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Abstract

In this paper we introduce a decomposition of the joint distribution of price
changes of assets recorded trade–by–trade. Our decomposition means that we can
model the dynamics of price changes using quite simple and interpretable models
which are easily extended in a great number of directions, including using durations
and volume as explanatory variables. Thus we provide an econometric basis for
empirical work on market microstructure using time series of transactions data.
We use maximum likelihood estimation and testing methods to assess the fit

of the model to a year of IBM stock price data taken from the New York Stock
Exchange.

Keywords: Activity, autologistic, conditional independence, decomposition, di-
rections, durations, forecasting, GLARMA, logarithmic distribution, prediction de-
composition, size, transactions data.
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1 Introduction

Let p(u) denote the price at time u of the most recent transaction of an asset. Here

u is a continuous clock, but prices are only updated when a trade actually occurs. By

construction the price can be written as

p(u) = p(0) +
N(u)∑
t=1

Zt, (1)

where N(u) is the number of trades recorded in the interval from time 0 up until time u

and Zt is the price movement associated with the t − th trade. In practice many of the

Zt are exactly zero. Rydberg and Shephard (2000) and Rogers and Zane (1998) use this

framework to study the evolution of transaction prices. They model N(u) as a counting

process with new arrivals being generated by a Cox process, that is a Poisson process with

a random intensity. They are unspecific about the Zt process beyond the use of simple

descriptive Markov chains. Some of the econometric issues which arise with unequally

spaced financial data are discussed at length in Engle and Russell (1998), Engle (2000)

and Engle and Russell (2002).

In this paper we model the joint distribution of price movements Zt, focusing on the

econometric problem that the price movements are restricted to take on integer multiples

of a smallest non-zero price change, i.e. a tick. The tick size depends on the institutional

setting. When normed this means price movements can be thought of as being integers.

To start with we will model the Zt as being dependent only on themselves. The problem

of modelling using larger filtrations is dealt with later in the paper. Then let Zt ∈ I be

an integer process and Ft = σ(Zs : s ≤ t) be its natural filtration. We will be primarily

interested in the joint distribution of the movements which are given by

Pr(Z1, ..., Zn|F0) =
n∏

t=1

Pr(Zt|Ft−1),

using a prediction decomposition. The focus will be on specifying Pr(Zt|Ft−1).

The main contribution of this paper is to suggest decomposing Zt into three compo-

nents — “activity”, “direction” and “size”. The variables measure, respectively: (i) if the

price moved, (ii) which direction did it move, (iii) how far did it move. Our claim will

be that this structure allows a relatively simple econometric analysis of sequential price

movements.

There already exists a literature on the modelling of trade-by-trade price dynamics.

Russell and Engle (1998) suggest using a conditional multinomial model for specifying
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Pr(Zt|Ft−1), in a sense generalising previous work of Hausman, Lo, and MacKinlay (1992)

on probit models for transaction data. Hasbrouck (1999) builds a class of dynamic latent

variable models for efficient prices and traders’ cost which uses an economically motivated

truncation to force prices to live on a lattice. The general issue of discreteness of asset

prices is discussed at length by Campbell, Lo, and MacKinlay (1997, pp. 98–144).

Other work which relates to this topic includes papers by Meddahi, Renault, and

Werker (1998), Ghysels and Jasiak (1998) and Manganelli (2001) who combine GARCH

models for price returns with ACD style models for the times between trades. In this

context this work has the disadvantage that their price process does not live on the

required lattice observed in the data. The paper by Darolles, Gourieroux, and Le Fol

(2000), which we first saw after the circulation of the first draft of this paper, is much

closer to the framework of Rydberg and Shephard (2000) and Rogers and Zane (1998).

Darolles, Gourieroux, and Le Fol (2000) use the structure (1) but assume the Zt process

is Markov living on the points −1, 0, 1. This modelling assumption is combined with a
reduction in the dataset by using quote data to allow them only to model buys from the

market maker — which in turn makes the assumption that the price movements are at

most one tick in absolute value more realistic.

Our paper has the following basic structure. In Section 2 we introduce our decompo-

sition of the price movements. Section 3 will look at our initial empirical models for the

activity, direction and size of price movements – taken together these three models yield

an overall model of price movements. Section 4 places our suggestion in the context of the

literature, as well as suggesting various extensions of the basic model construct. Section

5 concludes.

2 Decomposition of price movements

Potentially the distribution of Zt|Ft−1 can be quite complicated. Our approach is to break

down the pieces of Zt into bits and then model these sequentially. Note that there is no

loss of information in this decomposition.

To carry out our decomposition define the t− th price move as

Zt = AtDtSt.

We will let At take on only two values: 0, 1. When At = 0, we define for notational

convenience (there is no loss in doing this), Dt = St = 0. Otherwise, when At = 1 we let
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Dt and St live on the structure:

Dt = −1, 1 and St = 1, 2, . . .

Thus we have that if At is zero then Zt must be zero. This means the price does not

move or, in other words, is In-Active. If At = 1 then there are Active price movements.

The non–zero price movement must be Zt = DtSt. Likewise, if we assume At = 1, then

Dt controls the Direction of the price move. If Dt = 1 the price moves upwards, else it

moves downwards. Finally, St controls the Size of price movements. This suggests the

decomposition of price movements into

Pr(Zt = 0|Ft−1) = Pr(At = 0|Ft−1)

while for zt �= 0

Pr(Zt = zt|Ft−1) = Pr(At = 1|Ft−1)

×
{

Pr(St = zt|Ft−1, At = 1, Dt = 1)Pr(Dt = 1|Ft−1, At = 1)+
Pr(St = −zt|Ft−1, At = 1, Dt = −1) Pr(Dt = −1|Ft−1, At = 1)

}
.

The implication of this decomposition is that there are exactly three pieces of modelling

to carry out

• Pr(At|Ft−1) — a binary process on {0, 1} modelling activity (the price moves or

not).

• Pr(Dt|Ft−1, At = 1) — another binary process on {−1, 1} modelling the direction

of the price moves.

• Pr(St|Ft−1, At = 1, Dt) — a process on the strictly positive integers modelling the

size of price moves.

Potentially each of these models has to be constructed separately — basing each on the

complete history of the Zt process. Although this sounds a difficult task we will see that

our estimated specifications will have very simple interpretable structures which do not

immediately appear when we model the Zt directly. It will be helpful to decompose the

natural filtration Ft into its constituent parts — FA
t = σ(As : s ≤ t), FD

t = σ(Ds : s ≤ t)

and FS
t = σ(Ss : s ≤ t). Of course Ft = FA,D,S

t .

Finally, before we detail the modelling of activity, direction and size of the price

movements we should note that although we can model these processes separately we are

specifying a multivariate model. Hence in principle we cannot simulate a sequence of
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activities using just Pr(At|Ft−1) as we need all three models to simulate past values of Zt.

Thus we are not specifying a marginal model for the processes for activities, directions

or sizes. An implication of this is that a structural break in any of the three processes

At|Ft−1, Dt|Ft−1, At = 1 and St|Ft−1, At = 1, Dt will imply a structural break in the joint

process.

3 Preliminary models for the components

3.1 The data

To start our empirical modelling we will work with the natural filtration of the price

movements, building an initial empirical model for Pr(Zt|Ft−1) via the construction of

three models: those for activity, direction and size. The next section will extend this

work to allow us to condition on a wider filtration. The trade data used in this paper

is for the IBM stock recorded electronically at the New York Stock Exchange in 1995.

We first construct a time series for each day on which the exchange was open, computing

the price changes at each trade (rescaling the data to have a tick size of one). We then

have deleted the first 15 minutes of every day. This is to avoid having to deal with the

effects of the call auction which takes place in the morning to set off the trading. We also

cut out all trades registered after 16.00 as this is the official closing of the exchange and

our initial data analysis suggested the data was significantly different when it had a time

stamp which was after 16.00.

For this paper we constructed a single series by concatenating each of the above

series (whose overnight effects were removed by deleting the action of removing the first

15 minutes of the day) for individual days. The length of the total data set when all

exchanges in the US are considered 413, 906, this is too much data to initially handle and

therefore we have limited out analysis to the trades performed at NYSE (trades coded

with an N). We have also deleted all trades which have an error code. This leaves us with

a total of 173, 146 observations to model. Of these 33, 184 are non-zero (and so moved

the price), which means the data we model for directions and size will only be 19% of the

size of the activity series. Throughout we ignore the availability of quote data.
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3.2 The activity of prices

3.2.1 Autologistic model

Our initial parametric model for Pr(At|Ft−1) will be an autologistic model based on Ft.

Recall for an autologistic we write

Pr(At = 1|Ft−1) = p(θA
t ), where p(θA

t ) =
exp(θA

t )

1 + exp (θA
t )

and

θA
t = x′

tβ + gt, where gt =
p∑

j=1

βjAt−j (2)

with xt being potential combinations and subsets of Ft−1. This model structure was

introduced by Cox (1958) (see Cox and Snell (1989) for an exposition) and has some

significant advantages1. The log–likelihood for the autologistic is concave and so numerical

optimisation is completely straightforward, allowing standard logistic regression software

to be used to rapidly and reliably fit the model (e.g. McCullagh and Nelder (1989)).

We use a general–to–specific model selection approach (see, for example, Hendry

(1995)), estimating a complete model and then testing down insignificant lags. To start

off we only allow 20 lags of all of the variables (At, Dt and St) to enter the model. In

practice, in order to reduce multicolinearity, it makes sense to transform the size variable

St into

Lt = St − At,

which is zero unless St is bigger than one. We call Lt a large move variable. After the

model is fitted we will look at a portmanteau test to see its ability to capture the main

features of the data. This is based on the residuals

ut =
At − p(θA

t )√
p(θA

t ) {1− p(θA
t )}

,

which should be uncorrelated with zero mean and unit conditional (and unconditional)

variance. The {ut} are then used inside a Box-Pierce statistic as a measure of residual
dependence.

The result of the model fitting and diagnostic checking are shown in Table 1. At lag

two Lt is significant. It indicates that if there is a large movement in the market followed

1A standard latent variable interpretation of these models writes

Pr(Yt = 1|Xt) = Pr(θt + U > 0) = p(θt),

where U has a logistic distribution with parameters (0, 1). Replacing the logistic distribution by a
standard normal produces a probit model.
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by another trade, then there will be an increased probability of subsequent movements

(of any size) in the price. That is large movements are associated with subsequent high

volatility. The direction variables are negative, which suggests past falls in the prices

tend to increase the chance that there will be a future movement in the market. This

seems close to the leverage effect which is emphasised in the ARCH literature (e.g. Nelson

(1991)).

Table 1 also indicates bid-ask bounce, for if the two lagged direction variables have

opposite signs then the direction variable is damped down so reducing the chance of future

price movements. However, this last effect will be clearer when we model the dynamics

of the direction of price movements.

Variable Coef. StR. Err. Variable Coef. StR. Err.
At−1 0.641 0.014 At−9 0.078 0.016
Dt−1 -0.105 0.013 At−10 0.049 0.016
At−2 0.244 0.015 At−11 0.066 0.016
Lt−2 0.289 0.092 At−12 0.069 0.016
Dt−2 -0.050 0.013 At−13 0.041 0.016
At−3 0.253 0.015 At−14 0.090 0.016
At−4 0.175 0.015 At−15 0.050 0.016
At−5 0.173 0.015 At−16 0.036 0.016
At−6 0.111 0.015 At−17 0.035 0.016
At−7 0.113 0.015 At−18 0.039 0.016
At−8 0.077 0.015 At−19 0.059 0.016
Const. 1.958 0.012 At−20 0.053 0.016

Q T
∑Q

j=1 r
2
j Log-like = -82,313

20 23.20 (31.41)
100 698.4 (124.3)
1500 5,489 (1591)

Table 1: Estimation for the activity using an autologistic model. Std. Err. denotes the
(uncorrected) standard deviation. rj denotes the series correlation coefficient at lag j for
the the standardised residuals ut. The figures in brackets are corresponding 95 percentage
points on the χ2

Q distribution.

Finally, Table 1 shows the coefficients in front of the activity variables decay down

— starting at 0.6 at lag one and falling to 0.2 at lag three. However, for longer lags the

decay is quite slow and is not sufficiently well captured by our imposed artificial cutoff at

lag 20. As a result the diagnostic checks on the residuals behave well at short lags, but

poorly at longer lags as there is significant dependence at 1000s of lags in the activity

variable. In order to model this parsimoniously we have to move away from autologistic
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models and into constructions which allow moving average type behaviour. This can be

carried out by introducing GLARMA type models.

3.2.2 GLARMA binary model

We could generalise the autologistic structure (2) by allowing

gt =
p∑

j=1

γjgt−j +
q∑

j=1

δjAt−j,

but this is typically numerically unstable and so difficult to work with. Shephard (1994)

has studied a number of alternatives, which are called generalized linear autoregressive

moving average (GLARMA) models. The one we favour here puts

gt =
p∑

j=1

γjgt−j + σvt + σ
q∑

j=1

δjvt−j, σ > 0,

where

vt =

{
At−1 − p(θA

t−1)
}

√
p(θA

t−1) {1− p(θA
t−1)}

. (3)

Importantly {vt} is a Martingale difference sequence with a unit conditional variance. This
style of model is adopted in Russell and Engle (1998) in their multinomial construction.

GLARMA models have some of the properties of ARMA models. This follows as {vt}
has a zero mean and unit conditional and unconditional variance. The implication of this

is that {gt} is a linear ARMA process driven by a weak white noise error term. Hence
it is covariance stationary and invertible if this model obeys the usual stationarity and

invertibility constraints on the polynomials 1− ∑p
j=1 γjL

j and 1 +
∑q

j=1 δjL
j. The impli-

cation is that the autocorrelation function of {gt} and the corresponding unconditional
variance can be found using standard results on covariance stationary linear processes.

Further, following the initial draft of this paper, Streett (2000) has shown that the above

model has a unique stationary distribution.

In our numerical work we enforce covariance stationarity and invertibility constraints

on the GLARMA representation of {gt}. This is carried out by parameterising the model
in terms of the partial autocorrelations {ρj, j = 1, ..., p} and the inverse partial autocor-
relations {ρ̄j, j = 1, ..., q} (e.g. Barndorff-Nielsen and Schou (1973) and Jones (1987)).
The corresponding likelihood is maximised using analytic first derivatives and the BHHH

algorithm2.
2A plain BHHH method was used mapping the real variables being maximised into partial autocorre-

lations and inverse partial autocorrelations using the transform x/(1+ |x|). No interventions or numerical
problems were encountered. The prediction decomposition of the GLARMA likelihood function is ini-
tialised by setting g0, ..., g−p+1, v0, ..., v−q+1 to zero.
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Using an AIC model selection rule we have chosen a GLARMA(3,1) model for the

activity dataset. The estimated parameters and diagnostic statistics are given in Table 2.

Notice that the likelihood for this model is much higher, and the diagnostics much better

behaved, than for the previous models fitted for activity given in Table 1. However, the

estimated coefficients for the lagged values of direction and (to a lesser extent) large moves

have not changed very much. Table 2 shows that both Lt−1 and Lt−2 are marginally

significant. Both their corresponding parameter estimates and standard errors are not

very stable across different GLARMA models. The direction variables are much more

important in this context and these are estimated precisely and are not very sensitive to

the parameterisation of the dynamics we use.

Variable Coef. StR. Err.
ρ1 0.99988
ρ2 -0.649
ρ3 -0.289
ρ̄1 -0.986

Dt−1 -0.103 (.012)
Dt−2 -0.0575 (.013)
Lt−1 -0.198 (.085)
Lt−2 0.231 (.095)

Q T
∑Q

j=1 r
2
j Log-like = -81,927

20 21.88 (31.41)
100 92.9 (124.3)
1,500 1,447 (1,591)

Table 2: Estimation for the activity using a GLARMA model. Parameter estimates of the
fitted GLARMA model, using a maximum likelihood criteria and the (3) error term. The
figures in brackets are the standard errors on the regressors computed using the GLARMA
model. Model order selected using AIC. rj denotes the series correlation coefficient at
lag j for the the standardised residuals vt. The figures in brackets are corresponding 95
percentage points on the χ2

Q distribution.

The estimated parameters suggest a great deal of memory in the activity series. Of

course, we have imposed stationarity on this process and so it will be important to model

the possibility that this series is non-stationary. More realistically we need a more intricate

model of activity which takes into account intra-day, intra-week and month effects on the

series. Work on this topic is reported in the next section.

9



3.3 The direction of price changes

An important feature of our decomposition is that we are now able to focus on a model of

the directions of the price changes, given that the price has changed: Pr(Dt|Ft−1, At = 1).

Again we will use an autologistic model, but this time the outcome variable will live on

the support {−1, 1}, rather than {0, 1}. After testing out insignificant explanatory vari-
ables we end up with directions and large–direction as the only information of significance,

where large–direction is given by

LDt = (St − At)Dt.

Furthermore, let

Tt = sup
s1,...,sk




s1 < t; As1 = 1
s2 < s1; As2 = 1

...
sk < sk−1; Ask

= 1



.

The Tt vector is k×1 and contains the times at which the last k active prices occurred —
trades which moved the price level. We call this concept of a time scale “activity time”.

We found that this measurement of time to be extremely significant statistically.

Then DTt will be a vector of the last k price changes different from 0. We refer to the

i − th element of this vector as DTt,i, which is the i − th last price move that has been

observed, standing at time t. A simple example of this is DTt,1 which is the sign of the

last price movement different from 0.

This gives us an autologistic model for

Pr(Dt = 1|Ft−1, At = 1) = p(θD
t ), where p(θD

t ) =
exp(θD

t )

1 + exp (θD
t )

,

and so

Pr(Dt = −1|Ft−1, At = 1) =
1

1 + exp(θD
t )

.

By going from general to specific we find that direction has only very short memory, see

Table 3. From the estimated parameters we see that the process Dt is strongly mean–

reverting (in activity time) reflecting the observed directions. An implication of this fitted

model is that the dynamics generating the directions seems symmetrical, although there

are more up directions than down ones — we will see down movements are typically bigger

than up moves which compensates for this feature.

The lagged values of Dt and LDt seem reasonably straightforward. If the price moved

on the last trade then there is a large chance that this movement will be reversed if there is
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an active trade. If it moved by two ticks this probability of a reversal is reduced, although

not by a great deal. On the other hand, if the last active trade was two periods ago the

chance of a reversal is not very much different from 0.5.

The really interesting variables are the overwhelmingly significant, but quite modest

in effect, variables {DTt,i}. These relate current directions to the last active trade —
which appears at a random number of trades ago. That is they work in activity time not

in trading time. They suggest that the sign of the last active trade has a sustained effect

on the probability of an up or down. A simple example is that, at whatever lag in trading

time, if the last price movement was down then there is a slightly higher probability of a

reversal than a non-reversal.

An interesting effect, which is only marginally significant, is the
∑20

i=11 DTt,i variable.

If this variable is larger than zero then the series has tended to have a lot of up price

movements and not many downs. So this is recording the presence of local trends in the

price. It suggests this has a mildly positive effect on the direction process.

Our fitted model has some empirical failures. The diagnostic checks in Table 3 sug-

gest we are slightly failing the check on serial correlation for this model. This failure

should be put in some perspective. When we fit a model with just a constant (the direc-

tions are i.i.d. Bernoulli — an implication of the model suggested by Rogers and Zane

(1998)) the log-likelihood is −22, 966, and the Box-Pierce statistic at 20 lags is 9, 173.
An alternative model is a simple autologistic in activity time — that is regressing just on

{DTt,i, i = 1, 2, ..., 10}, then we have a log-likelihood of −20, 416 and a Box-Pierce of only
21. That model has reasonably good diagnostics but not an enormous amount of explana-

tory power. A simple alternative is to run a logistic regression using {Dt−i, i = 1, 2, ..., 20},
which is modelling directions using data ordered in transaction time, rather than activity

time. This has a quite a high log-likelihood of −18, 419 but its Box-Pierce at 20 lags is
688. Hence this model has the opposite problem — being able to predict many of the di-

rections but failing dramatically the diagnostics. It seems very hard to remove this model

failure when we only use the concept of transaction time. The introduction of activity

time seems essential for this type of process.

The economic meaning of this fitted model is that the directions are mostly generated

by bid/ask bounce — see, for a review of empirical work on this topic, Campbell, Lo,

and MacKinlay (1997, pp. 99-107). That is people buying shares from market makers

have to pay higher prices for them than those selling them to the market makers (an

elegant model of bid and ask dynamics is given by Hasbrouck (1999)). Sequences of no
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Variable Estimate Std. Err. Variable Estimate Std. Err.
Dt−1 -2.192 .043 LDt−1 0.629 .180
Dt−2 -0.672 .033 LDt−2 -0.506 .160
Dt−4 0.296 .030 LDt−3 -0.837 .200
Dt−5 0.395 .033 LDt−5 -0.625 .191
Dt−6 0.337 .034 DTt,1 -0.403 .038
Dt−7 0.249 .034 DTt,2 0.307 .036
Dt−8 0.233 .034 DTt,3 -0..069 .031
Dt−9 0.141 .034 DTt,5 -0.056 .027
Dt−10 0.073 .031 DTt,8 0.059 .027
Dt−13 -0.086 .030 DTt,10 -0.059 .027
Dt−14 -0.067 .029

∑20
j=11 DTt,j 0.025 .010

D(Tt,1)−1 0.315 .032 Const. -0.053 .067
D(Tt,3)−1 -0.087 .030
D(Tt,4)−1 -0.134 .033
D(Tt,5)−1 -0.105 .033
D(Tt,6)−1 -0.128 .033
D(Tt,7)−1 -0.154 .032
D(Tt,8)−1 -0.106 .030

Q T
∑Q

j=1 r
2
j Log-like = -17,947

20 39.25 (31.41)
100 101.4 (124.3)
1,500 1,510 (1,591)

Table 3: Estimation results for the direction of active trade using an autologistic model.
The figures in brackets are the standard errors on the regressors computed using the autol-
ogistic model. rj denotes the series correlation coefficient at lag j for the the standardised
residuals ut. The figures in brackets correspond to 95 percentage points on the χ2

Q distri-
bution.

price movements are thought of as a series of consecutive buys (or sells) by the market

makers. A price movement could reflect either a change in the efficient price or, more

likely, a sell (or buy) by the market maker. As this buying and selling around the efficient

price dominates in magnitude the actual large movements in the efficient price, it will

automatically generate very strong negative autocorrelation in the directions sequences.

That is changes in the traded price are almost certainly reversed.

3.4 The size of price movements

This section is devoted to constructing a model for Pr(St|Ft−1, At = 1, Dt). As we have

noted above this is a process on the strictly positive integers. Although the sample size

is around 33,000, there are only 261 of these which are not one. Hence, we have to use
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quite simple models in this part of the paper as this dataset is not very informative about

the dynamics of the size of price movements. We will use a negative binomial based

GLARMA process for large movements St − 1. Recall the negative binomial (NegBin) is
a generalisation of the Poisson, allowing overdispersion (see, for example, Johnson, Kotz,

and Kemp (1992, pp. 204-5)). The model will have

Pr(St = st|Ft−1, At = 1, Dt) =
Γ (α+ st − 1)
Γ (α) (st − 1)!

(
α

µt + α

)α (
µt

µt + α

)st−1

,

implying

E(St|Ft−1) = 1 + µt,

V ar(St|Ft−1) = α

(
µt

µt + α

)
/

(
α

µt + α

)2

= µt +
1

α
µ2

t .

Notice that µt will be typically very small and so µ
2
t is mostly tiny. As α, the overdispersion

parameter, goes to infinity so NegBin approaches a conditional Poisson model. Here we

allow µt = exp(θ
S
t ) where

θS
t = x′

tβ + gt, and gt =
p∑

j=1

γjgt−j + σvt + σ
q∑

j=1

δjvt−j,

where xt will include Dt and elements of Ft−1. We define

vt =
{(St−1 − 1)− µt−1}√

µt−1 +
1
α
µ2

t

.

as our basic parametric model3. The NegBin distribution was selected as it is simple and

familiar.

The model was fitted using a maximum likelihood estimator, selecting p, q using AIC.

The resulting estimated model is detailed in Table 4. The most interesting feature is that

the direction of the current price change and the preceding are significant and all have

negative coefficients. This rejects, quite significantly, two hypotheses of symmetry. Firstly

big price movements tend to be preceded by non–symmetric falls in the price (directions

being negative). This is the familiar dynamic leverage effect (see Nelson (1991)) and so

its presence is not surprising.

The second form of non-symmetry is a contemporaneous one and is simply dependent

on the significance of Dt (not its lags). The negative sign associated with it suggests

3In foreign exchange markets the tick size tends to be smaller compared to the bid–ask spread. How-
ever, many writers have observed that there is a tendency for prices to cluster on “natural numbers”
such as integers. Our model would have to be altered to allow for such a characteristic, but from a
methodological viewpoint this raises no new issues.
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big falls are more common than big rises. This implies the unconditional distribution

of returns should be skewed with a longer left hand tail (if Dt had a zero coefficient

then the implied unconditional distribution of returns would be symmetric). This is

counterbalanced by the fact that the average value of StDt is positive, which suggests the

market trends upwards over time due to the predominance of small positive movements

(over small negative movements), but tends to fall back sometimes with quite large falls.

The above non-symmetry of the unconditional distribution has not been found in

previous work on this type of data. This is perhaps not surprising as the t-statistic on it

is only around 8 and so will not be found unless it is very directly tested. It is, however,

important. Our results suggest large movements (movements of more than one tick)

downwards are, on average, around twice as large as large movements upwards.

Variable Coef. StR. Err. Variable Coef. StR. Err.
Const -5.140 (.138) σ 0.180
ρ1 0.998 ρ2 -0.343
ρ̄1 -0.816 Dt -0.320 (.070)

Dt−1 -0.394 (.095) Dt−3 -0.299 (.112)
D(Tt,1)−5 -0.121 (.067) D(Tt,1)−6 -0.206 (.064)

α 0.0713

Q T
∑Q

j=1 r
2
j Log-like = -1,478

20 31.88 (31.41) E(vt) = −.001
100 85.39 (124.3) V ar(vt) = 1.207
1,500 1,743 (1,591)

Table 4: Estimation for the NegBin based GLARMA(3,1) model of the excess price move-
ments. Variable is the explanatory variable. Std. Err. denotes the standard deviation. The
figures in brackets are the standard errors on the regressors computed using the GLARMA
model. Model order selected using AIC. rj denotes the series correlation coefficient at lag
j for the the standardised residuals ut. The figures in brackets are corresponding 95 per-
centage points on the χ2

Q distribution.

Judging from Table 4 the NegBin based GLARMA model is failing slightly as the

variance of the residuals is slightly bigger than one. This could be due to misspecification

in the construction of {µt}, or a mild distributional failure in our choice of the NegBin
model. In the next section we will condition on a wider information set and so may hope

to remove this problem by using a more subtle version of {µt}.
To put the performance of this model structure in context we can compare its fit to a

constant which gives a log-likelihood of -1,628 and a Box-Pierce statistic (using 20 lags)

of 1,762. When we take out the GLARMA structure completely, leaving just explanatory
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variables, the log-likelihood is -1,602 and the Box-Pierce is 2,065. The other extreme is

were we drop all the explanatory variables and leave simply the GLARMA(2,1) model.

This has a log-likelihood of -1,502 and Box-Pierce of 16.6. Thus we can see that it is the

time series modelling aspect of this particular model which dominates the fitting of this

series.

4 Comments

4.1 Roll’s model of bid–ask bounce

In an insightful paper, Roll (1984) proposed a simple measure for the effective bid–ask

spread. The measure given for the spread was simply

2×
√
−Cov(Zt, Zt−1)

where Cov denotes the unconditional covariance. This was based on the observation that

market efficiency should guarantee that the covariance between efficient prices should be

0 and that the actual observed covariance is due only to the bid–ask spread. The model

proposed in Roll’s paper is probably too simplistic to tell the whole story about serial

correlation but what is important to note is that a large amount of the first–order serial

covariance is due to bid–ask effects something which is easily captured by our model for

the directions Dt.

Roll’s measure of spread is an unconditional one, but our analysis suggests a general-

ization. We argue that one could infer spread from

2
√
−Cov(Zt, Zt−1|Ft−2)

a conditional correlation. As Ft−2 varies, so does the implied spread. In particular it may

widen if we have observed a sequence of active price movements.

4.2 Predictive distributions

4.2.1 Multi-step prediction

A crucial use of our model structure is to produce multi–step ahead predictions of asset

price movements. This can be expressed in two basic ways: (i) predictions of the (s+1)–

periods ahead price movements, (ii) predictions of the asset price levels (s + 1)–periods

ahead. We first of all deal with the former.
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4.2.2 Predicting price movements

The object of interest is Pr(Zt+s|Ft−1), which is

Pr(Zt+s|Ft−1) =
∑
Zt

...
∑

Zt+s−1

Pr(Zt, ..., Zt+s|Ft−1)

=
∑
Zt

...
∑

Zt+s−1

s∏
j=0

Pr(Zt+j|Ft−1+j).

In our model Zt lives on the integers which makes complete enumeration of these quantities

impossible. We can respond to this in two ways — by using simulation or by truncating

the state space of Zt. For small values of s the latter probably is the most effective, while

for long horizons simulations would seem perfectly satisfactory for most purposes.

For s very large the multi-step ahead forecast distribution of price movements will

approach the unconditional distribution of our fitted model4. Although this is of little

economic meaning it can be a useful diagnostic check on the fitted model.

4.2.3 Predicting price levels

Computing analytically predicted price levels can be carried out using similar arguments

to those given above for any value of s.

The calculations become intricate when s is large as there are many groups of price

changes which achieve the same terminal price. Hence, in practical work the best way of

proceeding is by the use of simulation. Hence given Ft−1 we simulate the process N times

and count the number of simulated prices which fall on particular lattice points. As our

model is extremely easy to simulate from this can be carried out for very large values of

N (in the simulations discussed below N = 10, 000) even if s is large.

Table 5 shows the centre of the two–step ahead forecast distribution of price moves

based on different histories. The histories are made as a simple as possible. We as-

sume that (i) trading has not been moving the prices for some time, that is FA =

(1, 1, 0, ..., 0) (ii) the last two trades before we forecast both moved the prices, that is

FD = (?, ?,−1, 1,−1) where we will replace ?, ? by moves of one tick in various direc-
tions. We then tabulate the forecast distribution over all possible one tick price changes

in the last two periods. Column one shows the impact of two down movements having

just been observed and this is seen to give an increased probability for moving one tick up.

Column four has the opposite observation, namely two up movements. Here we have the

4We should note that this makes an assumption that the Zt process is stationary, which we have not
proven.
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opposite result that the probability of moving down is increased. The middle two columns

corresponds to “bid–ask bouncing”. This has decreased the probability of moving away

from the current price level. From all the columns it is seen that the predominant be-

haviour is mean reversion of one tick size and that the last directions are important in

determining how likely a price reversal is. This implies that, with the given history, when

we have seen a movement of two one ticks down(up) after two trades the price will still

be a least one down(up) with probability 0.990(0.991) and at least two down(up) with

probability 0.707(0.756).

In Table 5 we also give the 10–step ahead forecast. In this case we get that when we

have seen a movement of two one ticks down(up) after ten trades the price will still be a

least two down(up) with probability 0.779(0.809).

tick moves no. of trades {−1,−1} {−1, 1} {1,−1} {1, 1}
-3 2 0.00077 0.00017 0.00094 0.00020

10 0.0027 0.0019 0.0025 0.0029
-2 2 0.00409 0.00164 0.00907 0.00834

10 0.0108 0.0097 0.0104 0.0106
-1 2 0.05440 0.05176 0.24669 0.23538

10 0.1512 0.1268 0.1982 0.1698
0 2 0.64761 0.66028 0.68549 0.69373

10 0.6141 0.6115 0.6211 0.6104
1 2 0.28354 0.27661 0.05655 0.05833

10 0.2006 0.2262 0.1505 0.1850
2 2 0.00894 0.00913 0.00103 0.00330

10 0.0120 0.0140 0.0095 0.0117
3 2 0.00007 0.00036 0.00006 0.00050

10 0.0023 0.0033 0.0024 0.0022

Table 5: The Table show the simulated probabilities for having moved x ticks, after 2
or 10 trades, given the history. FA = (1, 1, 0, ..., 0) and FD = (?, ?,−1, 1,−1). ?, ? is
given in the top row of the Table. The estimated probabilities are based on N = 10, 000
simulations.

4.3 Previous work

4.3.1 Conditional multinomial models

In a recent highly stimulating paper Russell and Engle (1998) have suggested modelling

price movements using a conditional multinomial distribution. Their paper can be viewed

as a time series extension of a probit (Russell and Engle (1998) prefer to work with logistic
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functions rather than probit ones) analysis of transaction data proposed by Hausman, Lo,

and MacKinlay (1992). Here we will discuss their work and its relationship to our own.

We will initially abstract our discussion from the time series feature of the model and so

we will write Yt to denote the indicator for the movements which we will assume live only

on −2,−1, 0, 1, 2. So if the movement is 1, then Yt = (0, 0, 0, 1, 0)′, while if it were −1
then Yt = (0, 1, 0, 0, 0)′. We suppose we use some regressors Xt to model the changing

probabilities of these movements. In practice Xt will depend upon some features of the

filtration of Yt, FY
t = σ(Ys, s ≤ t).

At this level, there is only one loss of generality (and information) compared to our

decomposition — price movements have to live on a small finite grid (mainly due to

parsimony). Next Russell and Engle (1998) use a multinomial logit structure (see e.g.

McFadden (1984, Section 3.4)).

Pr(Yt = i|Xt) = pi(θt), i = −2,−1, 0, 1, 2,

where θt = (θ−2t, θ−1t, θ0t, θ1t, θ2t)
′ = Xtβ and

pi(θt) =
exp(θi,t)

1 +
∑2

j=−2 exp(θj,t)
, i = −2,−1, 0, 1, 2.

In practice this structure is not identified and so constraints are placed on Xtβ. A typical

situation would be to define θ0t = 0 for all t, a solution followed by Russell and Engle

(1998).

The important step in Russell and Engle (1998) is to define a vector generalised linear

autoregressive moving average (VGLARMA) type structure on θ∗t = (θ−2t, θ−1t, θ1t, θ2t)
′,

feeding in lagged values of {yt} using the variable given by (3). In particular if they define
vt = (v1t, v2t, v3t, v4t)

′ with

vit =
I(Yt = i)− pit√

pit (1− pit)
,

and

θ∗t = α∗ + gt,

then model this system as

gt =
p∑

j=1

γjgt−j + σvt + σ
q∑

j=1

δjvt−j,

where α∗ is a vector, while {γj} , σ and {δj} are 4×4 matrices. The only a priori constraint
we might place on this structure is that σ should be lower triangular for identification.
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Overall we can see that our analysis is quite closely related to that of Hausman, Lo,

and MacKinlay (1992) and Russell and Engle (1998). Our goals are the same, although

the technology that we use is very different. Our main advantages are: parsimony, easy

interpretability via the decomposition and options for extensions.

4.3.2 Hasbrouck’s truncation model

Hasbrouck (1999) introduced a dynamic model for the evolution of the bid and ask price

of quotation data. Let µt denote the theoretical efficient price in the market and let

αt, σt represent the ask and bid costs respectively. Then Hasbrouck argued for a structure

where the bid price is Floor(µt−αt) and the ask price is Ceiling(µt−σt). Here the Floor

function rounds down to the nearest tick and Ceiling rounds up. Related papers include

Bollerslev and Melvin (1994) and Harris (1994).

The Hasbrouck (1999) bid/ask model is not immediately applicable to transaction

data, but the principle of using a continuous time model which is then truncated in some

way is potentially useful if combined (perhaps) with the Hausman, Lo, and MacKinlay

(1992) static model of clustering.

4.4 Conditioning on signs

In some recent work, carried out independently from our own, Granger (1998) has em-

phasised the potential importance of modelling separately the direction (sign) and the

size of stochastic processes. Typically he models these two variables independently, while

we emphasise the sequential nature of our decomposition — which is empirically vital for

our problem and more general. Abstracting from that detail, we can see that our analysis

can be seen within his framework when we condition on the activity, At, being one.

4.5 Explanatory variables

4.5.1 Deterministic seasonality

It may be that the activity, directions and size series are influenced by deterministic

seasonal patterns for we know these patterns influence N(u) the rate at which transac-

tions occur in calendar time — see, for example, Rydberg and Shephard (2000). It is a

straightforward task to include this information within our model, allowing seasonality to

influence any or all of the sub-models for activity, direction and size. No new issues are

raised by this and we will give empirical results on this in a later subsection.
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4.5.2 Exogenous variables

Our modelling framework allows some very simple extensions which will be potentially

enriching. Suppose in addition to the price movements {Zt} we have a sequence of other
information sets such as volume and place of trade. Let us write these additional variables

as {Yt}, then we can do a prediction decomposition, using the extended filtration F z,y
t =

σ(Zs, Ys : s ≤ t), to give

f(Z1, Y1, ..., Zn, Yn|F z,y
0 ) =

n∏
t=1

f(Zt, Yt|F z,y
t−1)

=
n∏

t=1

f(Yt|F z,y
t−1) Pr(Zt|Yt,F z,y

t−1)

=
n∏

t=1

Pr(Zt|F z,y
t−1)f(Yt|Zt,F z,y

t−1)

where the second stage of decomposition can be useful if we can find a sensible model for

f(Yt|Zt,F z,y
t−1) and we can allow Yt to enrich the decomposition of the price innovation

process. The third stage decomposition can also be the focus of attention as it allows

lagged information to improve our predictions of future price movements given the history

of the Yt process.

The above decomposition suggests that there are potentially two interesting densities

for {Zt} to investigate further: Pr(Zt|F z,y
t−1) and Pr(Zt|Yt,F z,r

t−1). The first is a pure fore-

cast while the second allows contemporaneous explanatory variables to enter (see Engle,

Hendry, and Richard (1983) and Hendry (1995, Ch. 5)). Tables 6 and 7 give results for

the activity and direction series when we condition on lagged variables. The variables

we use in this exercise are the logarithm of the volume traded and the logarithm of the

number of seconds (plus one) elapsing before the trade. In addition we use dummy vari-

ables to denote the hour, day of the week and month of the year in which the trade takes

place. Finally, we sometimes use two trending variables: range (a standardised version

of the time index t) and quadr which is simply the square of range. These trends are

used as a parsimonious representation of the monthly seasonal pattern. Further, we have

tried using the log of the actual price level of the IBM stock price, but this always tested

out in our empirical work. Notice that in Tables 6 and 7 (as well as other tables given

below) many of these fixed explanatory variables do not appear, which is due to them

being tested out as insignificant.

The empirical model for directions, reported in Table 7, is interesting as it completely

tests out the effect of durations on the prediction of directions, while the influence of

lagged volume is very small and almost all seasonal effects are irrelevant.
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Variable Estimate Std. Err. Variable Estimate Std. Err.
Const. -1.509 (.045) Range 0.126 (.031)
ρ1 0.9998 log(dur)t−1 0.028 (.005)
ρ2 -0.668 log(dur)t−2 -0.018 (.005)
ρ3 -0.252 log(dur)t−3 -0.020 (.005)
ρ̄ -0.987 log(dur)t−4 -0.020 (.005)

Lt−1 -0.219 (.085) log(dur)t−5 -0.017 (.005)
Lt−2 0.235 (.095) log(dur)t−6 -0.016 (.005)
Dt−1 -0.101 (.012) log(dur)t−8 -0.009 (.005)
Dt−2 -0.058 (.013)

∑20
j=11 log(dur)t−j -0.004 (.002)∑30
j=21 log(dur)t−j -0.005 (.002)

Q T
∑Q

j=1 r
2
j Log-like = -81839

20 19.06 (31.41)
100 87.2 (124.3)
1500 1437 (1591)

Table 6: Estimation for the activity including lagged log(duration+1) and the log(volume)
(which tests out). Std. Err. denotes the standard deviation.

This is not the case when we look at the activity series, which is sensitive to many lags

of durations. This is perhaps not surprising as the activity series is connected to volatility

and so one would expected them to be influenced by other activity type series. The range

variable is a trend variable, which we interpret as a monthly seasonal type variable rather

than a typical trend as we only have a year of data. We used this range variable rather

than a full set of monthly seasonal for reasons of parsimony.

An interesting feature for both the activity and direction series is that lagged volume

and duration variables are sometimes statistically significant but not overwhelmingly so.

Instead lagged data on previous price movements completely dominate the fit of these

two models.

In Tables 8 and 9 we report the estimated activity and direction processes using

contemporaneous volumes and durations. For the activity series current durations have

a very dramatic positive impact on activity. A smaller impact is made by volume. In

addition hourly seasonal effects are now significant.

The quantitative effect of this is quite large. Activity is affected positively by both

volume and duration (see Table 8). In particular if the duration is high then this increases

the chance that the price will move at the next trade, while if volume if high the same

thing happens.

When we look at direction (see Table 9) we see that again both variables have signifi-
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Exp. Var. estimate Std. Err. Exp. Var. estimate Std. Err.
Dt−1 -2.192 .043 LDt−1 0.620 .180
Dt−2 -0.671 .033 LDt−2 -0.506 .160
Dt−4 0.298 .030 LDt−3 -0.851 .200
Dt−5 0.395 .033 LDt−5 -0.626 .191
Dt−6 0.337 .034 DTt,1 -0.400 .038
Dt−7 0.248 .034 DTt,2 0.301 .036
Dt−8 0.232 .034 DTt,3 -0.071 .031
Dt−9 0.139 .034 DTt,5 -0.062 .027
Dt−10 0.072 .031 log(vol)t−1 -0.030 .009
Dt−13 -0.083 .030 log(vol)t−2 0.021 .008
Dt−14 -0.067 .029

∑20
j=11 DTt,j 0.012 .005

D(Tt,1)−1 0.312 .032 April 0.140 .050
D(Tt,3)−1 -0.086 .030 Const. -0.070 .039
D(Tt,4)−1 -0.133 .033
D(Tt,5)−1 -0.103 .033
D(Tt,6)−1 -0.127 .033
D(Tt,7)−1 -0.152 .032
D(Tt,8)−1 -0.106 .030

Q T
∑Q

j=1 r
2
j Log-like = -17938

20 47.78 (31.41)
100 110.4 (124.3)
1500 1513 (1591)

Table 7: Estimation for the direction including lagged durations (which test out) and
volume. Improvement in the log-likelihood for introducing these variables is 9. The figures
in brackets are the standard errors on the regressors computed using the autologistic model.
rj denotes the series correlation coefficient at lag j for the the standardised residuals ut.
The figures in brackets are corresponding 95 percentage points on the χ2

Q distribution.

cant impact. High durations reduce the chance that the price movement will be upwards,

while high volume increases the chance of an up movement.

The estimated NegBin based GLARMAmodel for the large variable St−1 is reported in
Table 10 using lagged durations and volume. The AIC measure selected a GLARMA(2,1)

structure. Interestingly the effect of lagged durations is modest, with its influence being

played out over just two lags. Both of the estimated coefficients have t-statistics of only

around 3. The lagged volume variables have a bigger impact, with longer lags than

that given in the tables having positive but insignificant effects on the large variable.

Importantly the range and quadr variable is taken as estimating the seasonal component

of the process. This is significant, which is unsurprising given the size variable is, like

the activity variable, a kind of volatility measure. Also the time series dependence in the
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Variable estimate Std. Err. Variable estimate Std. Err.
Const. -1.460 0.045 Range 0.157 0.028
ρ1 0.9998 LDt−1 -0.215 0.086
ρ2 -0.624 LDt−2 0.368 0.097
ρ3 -0.245 Dt−1 -0.107 0.012
ρ̄ -0.986 Dt−2 -0.048 0.013

10-11 -0.082 0.039 log(vol)t 0.064 0.004
11-12 -0.154 0.043 log(dur)t 0.368 0.005
12-13 -0.145 0.046 log(dur)t−1 0.070 0.005
13-14 -0.173 0.047 log(dur)t−2 -0.013 0.005
14-15 -0.128 0.044 log(dur)t−3 -0.020 0.005∑20

j=11 log(dur)t−j -0.009 0.002 log(dur)t−4 -0.024 0.005∑30
j=21 log(dur)t−j -0.009 0.002 log(dur)t−5 -0.022 0.005

log(dur)t−6 -0.023 0.005
log(dur)t−8 -0.015 0.005

Q T
∑Q

j=1 r
2
j Log-like = -79,022

20 39.07 (31.41)
100 115.0 (124.3)
1,500 1,490 (1,591)

Table 8: Estimation for the activity including contemporaneous and lagged
log(duration+1) and the log(volume). Std. Err. denotes the standard deviation.

GLARMA model has been reduced quite considerably by the presence of the explanatory

variables.

Overall lagged explanatory variables improve the likelihood function by around 24,

which is modest given we have included seven new explanatory variables in the fitted

model. The diagnostic checks on the fitted model have improved, especially at short lags,

but the model still suffers from slight over-dispersion suggesting some improvement could

be gained from fitting a more complicated model than the NegBin structure we have used.

Table 11 shows the fitted model for the size variable using contemporaneous volumes

and durations, in addition to lagged data and seasonal effects. The table shows that con-

temporaneous explanatory variables have a very significant effect on the large movement

variables St − 1. The volume variable has a very large positive impact on the chance
that an active variable moves the price by more than one tick. The t-statistic on current

volume is around 20, which is by far the largest of any of the significant variables we

have found for the large movement variable. Interestingly the presence of current volume

reduces the impact of lagged volume and removes the need to have daily seasonals and

the quadratic trend (monthly seasonal). All that remains of these deterministic seasonals
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Variable Estimate Std. Err. Variable Estimate Std. Err.
Dt−1 -2.173 .043 LDt−1 0.638 .181
Dt−2 -0.663 .033 LDt−2 -0.490 .161
Dt−4 0.298 .030 LDt−3 -0.830 .199
Dt−5 0.395 .033 LDt−5 -0.607 .192
Dt−6 0.334 .034 DTt,1 -0.412 .038
Dt−7 0.241 .034 DTt,2 0.301 .036
Dt−8 0.225 .034 DTt,3 -0.073 .031
Dt−9 0.135 .034 DTt,5 -0.062 .027
Dt−10 0.071 .031 log(vol)t 0.087 .008
Dt−13 -0.092 .030 log(vol)t−1 -0.039 .009
Dt−14 -0.069 .029 log(dur)t -0.110 .010

D(Tt,1)−1 0.316 .032
∑20

j=11 DTt,j 0.012 .005
D(Tt,3)−1 -0.087 .030 April 0.150 .050
D(Tt,4)−1 -0.135 .033 Const. 0.082 .039
D(Tt,5)−1 -0.103 .033
D(Tt,6)−1 -0.126 .033
D(Tt,7)−1 -0.155 .032
D(Tt,8)−1 -0.106 .030

Q T
∑Q

j=1 r
2
j Log-like = -17,837

20 47.76 (31.41)
100 112.3 (124.3)
1,500 1,540 (1,591)

Table 9: Estimation for the direction including lagged and contemporaneous durations and
volume. Improvement in the log-likelihood for introducing the contemporaneous variables
is 101. The figures in brackets are the standard errors on the regressors computed using
the autologistic model. rj denotes the series correlation coefficient at lag j for the the
standardised residuals ut. The figures in brackets are corresponding 95 percentage points
on the χ2

Q distribution.

is the range variable, which we should interprete as saying big moves occur towards the

end of the year. However, this effect is not very significant.

The contemporaneous duration variable also has a positive impact while at one lag

the effect is reversed. We do not understand this effect.

The presence of these new explanatory variables cleans up the serial dependence struc-

ture in the data, for now the Box-Pierce statistics are satisfactory. Further the amount

of over-dispersion in the fitted model is modest.
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Variable Coef. StR. Err. Variable Coef. StR. Err.
Const -5.546 (.152) σ 0.175
Tues 0.683 (.184) Wednes 0.489 (.222)
Range 0.391 (.124) Quadr -0.342 (.114)
ρ1 0.996 ρ2 -0.264
ρ̄1 -0.805 α 0.077
Dt -0.347 (.073) Dt−1 -0.488 (.100)
Dt−3 -0.328 (.116)

D(Tt,1)−6 -0.183 (.068)
log(dur)t−1 -0.163 (.068)
log(vol)t−1 0.144 (.052) log(vol)t−2 0.110 (.045)

Q T
∑Q

j=1 r
2
j Log-like = -1,454

20 27.05 (31.41) E(vt) = −.002
100 119.2 (124.3) V ar(vt) = 1.166
1,500 1,393 (1,591)

Table 10: Estimation for the NegBin based GLARMA(2,1) model of the excess price move-
ments (St − 1) including lagged log(duration+1) and the log(volume). Std. Err. denotes
the standard deviation. The figures in brackets are the standard errors on the regressors
computed using the GLARMA model. Model order selected using AIC. rj denotes the
series correlation coefficient at lag j for the the standardised residuals vt. The figures in
brackets are corresponding 95 percentage points on the χ2

Q distribution.

5 Conclusions

In this paper we have proposed a decomposition of the price movements of trade-by-trade

datasets. The decomposition means we have to model sequentially price activity, direction

of moves and size of moves. Each modelling exercise is straightforward and interpretable.

A number of extensions of the modelling framework are possible, including the use of

relevant weakly exogenous variables.

When combined with a good model for the times between trades this analysis provides

a complete model for the evolution of prices in real time.

Interesting open issues include: (i) modelling of two or more asset prices simultane-

ously, (ii) using trade data on the same stock but collected on different exchanges.
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Variable Coef. StR. Err. Variable Coef. StR. Err.
Const -5.710 (.120) σ 0.149
Range 0.315 (.118) ρ̄1 -0.830
ρ1 0.996 ρ2 -0.411
Dt -0.291 (.070) Dt−1 -0.296 (.095)∑6

j=1 D(Tt,1)−j -0.195 (.061)
log(dur)t 0.179 (.066) log(dur)t−1 -0.196 (.064)
log(vol)t 0.622 (.045) α 0.161∑2

j=1 log(vol)t−j 0.081 (.027)
∑5

j=3 log(vol)t−j 0.062 (.023)

Q T
∑Q

j=1 r
2
j Log-like = -1,355

20 19.21 (31.41) E(vt) = −.001
100 111.6 (124.3) V ar(vt) = 1.171
1,500 1,587 (1,591)

Table 11: Estimation for the NegBin based GLARMA(2,1) model of the excess price
movements (St − 1) including contemporaneous and lagged log(duration+1) and the
log(volume). Std. Err. denotes the standard deviation. The figures in brackets are the
standard errors on the regressors computed using the GLARMA model. Model order se-
lected using AIC. rj denotes the series correlation coefficient at lag j for the the standard-
ised residuals ut. The figures in brackets are corresponding 95 percentage points on the
χ2

Q distribution.

for Analytical Finance, Aarhus, Denmark. The authors are grateful for the comments

from the participants at the conference on “Econometrics and Financial Time Series” at

the Isaac Newton Institute, Cambridge University, 12-16 October 1998 where the details

of our decomposition were first presented. We thank Richard Spady, Rob Engle, Frank

Gerhard, Clive Bowsher and Jeff Russell for various helpful conversations on these issues.

The computations were carried out using software written in Ox (Doornik (2001)).
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