model in Figure 5.7c and the SMD in Figure

5.7d forecast particularly well. The adaptive devices result in much smoother forecasts

which outperform the econometric models. The pooled forecast performs well if forecast

errors offset each other. While the majority of forecasts are biased upwards over the

forecast horizon, the pooled forecast gains by reducing the variance.

Figures 5.8 and 5.9 record the corresponding forecasts for one year ahead quarterly

inflation. Again, the SMD and the DV predict inflation well, showing the relative stability

of inflation over the forecast period; the pooled forecast is also good. There is a more

marked improvement in the ∆VEqCMβ and ∆EqCMβ at the 4-step horizon. Unusually,

almost all models forecast better out-of-sample than the VEqCM performs in-sample,

with an equation standard error of 0.72% which can be directly compared to the RMSFE,

again reflecting the quiescence of the economy over the forecast horizon.

Table 5.10 examines the dynamic inflation forecasts over the entire forecast horizon

196



Forecasting UK Inflation

1998 1999 2000 2001 2002 2003 2004
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
∆p VEqCM 

1998 1999 2000 2001 2002 2003 2004
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
∆p ∆VEqCM ∆VEqCMβ 

1998 1999 2000 2001 2002 2003 2004
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
DDV ∆p 

1998 1999 2000 2001 2002 2003 2004
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
∆p DV 

Figure 5.6: 1-step forecasts of quarterly UK inflation from the VEqCM, ∆VEqCM
and ∆VEqCMβ, DDV and DV
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Figure 5.7: 1-step forecasts of quarterly inflation from the EqCM, ∆EqCM and
∆EqCMβ, AR(3) and SMD
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Figure 5.8: 4-step forecasts for quarterly inflation derived from the VEqCM,
∆VEqCM and ∆VEqCMβ, EqCM, ∆EqCM and ∆EqCMβ models
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Figure 5.9: 4-step forecasts for quarterly inflation derived from the DDV, DV, AR(3)
and SMD
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Table 5.10: Summary of 20-period dynamic quarterly inflation forecasts
Dynamic Forecasts (20 periods) ME MAE RMSFE

VEqCM -0.183 0.400 0.480
AR(1) powered (1966q1-1998q2) -1.187 1.187 1.254
AR(1) powered (1992q1-1998q2) -0.069 0.324 0.387

Notes: Dynamic forecasts for 1998q3-2003q2. Figures reported as
percentages.

for the VEqCM, against a powered up AR(1) model given by:

∆pt = α+ β∆pt−1 + ǫt (5.42)

∆pT+h|T =

h−1∑

i=0

αβi + βh∆pT . (5.43)

The RMSFE of the VEqCM for 20 periods ahead of 0.48% is excellent, reflecting the rel-

ative stability of inflation over the forecast period and the lack of deterministic trend in

the VEqCM model. Two AR(1) models are examined; the first is estimated over the full

sample and the second is estimated from 1992 onwards. Estimating over the full sample

period results in a RMSFE of 3.5 times that of the smaller sample, demonstrating the

extent of structural change over the sample period. If the model is a good representation

of the economy and the structure of the economy remains relatively unchanged, then fore-

cast accuracy should decline as the forecast horizon increases because innovation errors

accumulate and predictability falls. However, if models are mis-specified and unantici-

pated shifts occur, particularly in the deterministic terms, classical forecast theory does

not hold. In this case, forecast failure can easily arise and it may be possible that forecast

accuracy increases with the forecast horizon. Hence, even though inflation is I(0) over

the forecast horizon, breaks may well be causing forecast failure, as demonstrated by the

20-step forecasts outperforming most 1-step and 4-step forecasts considered in Table 5.9.

5.3.4 Ranking of forecasting models

Having assessed the models on MSFE criterion, this section aims to rank the models in

terms of the closest absolute forecast to actual inflation. Furthermore, the models are

examined to establish whether there is any autocorrelation in which models perform best

(and worst) over the forecast horizon, with a view to providing a more informed choice

regarding which models to use. The models are also tested for how well they predict sign
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changes in inflation, although the relative stability of inflation over the forecast horizon

implies that this is less relevant than in periods when inflation is closer to an I(1) process.

On RMSFE and MAE criteria, the SMD and the DV are preferred over the 1-step

horizon and the DV and pooled forecast perform best over the 4-step horizon. A question

worth addressing is which of these models delivers the closest forecast at each forecast

realisation. Table 5.11 ranks the top two forecasting models based on the absolute forecast

error at every horizon. The worst model is also reported. Although the table is rather

cumbersome to read, it is clear that no model systematically outperforms the other

models over the forecast period, and likewise, no model systematically has the largest

absolute errors. The magnitude of the errors is fairly similar across models and there

is a lot of fluctuation with regard to which models deliver the smallest absolute errors.

Forecast accuracy appears to be rather volatile, with forecasting models being ranked

both ‘best’ and ‘worst’ over the forecast period. Most models tend to perform well for

some quarters and poorly for others, and so we cannot draw conclusions regarding a

systematic ranking.

This analysis is conditional on the sample examined. Inflation is relatively stable

over the period and all the forecast errors are of a similar magnitude. During a period in

which inflation is more volatile there may well be some systematic rankings. Identifying

why particular models perform well would be the logical step in this case.

5.3.5 Forecasting correct sign changes

Another important question to address when examining forecasting models is whether the

models correctly forecast signs and changes in signs. Over the forecast period quarterly

inflation was positive, other than on one occasion when inflation was negative (2000q2),

and on two occasions was zero (1999q4 and 2001q3). None of the models correctly forecast

the negative inflation observation, although the inflation realisation was just -0.1%. Most

models always predict positive inflation, other than the differenced EqCM and VEqCM

models, and the DDV predicts one negative inflation observation in the quarter following

2000q2. Given the Bank of England’s inflation target, predicting the sign of inflation is

not an informative model criterion.
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Table 5.11: Model rankings based on absolute forecast error
1-step Forecasts 4-step Forecasts

1st 2nd Worst 1st 2nd Worst

1998q3 ∆EqCM AR(3) VEqCM ∆VEqCMβ ∆VEqCM ∆EqCM

1998q4 VEqCM EqCM AR(3) EqCM ∆EqCM ∆VEqCM

1991q1 DDV DVEqCMβ AR(3) VEqCM SMD AR(3)

1999q2 AR(3) SMD ∆EqCMβ ∆EqCMβ DDV EqCM

1999q3 Pool ∆VEqCM EqCM ∆VEqCMβ VEqCM AR(3)

1999q4 DDV ∆EqCM ∆VEqCM ∆VEqCMβ DDV AR(3)

2000q1 DV AR(3) ∆VEqCM SMD DV ∆EqCM

2000q2 EqCM SMD ∆VEqCM EqCM SMD AR(3)

2000q3 Pool AR(3) VEqCM DDV SMD EqCM

2000q4 DDV SMD VEqCM ∆VEqCMβ ∆VEqCM EqCM

2001q1 EqCM VEqCM DDV AR(3) VEqCM SMD

2001q2 DV ∆VEqCM VEqCM DV AR(3) VEqCM

2001q3 SMD DV EqCM SMD ∆VEqCM EqCM

2001q4 EqCM AR(3) ∆EqCMβ AR(3) Pool ∆EqCM

2002q1 ∆EqCM DDV 1
4∆4pt−1 AR(3) ∆EqCMβ ∆VEqCM

2002q2 SMD DV DDV DV ∆EqCMβ EqCM

2002q3 ∆VEqCMβ EqCM ∆EqCM EqCM AR(3) ∆EqCM

2002q4 ∆EqCMβ ∆VEqCMβ ∆VEqCM Pool SMD AR(3)

2003q1 AR(3) SMD ∆VEqCM SMD Pool AR(3)

2003q2 EqCM DV AR(3) DV ∆EqCMβ EqCM

A more informative indication of the models relative forecast accuracy would be to

examine how well the models forecast the direction of the change in inflation. Over the

20 forecast observations, quarterly inflation rose in 8 periods and fell in 12 periods. There

is no systematic movement in inflation, as can be seen in Figure 5.10b, which records

the first difference of quarterly inflation. Figures 5.10c and 5.10d record the percentage

of observations in which each forecasting model correctly predicts the sign change in

inflation. Both the 1-step and 4-step forecasts suggest that for these models, the chance

of predicting a rise or fall in inflation is not sytematically correct, and indeed, is more

often incorrect than correct; a systematic finding across almost all models. Again, we

need to apply the caveat that the results are sample specific and may be due to the

nature of inflation of over the forecast horizon.

Having looked at the forecasting models in terms of their rankings based on absolute

errors and which models predict sign changes, we may be rather pessimistic over the

conclusions. There is no systematic ‘good’ model and none seem to forecast sign changes

correctly on average. However, we need to bear in mind the small magnitude of errors.
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Figure 5.10: Quarterly inflation, the change in quarterly inflation, and the ability
of the forecasting models to predict the sign change in inflation for the 1-step and

4-step forecasts

A key issue given the similarity of forecast errors between models is whether any of the

models would have led to the Bank of England missing the inflation target band. Issues

such as the time lag, forecasts conditional on the path of interest rates, the balance of

uncertainties etc. also need to be addressed.

5.4 Models of annual inflation

Forecasting requires predictability, where a process yt is defined as predictable with

respect to an information set, It−1, over T if Dyt (yt|It−1) 6= Dyt (yt) for ∀t ∈ T : see

Chapter 1 for a brief discussion. As noted, predictability is relative to the information

used and so forecasting from a reduced, but proper, information set, Jt−1 ⊂ It−1, will

result in less accurate but unbiased predictions. Unpredictability is not invariant to the

data frequency used and so temporal disaggregation cannot lower the predictability of

yt. This implies that as lower frequency data is a subset of higher frequency data, more

accurate predictions should be obtained when forecasting annual inflation using quarterly

data as opposed to annual data, although both forecasts should be unbiased on a proper

information set.

In order to test the theory, we derive two models of annual inflation. We examine the
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simple case where yt = ft (It−1) + νt, for a model in which annual inflation is forecast

using a single-equation dynamic model based on Gets methodology. The first model

we examine is the annual analogue of that on quarterly data, requiring information in

fourth differences and lagged four periods only to emulate annual data. This is our lower

frequency model. We then develop a model of annual inflation using quarterly data

representing the higher frequency model, and examine the improvement in forecasting

performance when the information set is increased. We use the time subscript τ to denote

the annual frequency in order to distinguish between the quarterly and annual inflation

models.

5.4.1 Annual analogue model of annual inflation

The initial model of ∆4pτ includes lags 4 to 7 of yd, Ud, er, (c∗ − p), s, (ppi− p),

(rent− p), (imp − p), (oil − p), (n− p), Rl, ∆4ppi, ∆4rent, ∆4imp, ∆4oil, ∆4p, ∆4c
∗,

∆4m4, ∆4n, ∆4Rs, ∆4Rl, ∆4pw, ∆4eτer,τ−j and ∆4eτe
2
r,τ−j for j = 4, 5, and an intercept

and trend. Five indicator variables are included given by:

Dt = [I72:4, I73:2, I74:1, I84,1, I84:2]
′ ,

and a year long dummy variable is included for 1979q3-1980q2. To derive a model

of annual inflation in annual analogues using quarterly data autocorrelation must be

corrected for. To still use the Gets framework embodied in PcGets, the standard errors

need to be adjusted as least squares will be inefficient. The first order autocorrelation is

of magnitude 0.7, with highly significant second and third order autocorrelation. As a

rough guide, we can adjust the t-values that are selected in PcGets by a factor

√(
1+ρ
1−ρ

)
.

Hence, we shall initially retain variables with a t-statistic greater than 4.76.15 To refine

the selection using a more rigorous adjustment for autocorrelation, the model is then

estimated in PcGive and tested down using HACSEs.

The resulting model is reported in (5.45), with HACSEs reported in parentheses. The

model fails autocorrelation, as expected, and the RESET test of model specification,

15This can be done by adjusting the probabilities for the t-tests in the expert-users strategy option in
PcGets.
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Figure 5.11: Model of annual inflation using quarterly data in annual analogues;
model fit, residuals, their density and correlogram

which may be an indication of some nonlinearity. The model also fails the forecast Chow

test, but out-of-sample fit is not a criterion on which to base in-sample model selection

as this would bias the forecasting results. The model contains most theories of inflation

found in Hendry (2001), and the mark-up is given in (5.44):

π∗τ = pτ − 0.58c∗τ − 0.34pw£,τ − 0.07ppiτ + 4.12. (5.44)

The corresponding graphics including the model fit, residuals, density, and correlogram

are given in Figure 5.11, and the recursive graphics are recorded in Figure 5.12.

∆4pτ = −0.333
(0.092)

∆4pτ−5 + 0.801
(0.067)

yd
τ−4 + 0.258

(0.071)
∆4c

∗
τ−5 − 0.341

(0.062)
Ud

τ−6

+0.092
(0.040)

∆4rentτ−6 + 0.035
(0.008)

∆4oilτ−4 + 0.640
(0.146)

∆4pwτ−4 − 0.325
(0.043)

π∗τ−4

−0.058
(0.005)

I74:1 − 0.033
(0.004)

I84:1 + 0.043
(0.005)

D79:3,80:2 + 0.026
(0.005)

(5.45)

R2 = 0.951 σ̂ = 1.202% SIC = −8.476

Far(5, 106) = 6.599∗∗ Farch(4, 103) = 1.792 Fhet(19, 91) = 1.328 χ2
nd (2) = 1.440

Freset (1, 110) = 19.169∗∗ FChow(20, 111) = 2.469∗∗ T = 1967q4 − 1998q2.
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Figure 5.12: Model of annual inflation using quarterly data in annual analogues;
recursive coefficients with ±2σ, 1-step residuals and constancy tests

5.4.2 Quarterly model of annual inflation

A model of annual inflation using quarterly data is developed in order to compare the

forecasts with (5.45). The model is selected using the same methodology in which first

differences are included in the GUM to reflect the higher frequency data. Again, we only

use lags dated τ−4 and previous in order to forecast 1-year ahead. The model is reported

in (5.46), with standard errors adjusted for autocorrelation and heteroskedasticity in

parentheses.

∆4pτ = 0.711
(0.056)

yd
τ−4 + 0.609

(0.080)
∆c∗τ−4 − 0.405

(0.048)
Ud

τ−7 + 0.021
(0.005)

∆oilτ−7

+0.258
(0.043)

∆ppiτ−4 + 1.528
(0.323)

∆pwτ−5 − 0.279
(0.037)

π∗τ−5 − 0.022
(0.003)

I73:2

−0.041
(0.006)

I74:1 + 0.060
(0.003)

D79:3,80:2 + 0.079
(0.006)

D75:2,75:3 + 0.032
(0.003)

(5.46)

R2 = 0.952 σ̂ = 1.189% SIC = −8.497

Far(5, 106) = 1.531 Farch(4, 103) = 0.191 Fhet(18, 92) = 1.098 χ2
nd (2) = 5.862

Freset (1, 110) = 4.766∗ FChow(20, 110) = 1.513 T = 1967q4 − 1998q2.

There is very little improvement in fit moving to the higher frequency data, with an

equation standard error of 1.19% as opposed to 1.2% for the annual model. The corre-

sponding graphics including the model fit, residuals, density, and correlogram are given
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Figure 5.13: Model of annual inflation using quarterly data; model fit, residuals,
their density and correlogram

in Figure 5.13, and the recursive graphics are recorded in Figure 5.14.

5.4.3 Quarterly inflation model used to forecast 1-year ahead inflation

An alternative rule that we investigate is based on deriving a model of annual inflation

using quarterly data and fixing the estimated coefficients to forecast 4-steps ahead, as

opposed to 1-step ahead. If the DGP is given as:

∆4xt = γ + α
(
β′xt−1 − µ

)
+ νt, (5.47)

we use the forecasting rule given by:

∆̂4xT+4|T = γ̂ + α̂
(
β̂′xT−1 − µ̂

)
. (5.48)

While this is a mis-specified model, we can interpret the forecasting rule as:

∆4xT+4|T = ∆4xT − ν̂t, (5.49)

and so the forecasting rule is the DDV when there are no breaks, excluding the estimated

error term. As well as protecting against breaks via the DDV component, all available

information up to time T is used to develop the dominant, congruent, in-sample model.

To produce a direct one year ahead forecast, quarterly information is lost because the
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Figure 5.14: Model of annual inflation using quarterly data; recursive coefficients
with ±2σ, 1-step residuals and constancy tests

in-sample model is based on annual data. Developing a quarterly model and using the

resulting coefficients lagged by one year requires the implicit assumption that the exoge-

nous variables have the same impact lagged one quarter as they do lagged one year.

We derive a model of annual inflation by imposing a coefficient of unity on ∆3pτ−1 to

model quarterly inflation. The selection process retained the lagged dependent variables,

and a test for the restriction ∆pτ−4 = ∆pτ−5 = ∆pτ−6 = 1 is accepted; F (1, 110) =

0.438 [0.509]. Having derived the quarterly model of annual inflation, the coefficients are

fixed and the model is re-formulated on the variables lagged one year. The resulting

model is given in (5.50):

∆4pτ = 1.000∆3pτ−4 + 0.208yd
τ−4 + 0.194∆c∗τ−4 − 0.134Ud

τ−4

+0.109∆impτ−5 + 0.414∆pwτ−7 − 0.021π∗τ−5 + 0.018I72:4

−0.046I73:2 − 0.030I74:1 + 0.045I79:3 + 0.018I84:2 + 0.007 (5.50)

σ̂ = 3.240% SIC = −6.859 Far(5, 118) = 49.075∗∗ Fhet(19, 103) = 9.973∗∗

χ2
nd (2) = 7.774∗∗ FChow(20, 123) = 0.0386 T = 1967q4 − 1998q2.

The model is a poor fit and is clearly mis-specified, failing many diagnostics, although

this is not indicative criteria for the model’s out-of-sample performance.
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Table 5.12: Forecast performances of models for 4-quarter ahead annual inflation
Model ME MAE RMSFE

Ann EqCM 0.11 1.96 2.08
Qu EqCM -0.53 1.26 1.58
Qu ∆EqCMβ 0.11 0.87 1.02
DDV1yr 0.12 0.79 0.93
AR(4) (lags 4-7) -1.62 1.62 1.84
AR(1) (powered up) -0.71 0.91 1.11
Qu EqCMin-sample 0.02 0.53 0.64
Pool -0.34 0.60 0.77

Notes: Figures reported as percentages, with the best
forecasting performance highlighted in bold.

5.5 Annual inflation forecasts

Table 5.12 reports the one year ahead ME, MAE, and RMSFE of the annual inflation

forecasting models, for the period 1998q3-2003q2. The models include the annual ana-

logue derived in (5.45), the quarterly inflation model derived in (5.46), and the differenced

quarterly model excluding double differenced terms. Other models include a DDV fore-

casting one year ahead given by ∆̂4xT+4|T = ∆4xT , an AR(4) model that gives direct

forecasts as the regressors are lagged four periods, an AR(1) model in which the fore-

casts are derived by powering up the lagged coefficient, and equation (5.50), in which

the model is a quarterly EqCM in-sample model, but the coefficients are fixed for the

4-quarter lagged regressors to deliver direct 4-step ahead forecasts.

Figure 5.15 records the forecasts from the models outlined above. The quarterly

model forecasts outperform those from the annual model despite a substantial upward

bias, suggesting that there are gains to be made from moving to higher frequency data,

notwithstanding very little improvement in in-sample fit. Time disaggregation is benefi-

cial in this context. However, the concern of increased noise due to measurement errors

may be a problem with higher frequency data, and caution must be applied when choos-

ing the optimal data frequency. The AR(4) model has a substantial bias due to the

higher in-sample mean. Both the DDV and quarterly EqCM in-sample model perform

well, with a RMSFE of 0.93% and 0.64% respectively. The model based on (5.50) is

likely to be capturing the relative stability of inflation over the forecast horizon, but the

method would also be robust to large structural breaks in inflation. Pooling is shown to
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Figure 5.15: 1-year ahead forecasts of annual inflation from the annual EqCM and
the quarterly EqCM, the DDV, the AR(4) and the in-sample quarterly model

be beneficial, indicating that no model encompasses the others.

5.6 Conclusion

A VEqCM model of quarterly inflation is developed, conditioning on excess demand.

We undertake an extensive analysis of the properties of the cumulated output gap as

concerns about its reliability restrain us from including it in the cointegrating space. As

the critical values are incorrect for the model estimated, we make an informed decision

as to the cointegrating rank based on all available evidence. Imposing a rank of one

results in a VEqCM with the cointegrating vector capturing the mark-up. A reduction

to a more parsimonious VEqCM is undertaken and this, along with the single-equation

model developed in Chapter 4, forms the basis for the substantive component of the

chapter, examining the forecast performance of the econometric models in relation to the

forecast performance of a variety of robust forecasting devices.

The analysis has highlighted the importance of deterministic terms when forecasting,

and particular attention should be paid to µ and γ. Shifts in the mean of the cointegrat-

ing vector or the unconditional growth rate of the system will lead to forecast failure.

However, it is often difficult to identify where breaks are occurring in the data. Pooling

is shown to be successful in many situations, and this could be seen as an ‘insurance
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policy’ type forecast rather than selecting a particular forecasting method ex ante.

We find that there are benefits to disaggregation. In this chapter we have looked

at data frequency but Hendry and Hubrich (2006) also look at disaggregation across

variables and space. Moving to higher frequency data should enable breaks to be picked

up sooner and so the forecasting method could switch to the robust forecasting device

faster.

The empirical example of UK quarterly and annual inflation demonstrates the success

of adaptive forecasting devices outlined in the Clements and Hendry (1998b, 1999) theory

of forecasting. While there are no obvious structural breaks at the forecast horizon, there

is a clear regime shift throughout the 1990s in which inflation is reduced to levels previ-

ously seen in the 1950s. This follows the fall out of the ERM and the subsequent switch

to inflation targeting. The move to Central Bank independence in 1997 has brought

about low and stable inflation, and whether this is permanent or transitory, robust fore-

casting devices are picking up this behaviour, whereas congruent in-sample models are

still correcting to ‘the old’ equilibrium. Hence, the application of the forecasting theory

to inflation does yield the results predicted by the theory.

210



Epilogue

The dual issues of model selection and forecasting are controversial in econometrics. The

debates over data-mining, data-based model selection, and measurement without theory

still pervade the model selection literature, and the irrefutable evidence exposing the

forecast failure of many econometric models undermines much of the forecasting litera-

ture. However, the situation is not so bleak. Huge advances in both fields have led to

new theories, techniques and practices that overcome many of the criticisms previously

advanced. Automatic econometric model selection has come to the fore with the de-

velopment of PcGets, which selects models using a general-to-specific search strategy in

which many paths are searched. The properties of the algorithm are excellent under a

wide range of linear states of nature, and the thesis has further established its properties

under nonlinearity. The Clements and Hendry (1998b, 1999) forecasting theory provides

an explanation as to why forecast failure is pervasive in econometrics: unanticipated

structural breaks occur frequently in macroeconomic time-series and these are disastrous

for the equilibrium correction class of models, leading to the development of forecasting

devices that are robust to structural breaks. This thesis has built on the new research,

investigating the selection of forecasting models and nonlinear models using automatic

model selection tools, and undertaking a forecast competition in which econometric mod-

els are pitted against robust forecasting devices. We have not assessed the forecasting

performance of nonlinear inflation models, and this is a topic of future research.

Chapter 2 assessed the automatic model selection algorithms, PcGets and RETINA.

The programs have different structures and objectives and should be viewed as comple-

mentary procedures that each work optimally under different settings. PcGets selects a

congruent, undominated model of the phenomena of interest, whereas RETINA selects

a parsimonious set of regressors that have predictive ability. We compared the two pro-

grams on cross-section and time-series data with promising results for both algorithms:
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the ranking of the algorithms on both in-sample and forecasting performance was not

clear cut. The predominant feature of RETINA is the parsimony it can achieve from a

highly over-parameterised GUM, and this is due to the use of three disjoint sub-samples

in the selection algorithm. The trade-off is that its selection criteria are very stringent,

which can lead to a failure to retain highly significant variables. The empirical applica-

tions highlighted the need to check for extreme observations, as the nonlinear functions

generated by RETINA may simply be reflecting a few outliers. A Monte Carlo analysis

of the selection properties of the algorithms for nonlinear models was also undertaken.

The evidence is encouraging: PcGets rejection frequencies do not differ substantially if

orthogonal nonlinear functions are included. Furthermore, the null rejection frequency of

RETINA is found to be much tighter for large GUMs. The evidence for non-orthogonal

models is less satisfactory as the null rejection frequency is over-sized and the non-null

rejection frequency is too small, both for PcGets and RETINA. However taking devia-

tions from means to result in a near-orthogonal specification dramatically improves the

selection properties of both algorithms, and the chapter concludes by observing that

nonlinearity can be tested for at low cost using automatic model selection algorithms.

Chapter 3 developed a strategy for selecting nonlinear models within the Gets frame-

work embedded in PcGets. The strategy tests for evidence of nonlinearity within the

initial batch of diagnostic tests undertaken to establish congruency of the GUM. If a

linear functional form is rejected, a GUM is generated in which polynomial functions of

the postulated variables are included, where the functions are double de-meaned prior to

inclusion to ensure a near orthogonal representation. The specific model is then selected

concurrently with the application of the indicator saturation technique to identify out-

liers. This avoids retention of too many nonlinear functions that are proxying indicators

for extreme observations. The selection stage is undertaken at tighter significance lev-

els for the nonlinear functions to avoid excess retention of irrelevant nonlinear functions

which may be particularly detrimental for forecasting. A multi-stage procedure is rec-

ommended, ensuring that nonlinearity is retained throughout the search procedure if the

index test found evidence of nonlinearity in the GUM. This will result in an undominated,
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congruent, nonlinear, specific model.

The chapter has established the properties of the nonlinearity test, demonstrating

that it has power over alternative tests when there are a large number of regressors in

the GUM, or when the degree of collinearity between regressors is high. Furthermore,

the use of polynomials was motivated by their ability to approximate an LSTR model,

which enables generality of the GUM functional form to be retained. The establish-

ment of simple de-meaning rules to remove collinearity is of fundamental importance:

many applied papers include quadratic and cubic terms in empirical models with no

adjustment, generating unwanted collinearity. The feasibility of automatically selecting

nonlinear models has been established, with the suprising result that even though we

remain agnostic regarding the functional form of the potential nonlinearity, we can re-

tain the selection properties of the PcGets algorithm established under linearity. The

success of the proposed selection algorithm is due to the synthesis of all components of

the algorithm, which is a vital contribution to the model selection literature.

Chapter 4 built a model of UK inflation based on many theories of inflation, including

unit labour costs, import prices, producer prices, exchange rates, foreign prices, excess

demand for labour and excess demand for goods and services, using PcGets. The de-

velopment of the inflation model required a measure of the output gap. A production

function approach was initially adopted, and attempts to account for cyclicality proved

successful in developing a measure of TFP. Concerns over measurement errors led to

the adoption of a dynamic production function model in which TFP was modelled as a

random walk with drift. While this had the advantage of allowing for adjustments to

equilibrium over time, the measure of TFP soaked up much of the short-run volatility in

output, resulting in a smaller gap. The final measure imposed TFP to follow a segmented

linear trend, generating larger cycles in the output gap.

The inflation model captures the large swings in inflation over the period, which

includes many regime shifts, with constant parameters and few indicators. The evi-

dence strengthens the argument that there is no single cause of inflation, which led to

an investigation as to whether a generic ‘business cycle’ factor could explain inflation.
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Principal components of UK inflation were derived based on a moderately large database

of explanatory variables. The evidence indicates that business cycle pressures are not

sufficient to explain inflation alone, and furthermore, they add little explanatory power

to the model based on individual explanations of inflation.

Chapter 5 examined the forecasting performance of econometric models, in compar-

ison to various ‘robust’ forecasting devices. Initially a VEqCM model of inflation was

developed using partial cointegration analysis, in which the system comprised the domes-

tic price level, unit labour costs, producer prices, world prices and the nominal exchange

rate, and conditioned on the output gap. Exclusion of the cumulated output gap was

justified on the basis of pernicious measurement error in the gap estimates. While there

was some evidence of autocorrelation in the system, the inflation model was comparable

to that of the single-equation model. The results of the forecasting competition were

inconclusive: no model performed systematically better than any other model. However,

the robust forecasting devices were comparable to the econometric models, demonstrat-

ing just how difficult it is to ‘beat’ simple models such as random walks. Pooling was

shown to be successful in many situations. Disaggregation proved to be beneficial, pro-

viding support for the use of higher frequency data. The forecast period was relatively

quiescent, which proved to be an interesting period on which to test the robust fore-

casting devices. The theory argues that robust forecasting devices should perform well

when there are structural breaks. However, we have shown that they also perform well

in quiet periods, providing further support for alternative methods of model selection for

forecasting models.

While this thesis has covered much ground, there are many fruitful areas on which to

build. The most pressing is the nonlinear approximations, in which substantial theoreti-

cal and Monte Carlo analysis is needed to establish the ability of various approximations

to capture potential nonlinear functional forms. An investigation into orthogonal polyno-

mials, Fourier series and asymptotic series was undertaken, but further work on confluent

hypergeometric series may prove useful. As the LSTR nests many nonlinear specifica-

tions, we are reasonably confident that an ability to capture the properties of an LSTR
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implies the approximation will perform well for a variety of other nonlinear specifica-

tions. More extensive Monte Carlos are also required to establish the power properties

of the nonlinearity test under a much wider range of scenarios. The analysis in Chapter

3 examined the power of the index test under the most challenging settings, and it is

predicted that the test will perform even better under alternative scenarios, such as the

inclusion of additional nonlinear functions. Selection on the GUM prior to application

of the nonlinearity test may improve the power properties by reducing the degrees of

freedom, and this is a further area of investigation. Translation of the proposed non-

linear model selection procedure into an automatic algorithm is, of course, the primary

objective, and a comprehensive Monte Carlo analysis across a wide range of states of

nature is required to calibrate the super-conservative strategy. Not only is a nonlinear

capability for PcGets feasible, but it is an essential extension that would broaden its

scope in keeping with a general-to-specific philosophy.

On the forecasting side, forecast comparison exercises are necessarily sample specific.

However, given the development of nonlinear model selection tools, a natural progression

would be to establish the forecasting properties of nonlinear models selected by the

proposed algorithm. A key question to address is whether nonlinear models can be

made robust to structural breaks. The thesis has laid the groundwork for developing

forecasting models using automatic model selection tools, and further progress in this

field is inevitable.

The framework outlined in the Introduction asserted that the thesis was broadly

divided into two related parts; model specification and non-stationarity. Chapters 2

and 3 addressed model specification from an automatic model selection viewpoint and

Chapters 4 and 5 focused on non-stationarity, building a constant parameter model of

inflation over a period with many breaks and regime changes, and forecasting using

techniques that are robust to breaks. We anticipate the synthesis of Parts I and II of

the thesis will yield fruitful results, with an abundance of empirical applications lending

themselves to such an analysis.
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