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Abstract

We argue that ceteris paribus, introducing a habit that resolves the equity premium puzzle is equiv-

alent to increasing the coefficient of relative risk aversion. Thus, if habit is modeled subject to the

constraint that the Arrow-Pratt coefficient of relative risk aversion is held at a constant ‘acceptable’

level, the effect on the equity premium is not quantitatively significant. In a dynamic setting, the

fluctuations of the habit increase the equity premium, slightly. However, modest improvement in

the model’s predictive power comes at a cost of generating unrealistic fluctuations in the risk-free

interest rate. Our analysis of these findings yields the following result: a habit is observationally

equivalent, up to a first order approximation, to a higher relative risk aversion and to a preference

shock. Both these effects are known to be insufficient for resolving the equity-premium puzzle.

JEL G0,G1; Keywords: equity premium, risk-free interest rate, habit formation



1 Introduction

A ‘habit-formation’ utility function formalizes an attractive and credible story about human psy-

chology: once an agent gets used to a certain standard of living, his consumption level forms a

‘habit’, which becomes the benchmark against which he evaluates possible changes in future con-

sumption. Hence, it is the deviations from the habit rather than the absolute level of consumption

that matters for the individual decision-maker. Our objective in this paper is neither to examine

the nature of the story nor to question its plausibility. Rather, we try to understand to what ex-

tent a habit-formation utility function resolves the Mehra-Prescott [1985] equity-premium puzzle,

as suggested by several authors; c.f. Constantinides [1990], and Boldrin, Christiano, and Fisher

[1997], among many others.

Our skepticism is based on a very simple argument: acquiring a habit is intimately related

and hard to distinguish from becoming more risk averse. Thus, as an agent gets used to a certain

standard of living, he would be willing to pay a higher premium in order to insure himself against

a given uncertainty in the level of his consumption. This, under standard theory, amounts to

an increase in the Arrow-Pratt measure of relative risk aversion. However, the essence of the

equity-premium puzzle is that an artificial economy with a ‘plausible’ parameter of risk aversion

(as estimated from micro data) generates an equity premium that is far below the real-world equity

premium. Hence, a formalization can be deemed a resolution of the puzzle only if a realistic equity

premium is generated by a model economy with a low parameter of the Arrow-Pratt measure of

relative risk aversion (AP-RRA). We show that introducing a habit subject to the constraint that

the AP-RRA is kept constant at an ‘acceptable’ level, cannot resolve the puzzle in the sense above.

We start the analysis with a two-period model, where the level of the habit is kept constant

over time. In such a model, increasing the level of the habit but holding the AP-RRA constant,

does not generate any significant change in the equity premium. Indeed, increasing risk aversion

and introducing a habit have a ‘very similar’ effect on the equity premium. To operationalize the

notion of ‘very similar’, we derive a first-order approximation of the equilibrium equity premium

for a model with a general utility function, that nest both higher risk aversion and the habit as

special cases. We show that the equity premium equals, approximately, to the AP-RRA times the

variance of GNP growth rate. The decomposition of the AP-RRA to a habit parameter and a power

parameter is immaterial as far as the equity premium is concerned. Thus, risk aversion and habit

formation are observationally equivalent up to a first order approximation.

Things differ slightly in a dynamic model, where habit formation has some positive effect on the

model’s predictive power, although the improvement falls far short of what is required in order to

resolve the puzzle. Moreover, it generates problems elsewhere. Using the approximation approach

once again, we show that the improvement results entirely from the fluctuations in the level of

the habit. (By itself, extending the time horizon from two to infinite number of periods has no

effect on the equity premium). Moreover, the fluctuations in the level of the habit are first-order

observationally-equivalent to preference shocks. Such fluctuations are known to increase the vari-
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ability of asset prices and thus the equity premium, but they come at a price of introducing some

unrealistic fluctuations in the level of the risk-free rate. We apply this dynamic analysis to both an

‘external’ and ‘internal’ habit.

We thus conclude that habit formation is observationally equivalent up to a first-order approx-

imation to other effects that were already shown to be insufficient to resolve the equity-premium

puzzle. Obviously, this claim does not imply that habit-formation preferences are unrealistic or

‘less interesting’ than ordinary power preferences. It is also possible that in some other contexts,

where the gap between observation and prediction is not that wide, habit-formation preferences

may generate second-order effects that would better explain the data. Evidently, the modeling of

the equity-premium has not yet reached the point of second-order refinements.

The structure of the paper is as follows: after a short note on related literature, we analyze the

two-period case in Section 2, and the dynamic case, both external and internal habit, in Section 3.

We conclude in Section 4.

1.1 Related Literature

A few other authors have recently questioned the extent to which habits may resolve the equity-

premium puzzle. Otrok, Ravikumar, and Whiteman [2002] use spectral utility to identify the route

through which the habit-formation model resolves the equity-premium puzzle. They find that the

habit-formation model is highly sensitive to the specification of the stochastic process according to

which output and consumption evolve over time. Once the process is parameterized so as to fit

the actual US consumption process, the habit-formation model delivers counterfactual predictions

about the time path of the equity premium and risk-free interest rate. Similarly, Chapman [2002]

argues that if one uses post war data to estimate the consumption process, the model is unable to

predict the desired moments. Addressing a similar question, Lettau and Uhlig [2002] try to mach

the Sharpe ratio with a habit-formation model (and some other models). They succeed in doing

so with 80% of habitual consumption, however with excessive volatility. A similar point is made in

Boldrin, Christiano and Fisher [1997] who match the equity premium with counterfactual volatility,

particularly of the risk-free rate.

Hagiwara and Herce [1997] take a different approach. They study whether one can obtain

appropriate estimates of the coefficient of relative risk aversion and subjective discount factor using

a method-of-moments approach matching the risk-free interest rate and the equity premium in the

Euler equations. With consumption data they are unable to do so but with dividend data, they are

able to obtain reasonable estimates. Though they show that in the case where they use dividend

data rather than consumption data, their estimates of the coefficient of relative risk aversion and

subjective discount factor are reasonable, one can see that it is very likely that their second moments

are far off. In particular, the volatility of the risk-free interest rate is likely to be too high as their

stochastic discount factor is very volatile. We find this to be a general problem with asset pricing

models, that once the first moments are matched, it is at the expense of the second moment.
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2 A two-period model

Let u be a Von-Neuman-Morgenstern habit-formation utility function:

u =
1

1− α
(c− z)1−α , (1)

where c is the level of consumption, z the habit and α the power parameter of the utility function.

We denote the AP-RRA by θ, and compute:

θ = α
c

c− z . (2)

Clearly, for any z > 0, the power parameter no longer corresponds to the AP-RRA .

The usual methods for estimating the AP-RRA parameter still holds in this case. According to

established theory, the premium, p, an agent would be willing to pay in order to fully-insure himself

against a certain risk is:

p =
1

2
θσ2, (3)

where σ2 is the variance of the (relative) risk to which the agent is exposed. Having observations

on p and σ2, the estimation of θ is immediate.

Now suppose that the habit is modeled as a fraction, λ, of c. Then, the observed premium

imposes a certain restriction on the power parameter and the habit, λ and α:

θ =
α

1− λ
, (4)

which can no longer be chosen independently. Hence, one cannot argue that a model with a low

power, α, and an arbitrarily high habit, λ, resolves the equity-premium puzzle, because such a model

might imply that the representative agent has a high level of relative risk aversion and is willing

to pay a higher premium, p, than is observed in the micro data. Hence, the constraint (4) implies

that whenever the habit parameter λ is increased, the power parameter α should be decreased, so

that the AP-RRA remains in harmony with the micro data. There is a good reason to believe that

once that is done, habit-formation preferences provide no solution to the equity-premium puzzle.

To see why, consider a two-period representative-agent exchange economy. The price of ‘tree’ j,

in terms of ‘apples’, is given by the Lucas formula:

qj = E

^
βuI (c2)
uI (c1)

yj2

�
, (5)

where β is the utility discount factor, t = 1, 2 is the time index, ct consumption, and y
j
2 the apple-

output (a random variable) of tree j. The formula can be applied to the price of riskless debt

(typically at zero net supply):

1

1 + r
= E

^
βuI (c2)
uI (c1)

�
, (6)
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with r being the risk-free rate.

Equation (5) can be applied to derive the price of the whole market, which we denote by q. It

follows from the exchange-economy assumption that national output, yt, is paid as a dividend, so

that ct = yt. Rearranging, and defining (1 + R) ≡ (y2 + q2)/q to be the gross rate of return on
equity we get:

1 =

^
βuI(y2)
uI(y1)

(1 +R)

�
. (7)

Note that q2 = 0 here but it is included in the definition for consistency with the dynamic section.

Decomposing the expression on the right-hand-side of (7) to the means and covariances of it’s two

random variables, and rearranging again we get:

1 + E(R)

1 + r
− 1 = −COV

l
β
uI(y2)
uI(y1)

, (1 +R)

M
. (8)

We can now linearize the marginal-utility function around E(y2):

uI (c2) ≈ uI (E(y2)) + uII (E(y2)) (y2 −E(y2)), (9)

Approximating the left-hand side of (8) and substituting (9) into (8) we obtain:

E(R)− r ≈
l
−E(y2) · u

II[E(y2)]
uI[E(y2)]

M
· COV

^
y2 − E(y2)
E(y2)

, (1 +R)

�
, (10)

or:

E(R)− r ≈ θσ2, (11)

where σ can be reinterpreted as the standard deviation of output growth.

Equation (11) captures the essence of the equity-premium puzzle. Since the standard deviation

of consumption growth rate is roughly 3.6% per year, and since most estimates put θ close to one,

the equity premium predicted by the model is about 0.1%. Since the actual equity premium is

about 6%, we have a puzzle. More so, when we realize the common-sense interpretation of equation

(11), a risk-averse agent is indifferent between bearing a risk with variance σ2 and insuring herself

at a premium of σ2 times her AP-RRA. By its very nature, macro risk cannot be insured, so the

representative agent has to bear it. Hence, equilibrium asset prices should be determined so as to

bring the agent to the point of indifference between bearing the risk and insuring it. That means

that risky assets should yield a premium over safe assets of an order of magnitude of the variance

of consumption growth times θ. Crucially, this argument is valid for a very large family of utility

functions, including those with a habit. Particularly, equation (11) implies that, at least up to a

first-order-approximation, the only parameter relevant to the risk premium is the AP-RRA. The

decomposition of θ to a habit and a power parameter is immaterial.

That leaves us with only a second-order effect to hope for. To check this point, we derive a

closed-form solution and simulate the model. Suppose that z = λy1; we denote by ξ the random
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(gross) growth rate (i.e. y2 = ξ ·y1) with mean (1+g) and variance σ2. Substituting these parameters
into equations (5) and (6) we obtain:

q

E(y2)
= βE

^
uI [y1 (ξ − λ)]

uI [y1 (1− λ)]
· ξy1
E(y2)

�
, (12)

and:

1

1 + r
= βE

^
uI [y1 (ξ − λ)]

uI [y1 (1− λ)]

�
. (13)

We parameterize the two period model according to the original Mehra-Prescott [1985] paper.

Namely, we assume g = .018 and a two-state growth process ξ = (1 + g) ± 0.036, each with a
probability of 1/2.1 Table 1 reports the results for the unconditional expected returns and the

equity premium against different levels of the habit, when the power, α, is adjusted according to (4)

so that the AP-RRA, θ, is kept constant at either one ore three.2 In order for the model to make

sense, we must insure that for any realization of consumption growth, marginal utility is always

positive. This implies that λ ∈ [0, 0.982). The results are straight forward: the level of the equity
premium is very close to that predicted by the first-order approximation (11), the second order

effect insignificantly decreasing the explanatory power of the model.

Although this second-order effect is not quantitatively significant, we seek to explain it. Consider

again the two-state case:

q = β

^
π1
uI (y12)
uI (y1)

y12 + π2
uI (y22)
uI (y1)

y22

�
, (14)

and:

1

1 + r
= β

^
π1
uI (y12)
uI (y1)

+ π2
uI (y22)
uI (y1)

�
, (15)

where the superscript in yit is an index for the state with i = 1, 2 and πi is its probability. We can

now compute the equity factor (one plus the equity premium):

E(y2)/q

1 + r
=
π1u

I (y12)E(y2) + π2u
I (y22)E(y2)

π1uI (y12) y12 + π2uI (y22) y22
, (16)

where:

E(y2) = π1y
1
2 + π2y

2
2. (17)

Rewriting the premium in terms of the (absolute value) marginal (subjective) rate of substitution

(MRS) we obtain:

1Mehra and Prescott [1985] account for an autocorrelation in the growth process of -0.14. Following Abel [1990],

and for the sake of simplicity, we ignore this effect.
2It is common to set α equal to one; see Constantinides [1990] and Boldrin, Christiano and Fisher [1997]. Campbell

and Cochrane [1999] set it equal to two.
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(E(y2)) /q

1 + r
=
MRS (y12, y

2
2) ·E(y2) + E(y2)

MRS (y12, y
2
2) · y12 + y22

(18)

where:

MRS
p
y12, y

2
2

Q
=
π1u

I (y12)
π2uI (y22)

. (19)

Equation (18) has a simple diagrammatical exposition: it is expected consumption, E(y2), evalu-

ated at the MRS at the state-contingent consumption point (y12, y
2
2), divided by state-contingent

consumption evaluated at the same MRS; namely, the ratio between segment (0,A) and segment

(0,B) in Figure 1. The steeper is the relevant MRS, the lower is the premium (as the vertical

distance, a, in Figure 1 falls and OB increases.)

We have:

MRS
p
y12, y

2
2

Q
=

X
π1y

2
2

π2y12

~θ
, (20)

while with a habit:

MRSH
p
y12, y

2
2

Q
=

^
π1 (y

2
2 − λy1)

π2 (y12 − λy1)

�θ
. (21)

It follows that:

MRSH (y12, y
2
2)

MRS (y12, y
2
2)

=

⎧⎨⎩ [(y22 − λy1) / (y
1
2 − λy1)]

(1−λ)

y22/y
1
2

⎫⎬⎭
θ

. (22)

The magnitude of the ratio relative to one is ambiguous: while (for the case of Figure 1):

(y22 − λy1)

(y12 − λy1)
<
y22
y12
, (23)

raising the left-hand side of (23) to the power of (1− λ) < 1 may reverse its direction.

Hence, the main moral of this section is that the habit and the power parameters (λ and α,

respectively) are two alternative formalizations of risk aversion, which are observationally equivalent

up to a first-order approximation. Any two time-separable utility functions, with or without a habit,

but with the same AP-RRA, span a ‘similar’ map of indifference curves, and generate approximately

the same equity premium. However, the curve that goes through the critical (y12, y
2
2) point may be

slightly steeper or slightly flatter (at that point) relative to the no-habit indifference curve. That

may generate a certain effect on the equity-premium, which may be either negative or positive.

This second-order effect is of minor quantitative significance, but for the canonical Mehra-Prescott

set of parameters, it happens to be negative and thus exacerbates the equity-premium puzzle.
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3 Infinite-horizon Model

It is well known that in a model without a habit, extending the time-horizon of the analysis (i.e.

adding more periods) affects the price-earnings ratio but not the equity premium. As the analysis

of the previous section concludes that a habit is just an alternative formulation of risk aversion,

one is tempted to stipulate that extending the time horizon of a habit-formation model would have

no effect on the equity premium. It turns out that this is not quite the case. As we shall see, the

results in this section differ somewhat from those of the previous section, the main novelty being

the dynamics of the habit itself. Although the effect on the equity premium is far from sufficient to

resolve the puzzle, the improvement could be considered a modest progress towards a resolution; if

only it did not create problems on other dimensions. As we shall see, the fluctuations in the habit

are first-order observationally equivalent to a preference shock, which does raise the volatility of

the risk-free rate in a manner that is inconsistent with the data.

3.1 A Model with an External Habit

Consider a representative agent with an ‘external’ habit:

U = Et
∞3
t=0

βtu (ct − zt) , (24)

u (ct − zt) =
1

1− α
(ct − zt)1−α , zt = λct−1. (25)

By external we mean that the agent does not internalize the effect of her selected level of consump-

tion on the habit formed next period. A possible interpretation of this formalization is that the

agent represents a wide (homogeneous) population where habits are determined by the population’s

mean-consumption level on which an individual decision-maker has no effect. Note that in such an

economy, the Lucas formula still holds:

qt = βEt

^
uI (ct+1 − zt+1)
uI (ct − zt) (qt+1 + yt+1)

�
. (26)

Substituting the price recursively and applying the law of iterative expectation, we can derive the

Lucas formula in its usual form:

qt = Et
∞3
j=1

^
βj
uI (ct+j − zt+j)
uI (ct − zt) yt+j

�
. (27)

The following no bubble condition must also hold:

lim
j→∞Et

^
βj
uI (ct+j − zt+j)
uI (ct − zt) yt+j

�
= 0. (28)

Equation (26), can be readily applied to price riskless debt (in zero net supply):
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1

1 + rt
= Et

^
β
uI (ct+1 − ht+1)
uI (ct − ht)

�
. (29)

We derive a closed-form solution using a two-state growth process, yt+1 = ytξt+1, and denote the

states as ‘low’ and ‘high’ (namely ξt+1 ∈ {l, h} respectively), with a probability of 1/2 for each state.
Substituting the exchange-economy condition ct = yt into equation (26) and using the homotheticity

of preferences, we obtain:

qt = ytβEt

⎡⎣uI (ξt+1 − λ)

uI
p
1− λ

ξt

Q (qt+1
yt+1

+ 1)ξt+1

⎤⎦ , (30)

which can be expressed as a multiplicative function of the two state variables yt and ξt:

qt = ytK (ξt) . (31)

Substituting (31) into (30) we obtain:

K (h) =
β

uI
p
1− λ

h

Q (A+B) , (32)

K (l) =
β

uI
p
1− λ

l

Q (A+B) , (33)

A =
uI (h− λ)h+ uI (l − λ) l

2
, (34)

B =
uI (h− λ) h ·K (h) + uI (l − λ) l ·K (l)

2
. (35)

Substituting (32) and (33) into (35) we obtain:

B = (A+B)C, C ≡ β

2

⎡⎣uI (h− λ)h

uI
p
h− λ

h

Q + uI (l − λ) l

uI
p
l − λ

l

Q
⎤⎦ , (36)

which allows us to solve for B and thus for:

K (h) =
β

uI
p
1− λ

h

Q A

1− C , (37)

K (l) =
β

uI
p
1− λ

l

Q A

1− C . (38)

More specifically:

A ≡ 1
2

^
h

(h− λ)α
+

l

(l − λ)α

�
, (39)

C ≡ β

2

�
h1−α + l1−α

=
. (40)
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The expected rate of return on equity is thus:

E(1 +Rt) = E

X
qt + yt
qt−1

~
= E

⎡⎣ξt
�
β
p
1− λ

ξt

Qα
A
1−C + 1

=
β
p
1− λ

ξt−1

Qα
A
1−C

⎤⎦ , (41)

where Rt is the rate of return on equity. Taking unconditional expectations over the four possible

realizations of ξt and ξt−1, we compute the unconditional expected rate of return on equity in an
artificial economy:

E(1 +Rt) =
1− C
4A

l^
h

X
h− λ

h

~α
+ l

X
l − λ

l

~α�
A

1− C + 2(1 + g)
M
× (42)^X

h

h− λ

~α
+

X
l

l − λ

~α�
.

We can also solve for the risk-free rate as:

1

1 + rt
=

X
1− λ

ξt

~α
β

2

^
1

(h− λ)α
+

1

(l − λ)α

�
. (43)

Taking unconditional expectations over the two possible realizations of ξt we get the expected

risk-free rate in the model economy:

E (1 + rt) =
1

β

^X
h

h− λ

~α
+

X
l

l − λ

~α� ^
1

(h− λ)α
+

1

(l − λ)α

�−1
. (44)

We simulate the model with the same Mehra-Prescott parameters used in the previous section,

namely g = 0.018, h = (1 + g) + 0.036, and l = (1 + g)− 0.036. The no bubble condition (28) can
be written as 1

2
β(h1−α + l1−α) < 1, which implies that no equilibrium exists for some parameter

values. As before, when we increase the habit parameter, we adjust the power so as to preserve

a constant AP-RRA. However, in the dynamic setting, the AP-RRA varies over time according to

the realization of the growth rate:

θt = α
ξt

ξt − λ
. (45)

We thus impose on the α− λ parameters the constraint that the mean AP-RRA:

E(θ) =
α

2

X
h

h− λ
+

l

l − λ

~
, (46)

remains constant over different levels of the habit. We set the mean AP- RRA to either one or

three. We use βs of either 0.99 or 0.95. The results are presented in Tables 2 and 3, and seem

to indicate some improvement in the model’s predictive power, although too small to resolve the

equity-premium puzzle.

In the previous section we have argued that the power and the habit are two alternative for-

mulations of risk aversion, which are observationally equivalent up to a first-order approximation.
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Thus, the modest improvement in the model’s predictive power deserves an explanation. We derive

a first-order approximation of the premium, similar to the one we derived in the previous section.

By moving qt to the other side of equation (26):

1 = βEt

^
uI (yt+1 − λyt)

uI (yt − λyt−1)
(1 + Rt+1)

�
. (47)

Taking similar steps to the previous section we obtain:

E(Rt+1 − rt) ≈ θ · COV (ξt+1, Rt+1) . (48)

or:

E(Rt+1 − rt) ≈ θ · COV
l
ξt+1, ξt+1

^
1 +K(ξt+1)

K(ξt)

�M
. (49)

Evidently, (and given that, typically, the equilibrium K(ξt), the price-dividend ratio, is much

larger than 1), it is not the habit per se that generates the modest improvement in the model’s

performance but its fluctuations over time. Without these fluctuations, the price-dividend ratio

would remain constant over time (see equations (31), (32), and (33)), and the model’s predicted

equity premium would remain very close to that which is obtained in a two-period model, namely

the AP-RRA times the variance of the growth rate.

To better appreciate this point, we express equation (49) as follows:

E(Rt+1 − rt) ≈ θ · COV
l
ξt+1,

^
ξt+1
K(ξt)

�M
+ θ · COV

l
ξt+1, ξt+1

^
K(ξt+1)

K(ξt)

�M
, (50)

or, using equations (30), and (31) as:

E(Rt+1 − rt) ≈ θ · COV
l
ξt+1,

^
ξt+1
K(ξt)

�M
+ θ · COV

⎧⎪⎨⎪⎩ξt+1, ξt+1
⎡⎢⎣

1
uI(1− 1

ξt+1
)

1
uI(1− λ

ξt
)

⎤⎥⎦
⎫⎪⎬⎪⎭ . (51)

By further approximations, one may derive:

E(Rt+1 − rt) ≈ θ

K(ξt)
σ2 + θ

X
1 + θ

λ

1− λ

~
σ2. (52)

The first term on the right-hand side is the dividend uncertainty priced according to the AP-RRA.

As we have already shown in the previous section, the small magnitude of this term is the very

source of the equity premium puzzle. The problem is exacerbated once that magnitude is divided

by the price-dividend ratio – typically a number much bigger than one. The second term is the

capital-gains uncertainty resulting from the fluctuations in the price-dividend ratio, which is also

priced according to the AP-RRA. As noted above, when the habit is zero, that expression collapses

again to θ · σ2, but non-zero habits would have a first-order effect on the equity premium.
Similar to the argument made in the previous section, we argue that the fluctuations in the

price-dividend ratio are observationally equivalent to some other, well-known, factor. Indeed, the
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similarity between habit fluctuations and a (transitory) preference shock is illuminating. This

similarity can be identified first on a formal level. Consider a general homothetic Von-Neuman-

Morgenstern utility function v(ct, 6t) where 6t is a transitory preference shock (with a positive partial

derivative). Then, following the same steps as above, one may verify that the equity premium can

be approximated by:

E(Rt+1 − rt) ≈ θ · COV
l
ξt+1,

^
ξt+1
K(ξt)

�M
+ θ · COV

⎧⎨⎩ξt+1, ξt+1
⎡⎣ 1
vI(1,6t+1)

1
vI(1,6t)

⎤⎦⎫⎬⎭ . (53)

Equation (53) may be thought of as a special case of equation (51), with ξt playing the same

technical role as 6t. Moreover, it is possible to calibrate the preference shock such that it would be

observationally equivalent to the habit, up to a first-order approximation. The only characteristic

that may distinguish the habit from a general preference shock is its ‘built in’ perfect correlation

with the one-period lagged output shock. However, the habit – like many other preference shocks

that have been tried before – cannot resolve the equity premium puzzle. The reason is that in

order to achieve even the modest improvement shown in Tables 2 and 3, the generated fluctuations

in the risk-free rate are already of an implausible magnitude.3

It might help to provide a more intuitive explanation of the similarity between a preference-shock

and the habit. A representative individual who faces a temporary increase in her marginal utility

of consumption, would try to move consumption from the future to the present. In an exchange

economy like ours, no such substitution is possible, and the shock must affect asset prices alone.

Thus, a simultaneous attempt by all agents to borrow against future income would increase the

interest rate up to the point that agents are no longer interested in substituting present for future

consumption. Equivalently, a negative realization of the growth rate would take the agent closer

to her habit and increase the marginal utility of consumption. Crucially, the agent knows that this

increase in the marginal utility of consumption is temporary, because soon enough she would get

used to the lower level of consumption. Hence, it is only due to the temporary nature of the effect

that she tries to borrow against future income.4

To summarize, the modest improvement in the model’s predictive power is due to the fluctuations

in the habit rather than the habit itself. The fluctuations in the habit operate in a manner that is

very similar to a preference shock. Like a preference shock, the improvement is due to the greater

risk in the capital-gains component of asset returns, and like a preference shock the improvement

is obtained at a cost of violating the observed variability of the risk-free rate.

3This is a point that goes back to Hansen and Jaganathan [1991] who measures the variability in the IMRS

necessary to resolve the equity-premium puzzle. This amounts to increasing the variability in the risk-free rate.
4Note that a negative autocorrelation in the output process, as is actually observed in the data, tends to alter

the effects somewhat since the shocks have some persistence. It is important to realize that in the end, one will still

have the same problem with matching the equity premium, see for example Boldrin, Christiano and Fisher [1997],

and Chapman [2002].
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3.2 A Model with Internal Habit Formation

For the sake of completeness, we also include the case of an ‘internal habit’, which is very similar to

the external case discussed above. By ‘internal habit’ we mean that the agent internalizes the effect

of her selected level of consumption on the habit formed next period; note however that the agent

is still a price taker with respect to the risk-free rate and equity prices. Consider a representative

agent with an ‘internal’ habit:

U = Et
∞3
t=0

βtu (ct − λct−1) , (54)

u (ct − λct−1) =
1

1− α
(ct − λct−1)

1−α . (55)

The Lucas formula still holds as follows:

qt = βEt

^
uI (ct+1 − λct) + βEt+1u

I (ct+2 − λct+1)

uI (ct − λct−1) + βEtuI (ct+1 − λct)
(qt+1 + yt+1)

�
. (56)

Substituting the price recursively and applying the law of iterative expectations, we can derive the

Lucas formula in its usual form:

qt = Et
∞3
j=1

^
βj
uI (ct+j − λct+j−1) + βEt+1u

I (ct+j+1 − λct+j)

uI (ct − λct−1) + βEtuI (ct+1 − λct)
yt+j

�
. (57)

The following no bubble condition must also hold:

lim
j→∞Et

^
βj
uI (ct+j − λct+j−1) + βEt+1u

I (ct+j+1 − λct+j)

uI (ct − λct−1) + βEtuI (ct+1 − λct)
yt+j

�
= 0. (58)

This no bubble condition can be rewritten as 1
2
β(u1−α + d1−α) < 1. The formula, equation (56),

can be applied to price riskless debt (in zero net supply):

1

1 + rt
= βEt

^
uI (ct+1 − λct) + βEt+1u

I (ct+2 − λct+1)

uI (ct − λct−1) + βEtuI (ct+1 − λct)

�
. (59)

Substituting ct = yt and yt+1 = ytξt+1, into (56) and using the homotheticity of preferences, we

obtain:

qt = ytβEt

^
ξ−αt

uI (ξt+1 − λ)− βλξ−αt+1Et+1uI (ξt+2 − λ)

uI (ξt − λ)− βλξ−αt EtuI (ξt+1 − λ)
(
qt+1
yt+1

+ 1)ξt+1

�
. (60)

Like before:

qt = ytK (ξt) , (61)

Substituting (61) into (60) we obtain:

K (h) =
βh−α

(h− λ)−α − βλh−αD
(A+B) , (62)
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K (l) =
βl−α

(l − λ)−α − βλl−αD
(A+B) , (63)

A ≡ 1
2

�
(h− λ)−αh− βλh1−αD + (l − λ)−αl − βλl1−αD

=
, (64)

B ≡ 1
2

�
(h− λ)−αhK(h)− βλh1−αDK(h) + (l − λ)−αlK(l)− βλl1−αDK(l)

=
, (65)

and:

D ≡ 1
2

�
(h− λ)−α + (l − λ)−α

=
. (66)

Substituting (62) and (63) into (65) we obtain:

B ≡ (A+B)C, C ≡ β

2

�
h1−α + l1−α

=
, (67)

which allows us to solve for B and thus for:

K (h) =
βh−α

(h− λ)−α − βλh−αD
A

1− C , (68)

K (l) =
βl−α

(l − λ)−α − βλl−αD
A

1− C . (69)

The expected rate of return on equity is thus:

E(1 +Rt) = E

^
qt + yt
qt−1

�
= E

^
ξt
K(ξt) + 1

K(ξt−1)

�
, (70)

where Rt is the rate of return on equity. Taking unconditional expectations over the four possible

realizations of ξt and ξt−1 we obtain the unconditional expected return to the stock. We can also
solve for the risk-free rate:

1

1 + rt
=

βξ−αt
(ξt − λ)−α − βλDξ−αt

p
D − βλDEt(ξ

−α
t+1)
Q
. (71)

Taking unconditional expectations over the two possible realizations of ξt we obtain the uncondi-

tional expected risk-free rate in the model economy:

E (1 + rt) =
1

2β

^X
h

h− λ

~α
+

X
l

l − λ

~α
− 2λD

� ^
1

D − βλDEt(ξ
−α
t+1)

�
. (72)

We simulate the model for the same parameter values as above. Since the AP-RRA varies according

to the realization of GNP growth rate, the constraint which is imposed on the power and the habits

is:

θt = ξt
α(ξt − λ)−α−1 + βαλ2Gξ−α−1t

(ξt − λ)−α − βλDξ−αt
, (73)
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where G = Et+2((ξt+1 − λ)−α−1). We set the mean AP-RRA to either one or three. We use βs of
either 0.99 or 0.95. The results are presented in Tables 4 and 5. Evidently, the improvement due

to the habit is even more modest than before.

4 Conclusion

In this paper we articulate a skeptical argument regarding the effectiveness of the habit-formation

hypothesis in resolving the equity-premium puzzle. Essentially, we argue that habit formation is

observationally equivalent, up to a first-order approximation, to some other effects that were already

shown to be insufficient in resolving the equity-premium puzzle.
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Tables

Table 1: Expected Returns and Equity Premium

θ = 1 θ = 3

λ E(R− r) E(R) E(r) E(R− r) E(R) E(r)

0 0.125% 2.83% 2.70% 0.375% 6.16% 5.77%

0.5 0.123% 2.75% 2.63% 0.369% 5.94% 5.55%

0.8 0.118% 2.55% 2.43% 0.354% 5.34% 4.97%

0.9 0.112% 2.26% 2.15% 0.334% 4.49% 4.14%

0.95 0.104% 1.80% 1.69% 0.313% 3.12% 2.80%

0.965 0.103% 1.45% 1.34% 0.308% 2.06% 1.75%
Notes : In this table we calculate the unconditional expected returns and equity premium for

consumption growth with ξ = 1.018 ± 0.036, each with a probability of 50%. We set β = 0.99 and
θ = 1 and 3. We adjust α so that as we change λ, θ remains constant.
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Table 2: Expected Returns and Equity Premium

External Habit Persistence, E(θ) = 3

β = 0.99

λ E(R− r) E(R) E(r) σR σr α

0 0.397% 6.16% 5.77% 3.75% 0% 3.00

0.2 0.618% 5.34% 4.72% 6.25% 2.19% 2.41

0.4 .840% 4.57% 3.73% 9.07% 4.33% 1.82

0.6 1.056% 3.85% 2.79% 11.97% 6.42% 1.23

0.7 1.166% 3.51% 2.34% 13.41% 7.43% 0.929

0.8 1.261% 3.16% 1.90% 14.80% 8.39% 0.629

0.9 non-existence

β = 0.95

λ E(R− r) E(R) E(r) σR σr α

0 0.414% 10.63% 10.22% 3.91% 0% 3.00

0.2 0.635% 9.77% 9.13% 6.43% 2.28% 2.41

0.4 0.856% 8.95% 8.10% 9.29% 4.51% 1.82

0.6 1.076% 8.19% 7.12% 12.25% 6.69% 1.23

0.7 1.18% 7.83% 6.65% 13.72% 7.74% 0.929

0.8 1.277% 7.46% 6.19% 15.13% 8.74% 0.629

0.9 1.29% 7.02% 5.73% 16.07% 9.40% 0.319

0.95 1.044% 6.53% 5.48% 14.89% 8.57% 0.147

Notes : In this table we calculate the unconditional expected returns and equity premium. We have

consumption growth, ξ = 1.018± 0.036, each with a probability of 50%. We adjust α so that as we
change λ, E(θ) remains constant. Non-existence means the no bubble condition is violated for that

parameterization.
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Table 3: Expected Returns and Equity Premium

External Habit Persistence, E(θ) = 1

β = 0.99

λ E(R− r) E(R) E(r) σR σr α

0 0.129% 2.828% 2.700% 3.63% 0% 1.000

0.2 0.153% 2.508% 2.36% 4.39% 0.71% 0.803

0.4 0.178% 2.194% 2.016% 5.23% 1.42% 0.606

0.6 non-existence

0.7 non-existence

0.8 non-existence

0.9 non-existence

β = 0.95

λ E(R− r) E(R) E(r) σR σr α

0 0.134% 7.158% 7.024% 3.79% 0% 1.000

0.2 0.159% 6.823% 6.665% 4.55% 0.74% 0.803

0.4 0.183% 6.494% 6.311% 5.39% 1.48% 0.606

0.6 0.2072% 6.171% 5.964% 6.28% 2.21% 0.409

0.7 0.219% 6.01% 5.79% 6.73% 2.56% 0.310

0.8 0.2283% 5.847% 5.619% 7.16% 2.90% 0.210

0.9 0.2263% 5.67% 5.44% 7.46% 3.13% 0.106

Notes : In this table we calculate the unconditional expected returns and equity premium. We have

consumption growth, ξ = 1.018± 0.036, each with a probability of 50%. We adjust α so that as we
change λ, E(θ) remains constant. Non-existence means the no bubble condition is violated for that

parameterization.

19



Table 4: Expected Returns and Equity Premium

Internal Habit Persistence, E(θ) = 3

β = 0.99

λ E(R− r) E(R) E(r) σR σr α

0 0.397% 6.164% 5.767% 3.75% 0% 3.00

0.2 0.493% 4.42% 3.95% 6.1% 2.1% 1.87

0.4 0.512% 3.02% 2.51% 8.21% 3.70% 0.96

0.6 non-existence

0.7 non-existence

0.8 non-existence

0.9 non-existence

β = 0.95

λ E(R− r) E(R) E(r) σR σr α

0 0.414% 10.634% 10.221% 3.9% 0% 3.00

0.2 0.515% 8.89% 8.37% 6.3% 2.2% 1.90

0.4 0.533% 7.40% 6.87% 8.4% 5.6% 0.99

0.6 0.523% 6.43% 5.91% 9.9% 5.0% 0.40

0.7 0.527% 6.14% 5.62% 10.48% 5.39% 0.22

0.8 0.539% 5.96% 5.42% 11.0% 5.7% 0.10

0.9 0.566% 5.88% 5.31% 11.4% 6.1% 0.03

Notes : In this table we calculate the unconditional expected returns and equity premium. We have

consumption growth, ξ = 1.018± 0.036, each with a probability of 50%. We adjust α so that as we
change λ, E(θ) remains constant. Non-existence means the no bubble condition is violated for that

parameterization.
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Table 5: Expected Returns and Equity Premium

Internal Habit Persistence, E(θ) = 1

β = 0.99

λ E(R − r) E(R) E(r) σR σr α

0 0.129% 2.828% 2.700% 3.6% 0% 1.00

0.2 0.112% 2.181% 2.058% 4.4% 0.7% 0.62

0.4 non-existence

0.6 non-existence

0.7 non-existence

0.8 non-existence

0.9 non-existence

β = 0.95

λ E(R − r) E(R) E(r) σR σr α

0 0.134% 7.158% 7.024% 3.79% 0% 1.00

0.2 0.129% 6.498% 6.369% 4.5% 0.8% 0.63

0.4 0.1179% 5.96% 5.84% 5.1% 1.3% 0.33

0.6 0.108% 5.60% 5.49% 5.6% 1.7% 0.13

0.7 0.103% 5.99% 5.39% 5.7% 1.8% 0.07

0.8 0.098% 5.42% 5.32% 5.7% 1.8% 0.03

0.9 0.097% 5.38% 5.28% 5.8% 1.8% 0.01

Notes : In this table we calculate the unconditional expected returns and equity premium. We have

consumption growth, ξ = 1.018± 0.036, each with a probability of 50%. We adjust α so that as we
change λ, E(θ) remains constant. Non-existence means the no bubble condition is violated for that

parameterization.
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