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Abstract

In this paper we provide an asymptotic distribution theory for some non-parametric tests
of the hypothesis that asset prices have continuous sample paths. We study the behaviour
of the tests using simulated data and see that certain versions of the tests have good finite
sample behaviour. We also apply the tests to exchange rate data and show that the null of a
continuous sample path is frequently rejected. Most of the jumps the statistics identify are
associated with governmental macroeconomic announcements.
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1 Introduction

In this paper we will measure the contribution of jumps to the variation of asset prices and form

robust tests for the presence of jumps on individual days in financial markets. Being able to

distinquish between jumps and continuous sample path price movements is important as it has

implications for risk management and asset allocation. A stream of recent papers in financial

econometrics has addressed this issue using low frequency return data (e.g. the parametric

models of Eraker, Johannes, and Polson (2003), Andersen, Benzoni, and Lund (2002), Chernov,

Gallant, Ghysels, and Tauchen (2003) and the Markovian, non-parametric analysis of Aı̈t-Sahalia

(2002), Johannes (2003) and Bandi and Nguyen (2003)) and options data (e.g. Bates (1996),

Carr and Wu (2003) and the review by Garcia, Ghysels, and Renault (2003)). Our approach

will be non-parametric and exploit high frequency data. Monte Carlo results suggest that it

performs well when based on empirically relevant sample sizes. Furthermore, empirical work

points us to the conclusion that jumps are very common, suggesting the vast and very elegant
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literature on the use of continuous sample path processes built out of Brownian motion may be

based on an ill fitting assumption.

Traditionally in the theory of financial economics the variation of asset prices is measured

by looking at sums of outer products of returns calculated over very small time periods. The

mathematics of this is based on the quadratic variation process (e.g. Chamberlain (1988) and

Back (1991)). Asset pricing theory links the dynamics of increments of quadratic variation to

the increments of the risk premium. The recent econometric work on this topic, estimating

quadratic variation using discrete returns, under the general heading of realised quadratic vari-

ation, realised volatility and realised variances was discussed in independent and concurrent

work by Andersen and Bollerslev (1998a), Barndorff-Nielsen and Shephard (2001) and Comte

and Renault (1998). It was later developed in the context of the methodology of forecasting by

Andersen, Bollerslev, Diebold, and Labys (2001), while a central limit theory for realised vari-

ances was developed by Barndorff-Nielsen and Shephard (2002). Multivariate generalisations to

realised covariation are discussed by, for example, Barndorff-Nielsen and Shephard (2004a) and

Andersen, Bollerslev, Diebold, and Labys (2003). See Andersen, Bollerslev, and Diebold (2004)

for an incisive survey of this area and references to related work.

In a recent paper Barndorff-Nielsen and Shephard (2004c) introduced a partial generalisation

of the quadratic variation process called the bipower variation (BPV) process. They showed

that in some cases relevant to financial economics BPV can be used, in theory, to split up the

individual components of quadratic variation into that due to the continuous part of prices and

that due to jumps. In turn the bipower variation process can be consistently estimated using

an equally spaced discretisation of financial data. This estimator is called the realised bipower

variation process.

In this paper we study the difference or ratio of realised BPV and realised quadratic vari-

ation. We show we can use these statistics to construct non-parametric tests for the presence

of jumps. We derive the asymptotic distributional theory for the tests under surprisingly weak

conditions. This is the main contribution of the paper. We will also illustrate the jump tests

using both simulations and exchange rate data. We relate some of the jumps to macroeconomic

announcements by Government agencies.

A by-product of our research is an Appendix which records a proof of the consistency of

realised BPV under substantially weaker conditions than those used by Barndorff-Nielsen and

Shephard (2004c) and a joint limiting distribution for realised BPV and the corresponding

realised quadratic variation process. The latter result demonstrates the expected conclusion

that realised BPV is slightly less efficient than realised quadratic variation as an estimator of
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quadratic variation in the case where prices have a continuous sample path.

In the next Section we will set out our notation and recall the definitions of quadratic

variation and BPV. In Section 3 we will give the main Theorem of the paper, which is the

asymptotic distribution of the proposed tests. In Section 4 we will extend the analysis to cover

the case of a time series of daily statistics for testing for jumps. In Section 5 we study how the

jump tests behave in simulation studies, while in Section 6 we apply the theory to two exchange

rate series. In Section 7 we discuss various additional issues, while Section 8 concludes. The

proofs of the main results in the paper are given in the Appendix.

2 Definitions and previous work

2.1 Notation

Let the log-price of an asset be written as y∗(t) for t ≥ 0. Here t represents continuous time.

Extensions to deal with the multivariate case will be discussed in Section 7. We assume y∗

is a semimartingale (SM), which means it can be decomposed as y∗ = α∗ + m∗, where α∗

is a process with finite variation (FV) paths and m∗ is a local martingale (Mloc). For an

accessible discussion of probabilistic aspects of this see Protter (1990), while its attraction from

an economic viewpoint is discussed by Back (1991). We will often restrict various classes of

processes to those with continuous or purely discontinuous sample paths. We generically denote

this with superscripts c and d respectively, e.g. Mc
loc stands for the class of continuous local

martingales, while m∗c denotes the continuous component of m∗.

2.2 Quadratic variation

For all y∗ ∈ SM the quadratic variation (QV) process can be defined as

[y∗](t) = p− lim
M→∞

M−1∑

j=0

{y∗(tj+1) − y∗(tj)}2, (1)

(e.g. Jacod and Shiryaev (1987, p. 55)) for any sequence of partitions t0 = 0 < t1 < ... < tM = t

with supj{tj+1 − tj} → 0 for M → ∞. It is well known that

[y∗](t) = [m∗c](t) +
∑

0≤s≤t

∆y∗(s)2

= [m∗c](t) + [y∗d](t), (2)

where ∆y∗(t) = y∗(t) − y∗(t−) are the jumps in the process. (2) means that the QV of y∗

aggregates the QV of m∗c and the QV of y∗d. This tells us that if we could disaggregate QV

into [m∗c] and [y∗d] then we can test for jumps by asking if [y∗] = [m∗c]? This will be at the

kernel of our approach to testing for jumps.
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Our econometric analysis of QV will be based on a discretised version of y∗ based on intervals

of time of length δ > 0. The resulting process is

y∗δ (t) = y∗
(
δ
⌊
tδ−1

⌋)
, t ≥ 0, (3)

recalling that bxc is the integer part of x. This allows us to construct δ-returns

yj = y∗ (jδ) − y∗ ((j − 1) δ) , j = 1, 2, ..., bt/δc .

The realised quadratic variation process is

[y∗δ ] (t) =

bt/δc∑

j=1

y2
j ,

the QV of the discretised process. Clearly the QV theory means that

[y∗δ ] (t)
p→ [y∗] (t)

as δ ↓ 0. The daily increments of the realised QV process, using ~ to denote the period of a

day, will be written as [y∗δ ]i are [y∗δ ] (~i) − [y∗δ ] (~(i − 1)). They are called realised variances in

financial economics, as we briefly discussed in the first Section, and will play a significant role

in Section 4 onwards in this paper. Their square roots are called realised volatilities.

2.3 Bipower variation

The quadratic variation process always exists when y∗ ∈ SM. This is not necessarily the case

for the bipower variation (BPV) process. It is defined for r ≥ 0 and s ≥ 0 as

{y∗}[r,s] (t) = p− lim
δ↓0

δ1−(r+s)/2

bt/δc−1∑

j=1

|yj |r |yj+1|s ,

when it exists. In this paper our focus will be entirely on the r = s = 1 case for this will allow

us to derive limit theorems under rather weak assumptions. In that situation we have that

{y∗}[1,1] (t) = p− lim
δ↓0

bt/δc−1∑

j=1

|yj| |yj+1| .

The existence of this limit can be established when log-prices obey the following process.

Definition 1 y∗ is a member of the stochastic volatility plus finite activity jump semimartingale

(SVJSM) class if

y∗(t) = α∗(t) +

∫ t

0
σ(u)dw(u) +

N(t)∑

j=1

cj , (4)
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where α∗ ∈ FVc, the spot volatility process σ is càdlàg and w is a standard Brownian motion.

We also define the spot variance as σ2, and assume that (for all t < ∞)
∫ t
0 σ

2(u)du < ∞.

The simple counting process N has (for all t < ∞) N(t) < ∞ and the cj are non-zero random

variables. When N = 0 we write the class as SVSMc. On the other hand if α∗ = 0 we write

y∗ ∈ SVJ . If both N = α∗ = 0 then y∗ ∈ SV.

A well known key feature of the SVJSM model class is that

[y∗] (t) =

∫ t

0
σ2(u)du+

N(t)∑

j=1

c2j .

Barndorff-Nielsen and Shephard (2004c) showed that if y∗ ∈ SVJ and σ is independent from

w (a no leverage assumption, which we will return to in Section 7.1) then

{y∗}[1,1] (t) = µ2
1

∫ t

0
σ2(u)du,

where

µ1 = E |u| =
√

2/Γ

(
1

2

)
=

√
2/
√
π ' 0.79788 (5)

and u ∼ N(0, 1). Hence µ−2
1 {y∗}[1,1] and QV are the same in the SV case but differ when there

are jumps. This result is quite robust as it does not depend on any other assumptions on the

structure of N , the distribution of the jumps or the relationship between the jump process and

the SV component. Further, clearly, {y∗}[1,1] (t) can be consistently estimated by the realised

BPV process

{y∗δ}[1,1] (t) =

bt/δc−1∑

j=1

|yj| |yj+1| ,

as δ ↓ 0. One would expect these results on BPV to continue to hold when we extend the

analysis to allow α∗ 6= 0. This conjecture will be proved in the next Section.

Barndorff-Nielsen and Shephard (2004c) point out that

[y∗] (t) − µ−2
1 {y∗}[1,1] (t) =

N(t)∑

j=1

c2j =
[
y∗d
]
(t).

This can be consistently estimated by

[y∗δ ] (t) − µ−2
1 {y∗δ}[1,1] (t).

Hence, in theory, the realised BPV process can be used as a device to consistently estimate

the continuous and discontinuous components of QV or, if augmented with the appropriate

asymptotic distribution theory, as a basis for testing the hypothesis that prices have continuous

sample paths.
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The only other work we know which tries to split QV into that due to the continuous and

jump components is Mancini (2003a) and Mancini (2003b). She does this via the introduction of

a jump threshold whose absolute value goes to zero as the number of observations within each day

goes to infinity. Following Barndorff-Nielsen and Shephard (2004c), Woerner (2003) has studied

the robustness of realised power variation δ1−r/2∑bt/δc−1
j=1 |yj|r to an infinite numbers of jumps in

finite time periods showing that the robustness property of realised power variation goes through

in that case. A related paper is Aı̈t-Sahalia (2004), which shows that maximum likelihood

estimation can disentangle a homoskedastic diffusive component from a purely discontinuous

infinite activity Lévy component of prices. Outside the likelihood framework, the paper also

studies the optimal combinations of moment functions for the generalised method of moment

estimation of homoskedastic jump-diffusions.

3 A theory for testing for jumps

3.1 Infeasible tests

In this Section we give the main contribution of the paper, Theorem 1. It gives the asymptotic

distribution for a linear jump statistic, G, based on

µ−2
1 {y∗δ}[1,1] (t) − [y∗δ ](t)

and a ratio jump statistic, H, based on1

µ−2
1 {y∗δ}

[1,1] (t)

[y∗δ ](t)
.

Their distributions, under the null of y∗ ∈ SVSMc, will be seen to depend upon the unknown

integrated quarticity
∫ t
0 σ

4(u)du and so we will say the results of the Theorem are statistically

infeasible. We will overcome this problem in the next subsection.

Theorem 1 Let y∗ ∈ SVSMc and let t be a fixed, arbitrary time. Suppose the following

conditions are satisfied:

(a) That

δ−1

∫ δj

δ(j−1)
σ2(u)du

is bounded away from 0 and infinity, uniformly in j and δ.

(b) The mean process α∗ satisfies, (pathwise) as δ ↓ 0,

δ−1 max
1≤j≤bt/δc

|α∗(jδ) − α∗((j − 1)δ)| = op(1). (6)

1In private correspondence Xin Huang has informed me that following Barndorff-Nielsen and Shephard (2004c)
Huang and George Tauchen have independently and concurrently used simulations to study the behaviour of this
type of ratio, although they do not provide the corresponding asymptotic theory.
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(c) The joint process (α∗, σ) is independent of the Brownian motion w.

Recall the definition µ1 =
√

2/
√
π in (5) and let

ϑ =
(
π2/4

)
+ π − 5 ' 0.6090. (7)

Then as δ ↓ 0

G =
δ−1/2

(
µ−2

1 {y∗δ}
[1,1] (t) − [y∗δ ](t)

)

√∫ t

0
σ4(u)du

L→ N (0, ϑ) , (8)

and

H =

δ−1/2

(
µ−2

1 {y∗δ}
[1,1] (t)

[y∗δ ](t)
− 1

)

√√√√√

∫ t
0 σ

4(u)du
{∫ t

0 σ
2(u)du

}2

L→ N (0, ϑ) . (9)

Further, if y∗ ∈ SVJSMc and (a)-(c) hold, then

{y∗}[1,1] (t) = µ2
1

∫ t

0
σ2(u)du. (10)

Remark 1 (i) Condition (a) in Theorem 1 essentially means that, on any bounded interval,

σ2 itself is bounded away from 0 and infinity. This is the case, for instance, for the square

root process (due to it having a reflecting barrier at zero) and the Ornstein-Uhlenbeck volatility

processes considered in Barndorff-Nielsen and Shephard (2001). More generally (a) does not

rule out jumps, diurnal effects, long-memory or breaks in the volatility process.

(ii) Result (10) is a generalisation of Barndorff-Nielsen and Shephard (2004c) which showed

this result in the case where α∗ = 0.

(iii) It is clear from the proof of Theorem 1 that we can replace in realised BPV the subscript

j + 1 with j + q where q is any positive but finite integer.

(iv) Condition (c) rules out leverage effects (e.g. Nelson (1991)) and is an unfortunate

limitation of the result.

(v) Result (10) means that under the alternative hypothesis of jumps

µ−2
1 {y∗δ}[1,1] (t) − [y∗δ ](t)

p→ −
N(t)∑

j=1

c2j ≤ 0

and

µ−2
1 {y∗δ}

[1,1] (t)

[y∗δ ](t)
− 1

p→ −
∑N(t)

j=1 c
2
j∫ t

0 σ
2(u)du+

∑N(t)
j=1 c

2
j

≤ 0.

This implies we can use the linear and ratio tests will be consistent.
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(vi) A biproduct of the Proof of Theorem 1 is Theorem 3, given in the Appendix, which is

a joint central limit theory for scaled realised BPV and QV processes. This is proved under the

assumption that y∗ ∈ SVSMc and shows that they, of course, both estimate
∫ t
0 σ

2(u)du with

realised QV having a slightly smaller asymptotic variance.

3.2 Feasible tests

In order to construct computable linear and ratio jump tests we need to be able to estimate the

integrated quarticity
∫ t
0 σ

4(u)du under the null hypothesis of y∗ ∈ SVSMc. However, in order

to ensure the test has power under the alternative it is preferable to have an estimator which is

also consistent under the alternative SVJSM. This is straightforward. Barndorff-Nielsen and

Shephard (2004c) generalised bipower variation to multipower variation, a special case of which

is the robust estimator called realised quadpower variation

{y∗δ}[1,1,1,1] (t) = δ−1

bt/δc−3∑

j=1

|yj| |yj+1| |yj+2| |yj+3|
p→ µ4

1

∫ t

0
σ4(u)du.

Following early drafts of the work reported in this paper our central limit theory for the linear

jump statistic has been used by Huang and Tauchen (2003) and Andersen, Bollerslev, and

Diebold (2003). They favoured using the robust realised tripower variation

{y∗δ}[4/3,4/3,4/3] (t) = δ−1

bt/δc−2∑

j=1

|yj |4/3 |yj+1|4/3 |yj+2|4/3 p→ µ3
4/3

∫ t

0
σ4(u)du,

where µr = E |u|r and u ∼ N(0, 1). Both of these estimators are consistent under the SVJSM
hypothesis. From now on we will focus solely on the quadpower case.

The above discussion allows us to define the feasible linear jump test statistic, Ĝ, which has

the asymptotic distribution

Ĝ =
δ−1/2

(
µ−2

1 {y∗δ}
[1,1] (t) − [y∗δ ](t)

)

√
µ−4

1 {y∗δ}[1,1,1,1] (t)

L→ N (0, ϑ) , (11)

where we would reject the null of a continuous sample path if (11) is significantly negative. On

the other hand the ratio jump test statistic, Ĥ, defined as2

Ĥ =
δ−1/2

√
{y∗δ}[1,1,1,1] (t)

/{
{y∗δ}[1,1] (t)

}2

(
µ−2

1 {y∗δ}
[1,1] (t)[

y∗δ
]
(t)

− 1

)
L→ N (0, ϑ) , (12)

which is again rejects the null if this statistic is significantly negative.

2It is somewhat tempting to look at the log-linear version of this test statistic, studying log
(
µ−2

1 {y∗

δ}
[1,1]
i

)

minus log
(
[y∗

δ ]
i

)
. Its asymptotic follows immediately from (12) via the delta method. Simulations suggest that

this does not improve the finite sample performance of the test and so we will not discuss it further in this paper.
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An interesting feature of the ratio jump test is that {y∗δ}
[1,1] (t)/ [y∗δ ] (t) is asymptotically

equivalent to

ρ̂1(t) =

bt/δc−1∑

j=1

|yj||yj+1|
√√√√

bt/δc−1∑

j=1

y2
j

bt/δc−1∑

j=1

y2
j+1

p→ µ2
1

∫ t

0
σ2(u)du

∫ t

0
σ2(u)du+

N(t)∑

j=1

c2j

,

under SVJSM. ρ̂1(t) is a correlation like measure between |yj| and |yj+1|. It converges to

µ2
1 ' 0.6366 under SVSMc. Estimates below µ2

1 provide evidence for jumps. Its asymptotic

distribution under the null follows trivially from (12).

4 Time series of realised quantities

We remarked in the introduction of this paper that considerable attention has recently been

given to daily discretisations of the realised QV process

[y∗δ ]i = [y∗δ ] (~i) − [y∗δ ] (~(i− 1))i, i = 1, 2, ..., T.

This produces a time series of daily realised variances. Here we briefly discuss the corresponding

results for the realised BPV process and then discuss the asymptotic theory for a time series of

such sequences. These results follow straightforwardly from our previous theoretical results.

Clearly we can define, for a fixed time interval ~ > 0 which we will refer to as a day for

concreteness, a sequence of T daily realised bipower variations

{y∗δ}
[1,1]
i = {y∗δ}[1,1] (~i) − {y∗δ}[1,1] (~ (i− 1)), i = 1, 2, ..., T,

=

bt/δc−1∑

j=1

|yj,i| |yj+1,i| ,

where we assume δ satisfies δ bt/δc = t for ease of exposition and

yj,i = y∗(δj + ~ (i− 1)) − y∗(δ (j − 1) + ~ (i− 1)).

In order to develop a feasible limit theory it will be convenient to introduce a sequence of daily

realised quadpower variations

{y∗δ}
[1,1,1,1]
i = {y∗δ}[1,1,1,1] (~i) − {y∗δ}[1,1,1,1] (~ (i− 1)), i = 1, 2, ..., T

= δ−1

bt/δc−3∑

j=1

|yj,i| |yj+1,i| |yj+2,i| |yj+3,i| .
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The above sequences of realised quantities suggest constructing a sequence of non-overlapping

infeasible and feasible daily jump test statistics

Gδi =
δ−1/2

(
µ−2

1 {y∗δ}
[1,1]
i − [y∗δ ]i

)

√∫
~i

~(i−1)
σ4(u)du

, (13)

Hδi =
δ−1/2

√√√√
∫

~i

~(i−1)
σ4(u)du

/{∫
~i

~(i−1)
σ2(u)du

}2

(
µ−2

1 {y∗δ}
[1,1]
i[

y∗δ
]
i

− 1

)
, (14)

Ĝδi =
δ−1/2

(
µ−2

1 {y∗δ}
[1,1]
i − [y∗δ ]i

)

√
µ−4

1 {y∗δ}
[1,1,1,1]
i

, (15)

Ĥδi =
δ−1/2

√
{y∗δ}

[1,1,1,1]
i

/{
{y∗δ}

[1,1]
i

}2

(
µ−2

1 {y∗δ}
[1,1]
i[

y∗δ
]
i

− 1

)
. (16)

By inspecting the proof of Theorem 1 it is clear that as well as each of these individual tests

is converging to N (0, ϑ) as δ ↓ 0, they converge as a sequence in time jointly to a multivariate

normal distribution. In particular, focusing solely on the feasible versions of the tests, define a

sequence of tests based on T consecutive days

Ĝδ =
(
Ĝ′

δ1, ..., Ĝ
′
δT

)′
and Ĥδ =

(
Ĥ ′

δ1, ..., Ĥ
′
δT

)′
,

as a collection of T days of separate tests, then under the null, as δ ↓ 0 so

Ĝδ
L→ N (0, ϑIT ) and Ĥδ

L→ N (0, ϑIT ) .

5 Simulation study

5.1 Simulation design

In this section we document some Monte Carlo experiments which assess the finite sample

performance of our asymptotic theory for realised QV and BPV processes. Throughout we work

with a SVJSM model and ~ = 1. In particular we assume that

y∗(t) =

∫ t

0
σ(u)dw(u) +

N(t)∑

j=1

cj.

Throughout our simulations the component processes σ, w, N and c are assumed to be inde-

pendent. Before we start we should mention that in independent and concurrent work Huang

and Tauchen (2003) have also studied the finite sample behaviour of our central limit theory
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using an extensive simulation experiment. Their Monte Carlo work was based around the em-

pirical results found in Andersen, Benzoni, and Lund (2002) and Chernov, Gallant, Ghysels, and

Tauchen (2003). They studied the effectiveness of the feasible linear and log-based theory based

on realised quadpower (which we will also do here) and tripower variation (which we will not

use). Their conclusions are broadly in line with the ones we reach in this Section. We should

mention that their studies allow the processes to exhibit leverage effects, which our theory does

not cover and we rule out in our simulations. Previous simulation results in the context of

realised variances suggest leverage effects make little difference to the finite sample accuracy of

realised variation objects, however the proof of this result is still illusive.

Our model for σ is derived from some empirical work reported in Barndorff-Nielsen and

Shephard (2002) who used realised variances to fit the spot variance of the DM/Dollar rate from

1986 to 1996 by the sum of two uncorrelated processes

σ2 = σ2
1 + σ2

2.

Their results are compatible with using CIR processes for the σ2
1 and σ2

2 processes. In particular

we will write these, for s = 1, 2, as the solutions to

dσ2
s(t) = −λs

{
σ2

s(t) − ξs

}
dt+ ωsσs(t)dbs(λst), ξs ≥ ω2

s/2, (17)

where b = (b1, b2)
′ is a vector standard Brownian motion, independent from w. The process (17)

has a gamma marginal distribution

σ2
s(t) ∼ Ga(2ω−2

s ξs, 2ω
−2
s ) = Ga (νs, as) , νs ≥ 1,

with a mean of νs/as and a variance of νs/a
2
s. The parameters ωs, λs and ξs were calibrated by

Barndorff-Nielsen and Shephard (2002) as follows. Setting p1 + p2 = 1, they estimated

E(σ2
s) = ps0.509, Var(σ2

s) = ps0.461, s = 1, 2,

with

p1 = 0.218, p2 = 0.782, λ1 = 0.0429, and λ2 = 3.74,

which means the first, smaller component of the variance process is slowly reverting with a half-

life of around 16 days while the second has a half-life of around 4 hours. Bollerslev and Zhou

(2002) have found similar results using a shorter span of this type of exchange rate data.

When we add jumps to the prices we will take N as a stratified Poisson process so that there

are always K jumps in each unit of time. We specify cj
i.i.d.∼ N(0, σ2

c), so the jump process is a
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stratified compound Poisson process. The contributions of the long-run variation in log-prices

of the jump process and the continuous component are

tKσ2
c and t0.509

respectively. In our experiments we will vary K and σ2
c , which allows us to see the impact of

the frequency of jumps and their size on the behaviour of the realised bipower variation process.

To start off we will fix K = 2 and σ2
c = 0.2 × 0.509, which means that the jump process will

account for 33% of the variation of the process. Clearly this is a high proportion. Later we will

study the cases when K = 1 and σ2
c = 0.1 × 0.509 and 0.05 × 0.509.

Throughout our calculations we will index the results by

M = 1/δ.

Here M denotes the number of high frequency observations per unit of time. As M increases

the y∗δ process becomes closer to the y∗ process.

5.2 Infeasible limit theory

5.2.1 Null distribution

Our Monte Carlo experiments will assess the finite sample behaviour of the infeasible jump

tests given in (13), (14) and their corresponding feasible versions (15), (16). We start with the

infeasible limit theory for (13) and (14), looking at their null distributions. Throughout we fix

the duration of the jump test to ~ = 1 and use 5, 000 simulated days.

The left hand side of Figure 1 shows the results from the first 300 days in the sample. The

crosses depict µ−2
1 {y∗δ}

[1,1]
i − [y∗δ ]i, while the infeasible 95% one sided critical values (roughly

−1.6 times the asymptotic standard errors in (13)) of the statistics are given by the solid line.

As we go down the graph M increases and so, as the null hypothesis is true, the magnitude

of µ−2
1 {y∗δ}

[1,1]
i − [y∗δ ]i and corresponding critical values tend to fall towards zero. The most

important part of these graphs is that the critical values of the tests change dramatically through

time, reflecting the volatility clustering in the data.

The middle part of Figure 1 repeats this analysis, but now using the ratio jump test. Again

the magnitude of µ−2
1 {y∗δ}

[1,1]
i / [y∗δ ]i−1 tends to fall as M increases. The infeasible critical values

of this test hardly change through time, reflecting the natural scaling of the denominator for the

ratio jump test. The right hand part of Figure 1 shows the QQ plots of the two t-tests. On the

y-axis are the ranked values of the simulated t-tests, while on the x-axis are the corresponding

expected values under Gaussian sampling. For very small values of M the linear jump test has
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Figure 1: Simulation from the null distribution of the infeasible limit theory for the linear (left
hand side) and rato (middle) jump tests for a variety of values of δ−1 = M . Right hand side
gives the QQ plots of the t-statistics. Code: jump RV daily.ox.

too much mass in its extreme right hand tail. Overall both tests have quite good QQ plots for

moderate values of M .

In the upper part of Table 1 we show the biases and standard deviations of (13), (14). The

estimated standard deviations are close to one and the one side 95% coverage rates are quite

accurate, even for small values of M . Overall we can see that there is very little to choose

between these two infeasible tests.

As a final check on the null distribution of the jump tests, we will repeat the above analysis

but increasing λ2, the memory parameter of the fast decaying CIR volatility process, by a factor

of five. This reduces its half life down to 20 minutes. This case of an extremely short half-life is

quite a challenge as a number of econometricians view very short memory SV models as being

good proxies for processes with jumps. Table 1 shows the results. The linear test has a small

negative bias. This effect falls as M becomes very large. The ratio test is has a small negative

13



Standard setup Robustness check λ2 = 5 × 3.74

linear test ratio test linear test ratio test

M bias S.D. Cove bias S.D. Cove bias S.D. Cove bias S.D. Cove
12 -.032 0.93 .974 -.012 0.93 .941 -.059 0.90 .979 -.039 0.89 .949
72 -.017 1.00 .955 -.014 0.99 .943 -.093 0.97 .972 -.097 0.96 .943
288 -.010 1.00 .957 -.008 1.00 .945 -.053 0.99 .960 -.053 0.99 .941
4 × 288 -.023 0.98 .956 -.024 0.98 .946 -.042 1.01 .954 -.041 1.01 .942

Table 1: Finite sample behaviour of the infeasible linear and ratio tests. Cove denotes coverage,
designed level is 0 .95 . Based on 5 , 000 seperate days. Left is the simulation based on the
standard setup with λ2 = 3.74. Right changes λ2 to 5× 3.74 to check for robustness to very fast
decaying components. Code: jump RV daily.ox.

bias, which causes the test to very slightly over reject. However, the degree of overrejection is

modest but more important than before. Hence this testing procedure can be challenged by

very fast reverting volatility components.

5.2.2 Impact of jumps: the alternative distribution

We now introduce some jumps into the process and see how the tests react. The Poisson process

is stratified so there are either 1 or 2 jumps per day, while the variance of the jumps is either

5%, 10% or 20% of the expectation of σ2.

In the infeasible case the results are given in Table 2. The results are the expected ones.

There is little difference in the power of the linear and ratio tests. As the number of jumps

increases, so the rate of accepting the null falls. The same effect happens as the variance of the

jumps falls. However, in the extreme case where there is only a single jump a day and the jump

is 5% of the variability of the continuous component of prices, we reject the null hypothesis 20%

of the time when M = 288.

One of the interesting features of Table 2 is that the probability of accepting the null is

roughly similar if N = 2 and each jump is 10% of the variation of σ2 compared to the case

where N = 1 and we look at the 20% example. This is repeated when we move to the N = 2

and 5% case and compare it to the N = 1 and 10% case. This suggests the rejection rate is

heavily influenced by the variability of the jump process, not just the frequency of the jumps or

the size of the individual jumps.

5.3 Assessing the performance of the feasible asymptotic theory

How do these conclusions change when we move from the infeasible to feasible limit theories (15)

and (16)? Table 3 shows the results for the null distribution. It indicates that the linear test

statistic is quite upset by moving to the feasible version, while the ratio statistic is reasonably

robust for moderate values of M . Both statistics have a negative mean, leading to overrejection
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N(1) = 1 N(1) = 2

20% linear test ratio test linear test ratio test

M mean S.D. Cover mean S.D. Cover bias S.D. Cover mean S.D. Cover

12 -0.30 1.56 .878 -0.14 1.00 .907 -0.51 1.95 .832 -0.23 1.03 .896
72 -1.45 3.38 .707 -0.84 1.58 .748 -2.81 4.49 .526 -1.47 1.79 .587
288 -3.69 6.91 .530 -2.21 2.98 .553 -7.18 9.26 .288 -3.89 3.41 .313

10%

12 -0.12 1.15 .920 -0.06 0.96 .929 -0.19 1.33 .895 -0.10 0.98 .924
72 -0.61 1.86 .819 -0.43 1.26 .848 -1.19 2.36 .700 -0.78 1.41 .751
288 -1.68 3.48 .668 -1.22 2.09 .687 -3.27 4.58 .462 -2.22 2.47 .490

5%

12 -.061 1.01 .938 -.029 .940 .937 -0.08 1.09 .926 -0.04 .959 .931
72 -.253 1.26 .885 -.200 1.08 .907 -0.48 1.46 .828 -0.37 1.15 .860
288 -.749 1.90 .792 -.612 1.48 .807 -1.44 2.38 .651 -1.14 1.71 .682

Table 2: Infeasible case. Effect of jumps on the linear and ratio tests. On the right hand side
we show results for the case where there are 2 jumps per day. On the left hand side, there is
a single jump per day. The variance of the jumps are 20%, 10% and 5% respectively of the
expectation of the variance process Σ(t), with the results for the 20% case given at the top of the
Table. Code: jump RV daily.ox

of the null. Even when M = 288 the linear test rejects the null around 8% of the time, which is

quite some way from the nominal value.

Standard setup Robustness check λ2 = 5 × 3.74

linear test ratio test linear test ratio test

M bias S.D. Cove bias S.D. Cove bias S.D. Cove bias S.D. Cove
12 -.597 2.68 .813 -.102 1.41 .877 -.637 2.61 .804 -.151 1.41 .865
72 -.169 1.18 .891 -.053 1.07 .919 -.257 1.23 .875 -.133 1.09 .906
288 -.084 1.05 .918 -.029 1.02 .935 -.132 1.06 .908 -.077 1.03 .926
4 × 288 -.059 1.00 .935 -.035 0.99 .943 -.098 1.00 .932 -.073 0.99 .939

Table 3: Finite sample behaviour of the feasible linear and ratio tests. Cove denotes coverage,
designed level is 0 .95 . Based on 5 , 000 seperate days. Left is the simulation based on the
standard setup with λ2 = 3.74. Right changes λ2 to 5× 3.74 to check for robustness to very fast
decaying components. Code: jump RV daily.ox

These results are backed up by Figure 2, which shows a very poor QQ plot for the linear

test even when M = 72. For larger values of M the asymptotics seems to have some substantial

bite. The ratio test has quite good QQ plots for M being 72 or above. Table 3 also shows that

when we boost the value of λ2, so the second component of the spot variance process is very

fast reverting, the results do not change very much. Again the ratio test provides a better test

in terms of its coverage.

The most interesting feature of Figure 2 is that the critical values for the ratio jump tests are

quite stable through time, reflecting the advantage that its asymptotic standard errors involve

15



0 100 200 300

−0.5

0.0

0.5

M=12. Linear jump test
95% one−sided critical value 

0 100 200 300

−0.5

0.0

0.5 Ratio jump test

−2.5 0.0 2.5

−20

−10

0

10 QQ plot
Linear t test 
Ratio t test 
45 degrees 

0 100 200 300

−0.2

0.0

0.2

M=72

0 100 200 300

−0.25

0.00

0.25

−2.5 0.0 2.5

−5.0

−2.5

0.0

2.5 Linear t test 
Ratio t test 
45 degrees 

0 100 200 300

−0.1

0.0

0.1 M=288.

0 100 200 300

−0.1

0.0

0.1

−2.5 0.0 2.5

−2.5

0.0

2.5 Linear t test 
Ratio t test 
45 degrees 

0 100 200 300

−0.05

0.00

0.05

M=4×288

0 100 200 300

−0.05

0.00

0.05

−2.5 0.0 2.5

−2.5

0.0

2.5
Linear t test 
Ratio t test 
45 degrees 

Figure 2: Simulation from the null distribution of the feasible limit theory for the linear and rato
jump tests for a variety of values of M . Right hand side gives the QQ plots of the t-statistics.
Code: jump RV daily.ox.
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of realised terms. Hence they are not overly effected by changing volatility patterns between

days. This feature can be very helpfully exploited to another important degree. In small samples

the estimator (18) can fall below 1/~, which suggests that we replace the standard ratio jump

test statistic by the feasible adjusted ratio jump test

δ−1/2

√
max

[
1

~
, {y∗δ}

[1,1,1,1]
i

/{
{y∗δ}

[1,1]
i

}2
]

(
µ−2

1 {y∗δ}
[1,1]
i[

y∗δ
]
i

− 1

)
L→ N (0, ϑ) , (19)

which we again use to reject the null of no jump if we observe large negative values. Our hope

is that, in practice, it may produce better finite sample behaviour. This type of adjustment was
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used by Barndorff-Nielsen and Shephard (2004b) in the context of the asymptotic distribution

of the log of realised variances. The simulation results for this adjusted ratio test statistic are

given in Table 4. The results seem very close to those obtained by the infeasible theory and show

only very modest 95% coverage errors even in the case where there is a fast reverting volatility

component. This result holds even when M is small. Further, at the more extreme 99% level

the coverage rates are still quite good when M is large. From now on when we refer to the ratio

test we will implement this adjusted version.

Standard setup Robustness check λ2 = 5 × 3.74

M bias S.D. Cove(95%) Cove(99%) bias S.D. Cove(95%) Cove(99%)
12 -.017 0.992 .929 .980 -.056 0.992 .926 .978
72 -.033 1.01 .933 .983 -.108 1.03 .922 .975
288 -.025 1.01 .938 .985 -.073 1.02 .929 .979
4 × 288 -.035 0.992 .944 .986 -.073 0.997 .939 .984

Table 4: Finite sample behaviour of the adjusted feasible ratio test. Cove denotes coverage,
designed level is 0.95 and 0.99. Based on 5 , 000 seperate days. Left is the simulation based on
the standard setup with λ2 = 3.74. Right changes λ2 to 5× 3.74 to check for robustness to very
fast decaying components. Code: jump RV daily.ox.

We now move on to see how the tests are effected by the presence of jumps. Table 5 repeats

the experiment from the previous subsection which led to the results given in Table 2 but now

with the feasible linear and adjusted ratio jump statistics. We can see that in the linear jump

tests there are many substantial changes compared to the infeasible case, with a great number

of rejections of the null hypothesis. However, these changes are mostly caused by the substantial

size distortion under the null. When we look at the adjusted ratio jump statistic, which has

very good coverage properties, the results are very similar to the infeasible theory for the ratio

test. This is a rather encouraging result. Overall when we use this statistic we can see that we

have very little power when M is small unless there are a lot of jumps or the jumps are very

large. However, with large M the performance of the test improves a great deal.

6 Testing for jumps empirically

6.1 Dataset

We now turn our attention to using our adjusted ratio jump test (19) on economic data. We

follow Barndorff-Nielsen and Shephard (2002) in using the bivariate United States Dollar/ Ger-

man Deutsche Mark and Dollar/ Japanese Yen exchange rate series, which covers the ten year

period from 1st December 1986 until 30th November 1996. The original dataset records every

5 minutes the most recent mid-quote to appear on the Reuters screen. We have multiplied all

returns by 100 in order to make them easier to present. The database has been kindly supplied
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N(1) = 1 N(1) = 2

20% linear test adjusted ratio test linear test adjusted ratio test

M mean S.D. Cove mean S.D. Cove bias S.D. Cove mean S.D. Cove

12 -1.05 3.93 .760 -.156 1.07 .894 -1.31 4.54 .730 -.251 1.10 .881
72 -1.61 3.53 .676 -.891 1.64 .735 -2.84 4.33 .521 -1.55 1.88 .573
288 -3.63 6.60 .526 -2.27 3.06 .546 -6.76 8.58 .292 -4.00 3.55 .310

10%

12 -0.772 3.22 .790 -.073 1.02 .916 -.893 3.41 .774 -.110 1.04 .911
72 -0.797 2.07 .781 -.465 1.30 .837 -1.35 2.45 .673 -.835 1.46 .739
288 -1.73 3.43 .654 -1.25 2.14 .679 -3.21 4.43 .457 -2.29 2.55 .484

5%

12 -0.642 2.84 .802 -.035 0.99 .926 -.723 2.97 .797 -.0566 1.01 .920
72 -0.423 1.46 .842 -.226 1.11 .895 -.657 1.62 .789 -.405 1.19 .847
288 -0.820 1.94 .776 -.640 1.52 .799 -1.49 2.39 .646 -1.18 1.76 .677

Table 5: Feasible case. Effect of jumps on the linear and adjusted ratio tests. On the right hand
side we show results for the case where there are 2 jumps per day. On the left hand side, there
is a single jump per day. The variance of the jumps are 20%, 10% and 5% respectively of the
expectation of the variance process Σ(t), with the results for the 20% case given at the top of
the Table. Code: jump RV daily.ox

to us by Olsen and Associates in Zurich, who document their pathbreaking work in this area in

Dacorogna, Gencay, Müller, Olsen, and Pictet (2001).

6.2 Adjusted ratio jump test

Figure 3 plots the ratio test

µ−2
1 {y∗δ}

[1,1]
i[

y∗δ
]
i

,

and its corresponding 99% critical values, computed under the assumption of no jump using

the theory given in (19), for each of the first 250 working days in the sample for M = 12 and

M = 72. We reject the null if the ratio is significantly below one. The values of M are quite

small, corresponding to 2 hour and 20 minute returns, respectively. They were chosen to try

to ensure our results were not overly sensitive to market microstructure errors. Results for

larger values of M will be reported in a moment. Importantly the critical values do not change

very much between different days. When M is very small this is mainly due to the use of the

maximum function in the calculation of the standard error for the asymptotic distribution.

Figure 3 shows quite a lot of rejections of the null of no jumps, although the times when

the rejections happen change quite a lot as M changes. Further, the average ratio is below one.

When M is 12 the percentage of ratios below 1 is 70% and 73%, while when M increases to 72

these percentages become 71% in both cases.

Table 6 reports the corresponding results for the whole 10 year sample. This Table provides

a warning of the use of too high a value of M for it shows the sum of the first to fifth serial

correlation coefficients of the high frequency data. This is denoted by r.. We see that in the
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Figure 3: Data based on the first year of the sample for the Dollar/DM (left hand side) and
Dollar/Yen (right hand side) using M = 12 and M = 72. An index plot shows the ratio statistic
computed each day, which should be around 1 if the null of no jumps is true. The corresponding
99% adjusted asymptotic critical value is also shown for each day. Code: jump RV daily.ox.

Dollar/DM series as M increases this correlation builds up, probably due to bid/ask bounce

effects. By the time M has reached 288 the summed correlation had reached nearly −0.1 which

means the realised variance overestimates the variability of prices by around 20%. Of course this

effect could be removed by using a further level of pre-filtering before we analyse the data. The

situation is worse for the Dollar/Yen series which has a moderate amount of negative correlation

amongst the high frequency returns even when M is quite small. We will ignore these market

microstructure effects.

Table 6 holds the average value of µ−2
1 {y∗δ}

[1,1]
i and [y∗δ ]i as well as the proportion of times

the null is rejected using 95% and 99% tests. They are given for a variety of values of M and

for both exchange rates. They show that the results are reasonably stable with respect to M ,

although the percentage due to jumps do drift as M changes.
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Dollar/DM Dollar/Yen

M r. cont QV jump % 5% rej 1% rej r. cont QV jump % 5% rej 1% rej
12 .001 .355 .452 12.0 .202 .090 -.041 .328 .420 12.2 .201 .086
48 .012 .408 .467 6.80 .219 .114 -.032 .409 .458 5.72 .209 .101
72 -.001 .437 .487 5.41 .225 .120 -.032 .429 .471 4.68 .195 .095
144 -.056 .471 .510 3.91 .220 .116 -.077 .473 .506 3.35 .223 .107
288 -.092 .502 .531 2.83 .181 .092 -.100 .512 .539 2.56 .187 .095

Table 6: r. denotes the sum of the first five serial correlation coefficients of the high frequency

data. “cont” denotes the average value of µ−2
1 {y∗δ}

[1,1]
i over the sample. QV gives the corre-

sponding result for the average realised variance over the sample. jump % denotes the estimate of
the percentage of the quadratic variation due to jumps in the sample. 5% rej shows the proportion
of rejections at the 5% level, while 1% indicates the same thing but at the 1% level.

The Table shows that for the Dollar/DM series the variation of the jumps is estimated to

contribute between around 3% and 12% of the QV. On many days there is enough evidence to

reject the null hypothesis of no jumps, with around 20% rejections at the 5% level and 10% at

the 1% level.

The results for the Dollar/Yen are rather similar, with the jumps contributing between 2%

and 12% of the variation in the prices. A similar rate of rejection of the null is obtained for the

Yen series as we saw for the DM rate.
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(b) Correlogram for jumps for Dollar/Yen
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(a) Correlogram for jumps for Dollar/DM.

Figure 4: Correlogram for a time series of indicators which note if the jump test was failed.
This was based on M = 72 and using a 5% size test. Straightline are standard Bartlett 95%
confidence intervals for these statistics. Code: jump RV daily.ox.

Overall this analysis suggests that there is quite a lot of statistical evidence that there are

jumps in the exchange rate series. Interestingly the percentage of rejections and proportions

due to jumps seems rather stable as we move between the two exchange rates.
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Figure 4 shows the correlogram of a daily time series which records a one if the adjusted ratio

jump test rejects the null of no jump and a zero if the null is accepted. Hence this attempts

to measure if there is any serial dependence in the occurrence of jumps between days. For

both currencies there is little evidence for clustering of jumps between days. Of course fully

parametric models may be more successful at detecting this type of subtle dependence.

6.3 Case studies

6.3.1 Two contrasting days

In this subsection we will look at some specific days in the sample which have large realised

variances3 to see if we can link together the outcomes from the formal statistical analysis with

more informal discussions. Throughout we focus on the Dollar/DM rate. To start we will give a

detailed discussion of two extreme days, which we will put in context by analysing them together

with a few days each side of the extreme events. We plot yδ for a variety of values of M using

dots, rather than the more standard time series lines, as well as giving the adjusted ratio jump

statistics with its corresponding 99% critical values.

In Figure 5 there is a large uptick in the Dollar against the D-mark, with a movement of

nearly two percent in a five minute period. This occurred on January 15th 1988. The Financial

Times reported on its front page the next day

“The dollar and share prices soared in hectic trading on world financial markets yesterday

after the release of official figures showing that the US trade deficit had fallen to $13.22 bn

in November from October’s record level of $17.63 bn. The US currency surged 4 pfennigs

and 4 yen within 10 minutes of the release of the figures and maintained the day’s highest

levels in late New York business ... .”

The data for January 15th had a large realised variance but a much smaller estimate of

the integrated variance. Hence the statistics are attributing a large component of the realised

variance to the jump with the adjusted ratio statistic being larger than the corresponding 99%

critical value. When M is small the statistic is on the borderline of being significant, while the

situation becomes much clearer as M becomes large.

This jump effect contrasts with Figure 6 where on the 1134th day, August 19th 1991, there is

a three percentage strengthening in the Dollar, but this happens over an hour long period with

many positive returns. In the early hours of that day the Russian President Mikhail Gorbachev

3The result does not change whether one uses the Andersen, Bollerslev, Diebold, and Labys (2001) version of
this data, or the dataset which includes the Barndorff-Nielsen and Shephard (2002) stochastic adjustments.
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Figure 5: Example of small stretches of data with large realised variances. Left hand side show
yδ for a variety of values of M . Right shows the adjusted ratio jump statistic, together with
99% critical values. The large step change in the prices, occurred on 15th January 1988 when
surprising U.S. balance of payment figures were announced. Code is available at: jump RV.ox.

was overthrown after a coup by Communist hardliners. The Financial Times reported on its

front page the next day:

“Share prices around the world plummeted ... and the dollar climbed by more than 5 pfennigs

against the D-Mark yesterday, as financial markets experienced their most turbulent trading

conditions since the crash of October 1987. ... President Mikhail Gorbachev’s removal

from power led to intense investor nervousness about the effects of a Soviet political crisis

spilling over into the rest of Europe and disturbing the outlook for the world economy....The

repercussions were especially marked in Germany....On currency markets, dealers sold the D-

Mark for dollars....Central bank intervention by Germany, Britain, Italy, France and Japan

damped the dollar’s rise. After touching a high of DM1.832, it closed last night in London

at DM1.8165, up more than 5 pfennigs. In New York if finished at DM1.8235.”
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Figure 6: Example of small stretches of data with large realised variances. Left hand side show
yδ for a variety of values of M. Right shows the adjusted ratio jump statistic, together with 99%
critical values. Large change in prices attributed to high volatility, not a jum. The change
occured on 19th August 1991 when Gorbachev was removed by a coup. Code is available at:
jump RV.ox.

The corresponding realised variance is very high, but so is the estimated integrated variance.

Hence in this case the statistics have not flagged up a jump in the price, even though prices

were moving rapidly.

More surprisingly Figure 6 flags up a possible jump on the next day, August 20th. This

happened around 10.20 GMT, where we had consecutive percentage returns −0.577, −0.999

and 1.027, showing a sharp sell-off in the Dollar followed by a recovery. The London Times

reported the next day

“During the European trading morning, a report that Mikhail Gorbachev was back in the

Kremlin sent the dollar into an immediate three-pfennig plunge against the mark. However,

a further report - that Mr. Gorbachev was still in the Crimea - wiped out the fall just as

quickly.”
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6.3.2 High volatility days

An important question is whether these two days were typical of extreme days on the foreign

exchange market? Here we focus will be on two sets of days: all those days where the ratio

statistic is small or large and the realised variance is quite large. Throughout M = 288 is used.
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Figure 7: Days on which there is a high realised variance and the adjusted ratio jump test found a
jump using M = 288. Depicted is yδ and the corresponding jump test, with 99% critical values.
Code is available at: jump RV.ox.

Figure 7 plots results for all the 8 days when the ratio statistic is less than 0.6, suggesting a

jump, and where the realised variance is above 1.2. On each day the Figure shows a single big

movement which is much larger in magnitude than the others on that day. These big changes

are listed below.
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Sequence Day GMT move
173th Friday 11th September, 1987 12.35 −.967
234th Thursday, 10th December, 1987 13.35 −1.44
253th Friday, 15th January, 1988 13.35 2.03
273th Friday, 12th February, 1988 13.35 1.16
312th Thursday, 14th April, 1988 12.35 −1.65
333th Tuesday, 17th May, 1988 12.35 1.14
416th Wednesday, 14th September, 1988 12.35 0.955
683th Tuesday, 17th October, 1989 12.35 −0.714

Most U.S. macroeconomic announcements are made at 8.30 EST, which is 12.30 GMT from

early April to late October and 13.30 otherwise (the precise dates of daylight saving times vary

from year to year). This means that all the jumps we have seen in this Figure correspond

to macroeconomic announcements. There is a substantial economic literature trying to match

up movements in exchange rates to macroeconomic announcements (e.g. Ederington and Lee

(1993), Andersen and Bollerslev (1998b) and Andersen, Bollerslev, Diebold, and Vega (2003)).

Generally this concludes that such news is quickly absorbed into the market, moving the rates

vigourously, but with little long term impact on the subsequent volatility of the rates.

Finally in Figure 8 we plots results for days where the realised volatility is greater than 3.79.

On each of these days the jump statistic indicates no jump in the process.

The non-jump days with very high realised variances are listed below.
Sequence Day

661st Friday, 15th September 1989
1135th Monday, 19th August 1991
1399th Wednesday, 16th September 1992
1400th Thursday, 17th September 1992
2015th Wednesday, 8th March 1995
2031th Thursday, 30th March 1995

The most interesting period in this table is around 16th September 1992, which is when the

UK suspended its ERM membership. This did cause a small immediate weakening in the Dollar

on this day but generally this seems to have been largely anticipated. Instead the dominant

feature is the very high level of volatility during this period.

7 Extensions and discussion

7.1 Leverage

A significant limitation of our analysis has been that we have assumed that (α∗, σ) are inde-

pendent from w. This no leverage assumption (e.g. Black (1976), Nelson (1991) and Ghysels,

Harvey, and Renault (1996)) is empirically reasonable with exchange rates but clashes with what

we observe for equity data. This is very important. It is not clear how our results change in

the case where we have leverage. Huang and Tauchen (2003) have some simulation results on

this topic. Some discussion of this in the connected realised power variation case is given in
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Figure 8: Days on which there is a high realised variance and the adjusted ratio jump test did
not find a jump using M = 288. Depicted is yδ and the corresponding jump test, with 99%
critical values. Code is available at: jump RV.ox.

Barndorff-Nielsen, Graversen, and Shephard (2004) where the very limited known theoretical

results are outlined.

7.2 Multivariate processes

Our discussion of jumps in financial economics has been entirely univariate. How can we think

of multivariate versions of the objects we discussed in this paper?

Quadratic covariation plays an essential role in financial econometrics. We will discuss this

in the context of a bivariate semimartingale (x∗, y∗). Then the quadratic covariation between

x∗ and y∗ is

[y∗, x∗](t) = p− lim
M→∞

M∑

j=1

{y∗(tj) − y∗(tj−1)}{x∗(tj) − x∗(tj−1)}.

Note that using this notation [y∗, y∗] = [y∗], the QV of the y∗ process. Quadratic covariation has

been recently studied by, for example, Barndorff-Nielsen and Shephard (2004a) and Andersen,
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Bollerslev, Diebold, and Labys (2003).

An important property of QV is the so called polarisation result that

[y∗, x∗] =
1

2
{[y∗ + x∗] − [y∗] − [x∗]} .

Further, of course, we can use realised BPV to consistently estimate

[y∗c, x∗c] =
1

2
{[y∗c + x∗c] − [y∗c] − [x∗c]}

and so

[y∗d, x∗d] =
1

2

{
[y∗d + x∗d] − [y∗d] − [x∗d]

}

by estimating each of the individual terms. We are currently studying this and an alternative

estimator of this type based on

[y∗, x∗] =
1

4
{[y∗ + x∗] − [y∗ − x∗]} .

In principle this style of analysis allows us to understand the dependence between assets in

standard time and in times of jumps. This topic has received considerable attention in the

economics literature which often postulates that the dependence between assets can vary con-

siderably during periods of extreme variability.

7.3 Building reduced form models

Following Barndorff-Nielsen and Shephard (2004c), Andersen, Bollerslev, and Diebold (2003)

have used bipower variation as an input into new reduced form forecasting devices for modelling

future values of realised variances (which in turn proxy the variability of future prices). This

follows the influential line of thinking of Andersen, Bollerslev, Diebold, and Labys (2003) who

modelled realised variances in terms of lags of previous realised variances. Following initial

versions of the work reported in this paper, they used the result given in Theorem 1 to truncate

the BPV based estimator of the QV of the jump component if the jumps are not significant.

This shrinkage style estimator seems successful in empirical work, yielding fresh insights and

improved forecast accuracy.

7.4 Market microstructure effects

In some recent stimulating work a number of researchers have been trying to formally measure

and mitigate the impact of market microstructure noise (e.g. irregularly spaced data, rounding,

volume effects, etc.) on the estimation of integrated variance using realised QV. Andersen,

Bollerslev, Diebold, and Labys (2000) studied the biases induced by noise using the so-called

signature plot. Leading recent papers which study the sampling properties of realised QV in
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the presence of noise include Bandi and Russell (2003a), Bandi and Russell (2003b) and Zhang,

Mykland, and Aı̈t-Sahalia (2003). Related work in the probability literature on the impact of

noise on discretely observed diffusions can be found in Gloter and Jacod (2000a) and Gloter

and Jacod (2000b), while Delattre and Jacod (1997) report results on the impact of rounding

on sums of functions of discretely observed diffusions. Another stream of authors either suggest

various adjustments to the return sequences or the definition of realised QV to overcome the

effect of market microstructure noise. Elegant papers on this include Hansen and Lunde (2003),

Martens (2003) and Curci and Corsi (2003). Also, of course, special mention should be made to

Dacorogna, Gencay, Müller, Olsen, and Pictet (2001) who have carried out seminal work on the

careful construction of reliable price data for the study of volatility. Finally, Zhang, Mykland,

and Aı̈t-Sahalia (2003) propose a subsampling scheme to attempt to overcome biases due to

market microstructure effects.

Here we very briefly discuss the impact of noise on realised BPV. We draw our inspiration

from the papers of Bandi and Russell (2003a), Bandi and Russell (2003b) and Zhang, Mykland,

and Aı̈t-Sahalia (2003), although our model for noise will be different. We suppose we make

observations at equally space time intervals

0, δ, 2δ, ...

and we inherit some measurement noise u each time we do this. In particular we observe

x∗(δj) = y∗(δj) + uj,

the true equilibrium price plus an error. In all the above three papers the noise is assumed to

be i.i.d. with a distribution which does not vary with δ. It is the second of those assumptions

which is crucial to their results. We depart from this by instead assuming a component model

for uj with

uj = uj,1 + uj,2,

where

uj,1 = op(δ
1/2).

while

u2,j =

N(δj)∑

i=N(δ(j−1))+1

vi, vi = Op(1),

where N is a finite activity process (that is N(t) <∞ for all t). This means that most pieces of

noise will be small, but once in a while there will be a wild measurement. If the time gap is large

then the probability of seeing a wild observation is large, while for small time gaps the errors
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will be modest. This has some relation to the work of Gloter and Jacod (2000a) and Gloter and

Jacod (2000b) who studied the impact of noise on the estimation of the parameters in a fully

parametric diffusion observed with errors. In those papers they allowed the properties of noise

to change with δ.

The model for x∗(δj) means that the recorded returns are

xj = x∗(δj) − x∗(δ (j − 1))

= yj + uj − uj−1.

The QV process for x∗ is

[x∗] (t) =

∫ t

0
σ2(u)du+ 2

N(t)∑

j=1

v2
j ,

so the jumps due to uj,1 become asymptotically negligible. An important feature of this result

is that this quadratic variation is finite, with probability one. Thus, this differs from the result

which would have been obtained if uj,1 = Op(1) and u2,j = 0, which was the case studied by

Bandi and Russell (2003a), Bandi and Russell (2003b) and Zhang, Mykland, and Aı̈t-Sahalia

(2003).

It is immediately obvious that if the 2nd lag realised bipower variation measure of the error

free returns has

1

µ2
1

M−2∑

j=1

|yj| |yj+2|
p→
∫ t

0
σ2(u)du,

then the noisy returns satisfy

1

µ2
1

M−2∑

j=1

|xj | |xj+2|
p→
∫ t

0
σ2(u)du,

due to the finite activity of the counting process and the fact that the non-jump induced errors

are of a smaller order of magnitude than the returns. It is necessary to use a 2nd lag bipower

variation measure as the misrecording of prices induces a first order moving average structure

in the returns, which means there is a non-negligible probability of contiguous jumps in the

counting process even asymptotically.

An interesting feature of the analysis is that the intensity of the counting process can be

allowed to be dynamic without effecting the line of argument made here. The sole argument

which matters is that the arrival process is of finite activity. Serial dependence between the

errors is, in principle, irrelevant.

The above analysis is only instructive. It does not mean that market microstructure effects

have no impact on BPV. Rather, we take this as meaning that it should be more robust to

market microstructure effects than realised variance.
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In practice when we compute skipped versions of realised BPV, then it makes sense to use

the finite sample correction

{x∗δ}i,k =
1

µ2
1

M

M − k

M−k∑

j=1

|xj| |xj+k| ,

for this delivers an unbiased estimator of the variance in the Brownian motion case.

Table 7 shows the average value of the daily realised quantities for a variety of values of M

for the entire United States Dollar/German Deutsche-Mark Olsen series from 1986 to 1996 we

previous studied in Section 6. We can see that the average values of the realised BPVs falls

as M reduces, however the results are rather stable across different realised BPVs so long as

the lag is larger than one. The Table shows a sharp fall as we move from the average value of

the realised variance to the average value of {x∗δ}i,1, but another sharp decrease for long lagged

realised BPVs. This suggests the presence of both jumps and market microstructure effects.

x2
i [x∗δ ]i {x∗δ}i,1 {x∗δ}i,2 {x∗δ}i,3

288 0.50679 0.53085 0.49964 0.46804 0.45442
144 0.50679 0.51148 0.47496 0.44401 0.43474
72 0.50679 0.49064 0.44526 0.41814 0.41298
24 0.50679 0.46469 0.40653 0.38361 0.36369

Table 7: Average value of the whole sample of the statistics per day. Returns have been multiplied
by 100.

We can also study the autocorrelation between days of these volatility measures. Figure 9

shows the results for a variety of values of M . The results are clear. All realised BPV measures

have more serial dependence than the RV, but the measures using lags longer than one period

have even higher serial correlations. The increase in dependence seems to be of the same order

of magnitude we have seen going from RV to one lagged realised BPV.

8 Conclusions

In this paper we have provided detailed results on the asymptotic distribution of tests for the

presence of jumps. Monte Carlo results suggest an adjusted ratio jump statistic can be reliably

used to test for jumps even if the sample size is small. We applied this test to some exchange

rate data and found many rejections of the null of no jumps. In some case studies we related the

rejections to economic news. We see that the large jumps in our dataset are mainly caused by

macroeconomic news announcements. Our results contrast with previous results, such as that

reported by Eraker, Johannes, and Polson (2003), which tend to find a small number of jumps

associated with large daily moves in the asset prices.
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Figure 9: Correlograms of the RV and realised BPVs at various lags. Code: jump RV daily.ox.

The data we have used comes from one of the most thickly traded financial markets. The

overwhelming evidence of jumps in this market suggests that the commonly used assumption

that prices have continuous sample paths seems at odds with the empirical evidence.
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A Proof of theorem 1

A.1 Assumptions and statement of two theorems

Recall the three assumptions we use in Theorem 1. We will carry out the limit result for a fixed

value of t, allowing t = δM . So as δ ↓ 0 then necessarily M → ∞.

(a) The volatility quantity

ψj =

√
δ−1

∫ δj

δ(j−1)
σ2(u)du

is bounded away from 0 and infinity, uniformly in j and δ.

(b) The mean process α∗ satisfies, (pathwise) as δ ↓ 0,

δ−1 max
1≤j≤bt/δc

|α∗(jδ) − α∗((j − 1)δ)| = op(1). (20)

(c) The joint process (α∗, σ) is independent of the Brownian motion w.

In this Appendix we prove two results we state in this subsection: (i) Theorem 2 which

shows consistency of realised BPV when α∗ 6= 0, (ii) Theorem 3 which gives a joint central limit

theory for realised BPV and QV under SVSMc. These two results then delivers Theorem 1

immediately.

Theorem 2 Let y∗ ∈ SVJSMc and suppose conditions (a), (b) and (c) hold, then

{y∗}[1,1] (t) = µ2
1

∫ t

0
σ2(u)du. (21)

Theorem 3 Let y∗ ∈ SVSMc and suppose conditions (a), (b) and (c) hold. Then condition-

ally on (α∗, σ), the realised BPV and QV processes

[y∗δ ](t) and µ−2
1 {y∗δ}[1,1] (t) (22)

follow asymptotically, as δ ↓ 0, a bivariate normal law with common mean
∫ t
0 σ

2(u)du. The

asymptotic covariance of

δ−1/2

{(
[y∗δ ](t)

µ−2
1 {y∗δ}

[1,1] (t)

)
−
( ∫ t

0 σ
2(u)du∫ t

0 σ
2(u)du

)}

is

Ω∗(t) = Π

∫ t

0
σ4(u)du (23)

where

Π =

(
Var(u2) 2µ−2

1 Cov
(
u2, |u||u′|

)

2µ−2
1 Cov

(
u2, |u||u′|

)
µ−4

1 {Var (|u||u′|) + 2Cov (|u||u′|, |u′| |u′′|)}

)

=

(
2 2
2
(
π2/4

)
+ π − 3

)
'
(

2 2
2 2.6090

)

with u, u′, u′′ being independent standard normals.
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A.2 Consistency of realised bipower variation: theorem 2

This proof goes in four stages. We first set the jump process to zero. We provide some pre-

liminary results on discretisation of integrated variance. Then we prove consistency of bipower

variation when α∗ = 0. We then prove Theorem 2 in the case of no jumps by showing that

allowing α∗ 6= 0 has negligible impact. This is by far the hardest part of our proof as we prove

the effect of the drift is op(δ
−1/2) which will be needed for Theorem 3. Finally, we note here that

the theorem extends to the jump case trivially using the argument given in Barndorff-Nielsen

and Shephard (2004c). Hence the focus of this subsection is entirely on detailing the first three

steps of this argument.

We first recall a result.

Proposition 1 (Barndorff-Nielsen and Shephard (2004c)). Under (a) we have for

r > 0 and

σ2
j =

∫ jδ

(j−1)δ
σ2(u)du

that

δ1−r





M−1∑

j=1

σr
jσ

r
j+1 −

M∑

j=1

σ2r
j



 = Op(δ).

�

This result is obtained in the course of the proof of Theorem 2 of Barndorff-Nielsen and

Shephard (2004c), cf. equation (13) of that paper.

Corollary 1 Under (a) we have that

M−1∑

j=1

σjσj+1 −
∫ t

0
σ2(u)du = Op(δ).

�

This Corollary is a considerable strengthening (in the special case of r = 1) of the re-

sult in Barndorff-Nielsen and Shephard (2004c) that for r > 0 then δ1−r∑M−1
j=1 σr

jσ
r
j+1 minus

∫ t
0 σ

2r(u)du is op(1). This strengthening is vital later as it will allow us to derive a central limit

theorem without imposing strong conditions on the volatility process (e.g. finite variation). It

does not hold for more general values of r.

Proof. Trivially from Proposition 1 in the special case where r = 1, using the fact that

M∑

j=1

σ2
j =

∫ t

0
σ2(u)du.
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This allows us to prove the existence of bipower variation in the case r = s = 1 under weaker

assumptions than used by Barndorff-Nielsen and Shephard (2004c).

Theorem 4 Suppose y∗ ∈ SVSMc and additionally (a), (c) and α∗ = 0, then



bt/δc−1∑

j=1

|yj||yj+1|


− µ2

1

∫ t

0
σ2(s)ds = op(1).

�

Proof. Using (c) and the fact that α∗ = 0 we have that

M−1∑

j=1

|yj| |yj+1| L
=

M−1∑

j=1

σjσj+1|uj ||uj+1|,

where the uj are i.i.d. standard normal. This means that

M−1∑

j=1

|yj| |yj+1| − µ2
1

M∑

j=1

σjσj+1
L
=

M−1∑

j=1

σjσj+1(|uj ||uj+1| − µ2
1).

In our proof it suffices to show two things:

1. As δ ↓ 0

R =
M−1∑

j=1

σjσj+1(|uj ||uj+1| − µ2
1) = op(1). (24)

2. As δ ↓ 0
M−1∑

j=1

σjσj+1 −
∫ t

0
σ2(u)du = op(1). (25)

But Corollary 1 is a stronger result than (25). Hence we are left to prove part 1. To establish

(24), it is sufficient to show that

S =

M−1∑

j=1

cMjxj
p→ 0, where cMj = σjσj+1 and xj = (|uj ||u′j | − µ2

1),

where uj and u′j are independent standard normal sequences4. Barndorff-Nielsen and Shephard

4This is a consequence of the following argument. Define

R =
M∑

j=1

vM,j , where vM,j = σjσj+1(|uj ||uj+1| − µ
2
1),

and construct R′ =
∑M

j=1 zM,j , where R′ is an independent copy of R. We observe that vM,j is independent from
vM,j+s for all |s| > 1. Then we can rewrite

R + R
′ = (vM,1 + vM,2 + ... + vM,M ) + (zM,1 + zM,2 + ... + zM,M )

= (vM,1 + zM,2 + vM,3 + ...) + (zM,1 + vM,2 + zM,3 + ....)

= S + S
′

,

so that S and S′ are each sums of independent terms. S and S′ are not independent but are identically distributed.
However, if as M → ∞ so S

p
→ 0, then, consquently, R + R′

p
→ 0. As R is independent from R′ this means that

R
p
→ 0.
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(2003a, Corollary 4.3) applies to such a sum. Specifically to see that S
p→ 0 let σj = δ1/2ψj then

we write cMj = δψjψj+1. The important issue is that assumption (a) bounds ψjψj+1. Then,

as is simple to verify, the following three conditions are satisfied as δ ↓ 0 and with x distributed

as |u| |u′| − µ2
1

cM = max
1≤j<M

cMj = δ max
1≤j<M

ψjψj+1 → 0,

MP{|x| ≥ c−1
M ε} = MP

{
|x| ≥ 1

δmaxj ψjψj+1

ε

}
→ 0,

sup
M

M−1∑

j=1

cMj = sup
M

δ

M−1∑

j=1

ψjψj+1 <∞,

and thus the conditions of Corollary 4.3 in Barndorff-Nielsen and Shephard (2003a) are satisfied.

�

To complete the Proof of Theorem 3 we need to show that the impact of the drift is negligible.

To do this let us introduce the notation

y∗0 =

∫ t

0
σ(u)dw(u),

which implies

y∗ = y∗0 + α∗.

The remaining task is to show that, to the order concerned, α∗ does not affect the asymptotic

limit behaviour, provided conditions (a), (b) and (c) hold. For this it suffices to show that

δ−1/2
{
[y∗δ ]

[1,1](t) − [y∗0δ]
[1,1](t)

}
= op(1).

We shall in fact prove the following stronger result, which covers a variety of versions of

realised bipower variation.

Proposition 2 Under conditions (a), (b) and (c) for r, s > 0

δ−(r+s)/2
{

[y∗δ ]
[r,s] − [y∗0δ]

[r,s]
}

= Op(δ
−1/2+ε)

for every ε ∈
(
0, 1

4

)
. �

Proof. Let

τ = inf
0≤u≤t

τ(u) and τ = sup
0≤u≤t

τ(u)
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and

γj = δ−1αj , αj = α∗(jδ) − α∗((j − 1)δ), j = 1, 2, ...,M − 1.

and note that (pathwise for (α∗, τ )), by assumption (a),

0 < τ ≤ τ <∞,

implying

0 < min
j
θj ≤ max

j
θj <∞,

while, due to assumption (b), there exists a constant c for which

max
j

|γj | ≤ cδ,

whatever the value of M .

We have using (c)

[y∗δ ]
[r,s](t) − [y∗0δ]

[r,s](t) =

M−1∑

j=1

(|αj + y0j|r|αj+1 + y0j+1|s − |y0j |r|y0j+1|s)

=
M−1∑

j=1

{|δγj + δ1/2θ
1/2
j u0j |r|δγj+1 + δ1/2θ

1/2
j+1u0j+1|s

−|δ1/2θ
1/2
j u0j |r|δ1/2θ

1/2
j+1u0j+1|s}

= δr/2δs/2
M−1∑

j=1

θ
r/2
j θ

s/2
j+1{|(γj/θ

1/2
j )δ1/2 + u0j |r

·|(γj+1/θ
1/2
j+1)δ

1/2 + u0j+1|s − |u0j |r|u0j+1|s}

and hence

δ−(r+s)/2
{
[y∗δ ]

[r,s](t) − [y∗0δ]
[r,s](t)

}
=

M∑

j=1

θ
r/2
j θ

s/2
j+1hr,s(u0j , u0j+1; γj/θ

1/2
j , γj+1/θ

1/2
j+1)

where

hr,s(u, v; ρ1, ρ2) = |ρ1δ
1/2 + u|r|ρ2δ

1/2 + v|s − |u|r|v|s.

As
∣∣∣γj/θ

1/2
j

∣∣∣ is bounded for all j, the conclusion of Proposition 2 now follows from Corollary

2, which is given below.

�

To obtain that Corollary we establish three Lemmas, 1, 2 and 3. Lemma 1 collates several

results from Barndorff-Nielsen and Shephard (2003b) which are used to prove Lemmas 2 and 3.

Let u be a standard normal random variable and define

hr(u; ρ) = |ρδ1/2 + u|r − |u|r.
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Lemma 1 (Barndorff-Nielsen and Shephard (2003b)) For any r > 0 and ρ ≥ 0, we have

E{hr(u; ρ)} = O(δ),

E{|u|rhr(u; ρ)} = O(δ(1+1∧r)/2).

E{h2
r(u; ρ)} = O(δ(1+1∧r)/2).

and

Var{hr(u; ρ} = O(δ(1+1∧r)/2).

�

The results given in Lemma 1 are derived in the course of the proof of Proposition 3.3 in

Barndorff-Nielsen and Shephard (2003b), so a separate proof will not be given here.

We proceed to state and prove Lemmas 2 and 3. Let u and v be independentN(0, 1) variables.

Lemma 2 For any r, s > 0 and ρ1 and ρ2 nonnegative constants, we have

E{hr,s(u, v; ρ1, ρ2)} = O(δ).

Proof. The independence of u, v together with the first equation in Lemma 1 implies

E {hr,s(u, v; ρ)} = E
{
|ρ1δ

1/2 + u|r
}

E
{
|ρ2δ

1/2 + v|s
}
− E {|u|r}E {|v|s}

= E{hr(u; ρ1)}E{hr(v; ρ2)} + E{hr(u; ρ1)}E {|v|s} + E {|u|s}E{hs(v; ρ2)}

= O(δ).

�

Lemma 3 For u, v independent standard normal random variables and ρ1 and ρ2 nonnegative

constants, we have

E{h2
r,s(u, v; ρ1, ρ2)} = O

(
δ(1+1∧r∧s)/2

)
.

�

Proof. Clearly

h2
r,s(u, v; ρ) = |ρ1δ

1/2 + u|2r|ρ2δ
1/2 + v|2s + |u|2r|v|2s − 2|ρ1δ

1/2 + u|r|ρ2δ
1/2 + v|s|u|r|v|s

= h2r,2s(u, v; ρ) + 2|u|2r |v|2s − 2|ρ1δ
1/2 + u|r|ρ2δ

1/2 + v|s|u|r|v|s,
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so, by Lemma B and the independence of u and v,

E{h2
r,s(u, v; ρ)} = E{h2r,2s(u, v; ρ)} + 2E

{
|u|2r

}
E
{
|u|2s

}

−2E
{
|u|r|ρ1δ

1/2 + u|r
}

E
{
|u|s|ρ2δ

1/2 + u|s
}

= O(δ) − 2
(
E
{
|u|r|ρ1δ

1/2 + u|r
}

E
{
|u|s|ρ2δ

1/2 + u|s
}
− E

{
|u|2r

}
E
{
|u|2s

})
.

Furthermore,

E
{
|u|r|ρ1δ

1/2 + u|r
}

E
{
|u|s|ρ2δ

1/2 + u|s
}
− E

{
|u|2r

}
E
{
|u|2s

}

= E
{
|u|r|ρ1δ

1/2 + u|r − |u|2r
}

E
{
|u|s|ρ2δ

1/2 + u|s
}

+E
{
|u|2r

}
E
{
|u|s|ρ2δ

1/2 + u|s
}
− E

{
|u|2r

}
E
{
|u|2s

}

= E
{
|u|r|ρ1δ

1/2 + u|r − |u|2r
}

E
{
|u|s|ρ2δ

1/2 + u|s − |u|2s
}

+E
{
|u|2s

}
E
{
|u|r|ρ1δ

1/2 + u|r − |u|2r
}

+E
{
|u|2r

}
E
{
|u|s|ρ2δ

1/2 + u|s
}
− E

{
|u|2r

}
E
{
|u|2s

}

= E{|u|rhr(u; ρ1)}E{|u|shs(u; ρ2)}

+E
{
|u|2s

}
E{|u|rhr(u; ρ1)} + E

{
|u|2r

}
E{|u|shs(u; ρ2)}.

All in all, on account of Lemma 1, this means that

E{h2
r,s(u, v; ρ1, ρ2)} = O(δ) +O(δ(1+1∧r)/2)O(δ(1+1∧s)/2) +O(δ(1+1∧r)/2) +O(δ(1+1∧s)/2)

= O(δ(1+1∧r∧s)/2).

�

Lemmas 2 and 3 and the Cauchy-Schwarz inequality together imply

Corollary 2 For u, v, u′, v′ independent standard normal random variables and ρ1, ρ2, ρ
′
1, ρ

′
2

nonnegative constants, we have

Var{hr,s(u, v; ρ1, ρ2))} = O
(
δ(1+1∧r∧s)/2

)

and

Cov{hr,s(u, v; ρ1, ρ2))hr,s(u
′, v′; ρ′1, ρ

′
2))} = O

(
δ(1+1∧r∧s)/2

)
.

�

As already mentioned, the conclusion of Proposition 2 follows from Corollary 2.
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Remark 2 From the final equation in the proof of Lemma 3 one sees that in the special case

when r = s = 1 then

Var{hr(u; ρ)} = O(δ)

and hence the conclusion of Proposition 2 may be sharpened to

[y∗δ ]
[1,1] − [y∗0δ]

[1,1] = Op(δ).

�

The result in Theorem 2 now follows from the combination of Theorem 4 and Proposition 2.

A.3 Asymptotic distribution of bipower variation: theorem 3

A.3.1 Asymptotic covariance

Given Proposition 2, what remains is to prove Theorem 3 when y∗ ∈ SVSMc and the additional

conditions (a), (c) and α∗ = 0 hold. The key feature is that, ignoring the asymptotically

negligible y2
M and conditioning on the σ process, we can write the process as

( ∑M−1
j=1 y2

j∑M−1
j=1 |yj| |yj+1|

)
−
( ∫ t

0 σ
2(u)du

µ2
1

∫ t
0 σ

2(u)du

)
L
=

M−1∑

j=1

(
σ2

jvj

σjσj+1wj

)

where

vj = u2
j − 1 and wj = |uj ||uj+1| − µ2

1.

The sequences {vj} and {wj} have zero means, with the former being i.i.d., while the latter

satisfy wj ⊥⊥ wj+s for |s| > 1. Then the Theorem follows if we can show that

δ−1/2
M−1∑

j=1

(
σ2

jvj

σjσj+1wj

)
L→ N

(
0,

∫ t

0
σ4(s)ds

(
Var(v1) 2Cov (v1, w1)
2Cov (v1, w1) Var (w1) + 2Cov (w1, w2)

))
.

(26)

Our strategy for proving this is to show5 the limiting Gaussian result that using any real con-

stants c1 and c2,

δ−1/2
M−1∑

j=1

(
c1σ

2
jvj + c2σjσj+1wj

)

d→ N

(
0,

∫ t

0
σ4(s)ds

[
c21Var(v1) + 4c1c2Cov (v1, w1) + c22 {Var (w1) + 2Cov (w1, w2)}

])
.

5Recall that if zn = (zn1, ..., znq) is a sequence of random vectors having mean 0 then to prove that zn
L
→

Nq(0, Ψ) for some nonnegative definite matrix Ψ it suffices to show that for arbitrary real constants c1, ..., cq we

have c′zn
L
→ Nq(0, c′Ψc), where c = (c1, ..., cq)

′. (This follows directly from the characterisation of convergence in
law in terms of convergence of the characteristic functions.)
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The asymptotic Gaussianity follows from standard calculations from the classical central limit

theorem for martingale sequences due to Lipster and Shiryaev (see, for example, Shiryayev (1981,

p. 216)).

What remains is to derive the asymptotic variance of this sum. Clearly

δ−1/2
M−1∑

j=1

(
c1σ

2
jvj + c2σjσj+1wj

)
= δ−1/2



δ

M−1∑

j=1

(
c1ψ

2
jvj + c2ψjψj+1wj

)




has the variance

δ

M−1∑

j=1

Var
(
c1ψ

2
jvj + c2ψjψj+1wj

)
+ 2δ

M−1∑

j=1

Cov
(
c2ψjψj+1wj , c2ψj+1ψj+2wj+1

)
.

Now using Riemann integrability

δ
M−1∑

j=1

Var
(
c1ψ

2
jvj + c2ψjψj+1wj

)

= Var (v1) c
2
1δ

M−1∑

j=1

ψ4
j + Var (w1) c

2
2δ

M−1∑

j=1

ψ2
jψ

2
j+1

+2c1c2 {Cov(v1, w1) + Cov(v2, w1)} δ
M−1∑

j=1

ψ2
jψjψj+1

→
∫ t

0
σ4(u)du

{
c21Var (v1) + c22Var (w1) + 4c1c2Cov(v1, w1)

}
.

Likewise

δ
M−1∑

j=1

Cov
(
c2ψjψj+1wj , c2ψj+1ψj+2wj+1

)

= c22Cov (w1, w2) δ

M−1∑

j=1

ψjψ
2
j+1ψj+2

→ c22Cov (w1, w2)

∫ t

0
σ4(u)du.

This confirms the required covariance pattern stated in (26).
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