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Abstract

Kim, Shephard, and Chib (1998) provided a Bayesian analysis of stochastic volatility

models based on a fast and reliable Markov chain Monte Carlo (MCMC) algorithm. Their

method ruled out the leverage effect, which is known to be important in applications. De-

spite this, their basic method has been extensively used in the financial economics literature

and more recently in macroeconometrics. In this paper we show how the basic approach can

be extended in a novel way to stochastic volatility models with leverage without altering the

essence of the original approach. Several illustrative examples are provided.

Key words: Leverage effect, Markov chain Monte Carlo, Mixture sampler, Stochastic volatil-

ity, Stock returns.

1 Introduction

The stochastic volatility (SV) model, a specific non-linear state space model, has been the

subject of considerable attention in the econometric and statistical literatures because of the

many interesting challenges it raises for estimation and inference (see, for example, the reviews

in Ghysels, Harvey, and Renault (1996) and Shephard (2004)). It is also an important model

because of its significance in financial applications where it has been used to understand time-

varying volatility in high frequency asset returns. Kim, Shephard, and Chib (1998) developed

an approach for fitting and comparing the SV model that has been extensively employed (for

1



example, Mahieu and Schotman (1998), Primiceri (2005) and Stroud, Muller, and Polson (2003)).

This approach relies on a Bayesian Markov chain Monte Carlo (MCMC) sampling method

to summarize the posterior distribution of the model parameters and the latent time varying

volatilities. The approach is highly efficient in terms of the common metrics (for example

inefficiency factors) that are used to study the mixing properties of sequences that are produced

by the sampling algorithm. The Kim, Shephard and Chib approach, which is based on a certain

approximation to a log-chisqured distribution was developed for SV models without leverage

(correlation between the errors in the measurement and evolution equations). Leverage, however,

is known to be important in applications. The goal of this article, therefore, is to develop the

corresponding inferential methodology for SV models with leverage without altering the essence

of the Kim, Shephard and Chib approach.

The simplest model we study is the well known log-normal stochastic volatility (SV) model

given by

yt = ǫt exp(ht/2), (1)

ht+1 = µ + φ(ht − µ) + ηt, t = 0, 1, . . . , n,

where yt is the observed response, {ht} are unobserved log-volatilities, |φ| < 1,

(
ǫt

ηt

)
∼ N (0, Σ) , and Σ =

(
1 ρσ

ρσ σ2

)
.

The parameter ρ measures the leverage effect. The leverage effect refers to the increase in volatil-

ity following a drop in equity returns and, in this model, corresponds to a negative correlation

between ǫt and ηt (e.g. Black (1976), Nelson (1991) and Yu (2004)). The latter reference also

gives a discussion of various alternative MCMC schemes put forward in the literature.

In the Kim, Shephard, and Chib (1998) approach the distribution of log ǫ2t is approximated

by a mixture of seven Gaussian distributions such that the first four moments of both densities

are equal. They then wrote the mixture distribution hierarchically in terms of a latent compo-

nent indicator (one for each time period) and conducted the MCMC sampling on the posterior

distribution of the latent component indicators, the vector of latent volatilities h = {ht}n
t=1 and

the parameters. One key feature of their method is that it permits for the joint sampling of h

conditioned on the latent component indicators thus leading to posterior draws that mix better

than alternative approaches that rely on one-at-a time sampling of the volatilities. The sampling

is finished by a reweighting step to overcome any error arising from the mixture approximation.

Although this approach has proved valuable and has formed the basis of many subsequent stud-

ies it was designed only for the case where ρ = 0. In this paper we show that the approach can

be extended in a novel way to SV models with leverage by starting with the joint distribution of

log ǫ2t , ηt|sign(yt) and approximating this distribution by a suitably constructed ten-component

mixture of normal distributions. We discuss how this is done and show that it effectively solves

the problems of fitting SV models with leverage. We also show how our new approach can be

further extended to cover more general SV models than those given in (1).
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The rest of the paper is organized as follows. In Section 2 we develop in detail our approach

to dealing with SV models with leverage. Section 3 illustrates the working of this method,

while in Section 4 we illustrate the methods on some data from the Japanese stock market. In

Section 5 we show that the analysis extends to much wider classes of SV models, while Section

6 concludes.

2 Efficient auxiliary mixture sampler

2.1 Reformulation in the no leverage case

Following Nelson (1988) and Harvey and Shephard (1996), without loss of information we replace

(1) by (dt, y
∗

t ), the bivariate observations, where

dt = sign(yt) = I(ǫt > 0) − I(ǫt ≤ 0), (2)

y∗t = log y2
t = ht + ξt, (3)

and

ξt = log ǫ2t .

Thus

yt = dt exp(y∗t /2).

In the case where ρ = 0 the signs of y = (y1, ..., yn)′ are independent of y∗ = (y∗1, ..., y
∗

n)′

and we can neglect d = (d1, ..., dn)′. This greatly simplifies the development of an inferential

methodology because y∗ is a linear process (e.g. Harvey, Ruiz, and Shephard (1994)) with an

i.i.d. error ξt in (3) that follows a log χ2
1 density

f(ξt) =
1√
2π

exp

{
ξt − exp(ξt)

2

}
, ξt ∈ R.

Kim, Shephard, and Chib (1998) introduced the idea of accurately approximating this distribu-

tion by a mixture of normal distributions, selected to ensure that moments up to a certain order

are equal. In the Bayesian MCMC context, the resulting approximation error can be corrected

by reweighting the sequences sampled from the posterior distribution, as we discuss below in

subsection 2.3. The mixture approximation has the form of

g(ξt) =
K∑

i=1

pifN (ξt|mi, v
2
i ), ξt ∈ R (4)

where fN (ξt|mi, v
2
i ) denotes the density function of a normal distribution with mean mi and

variance v2
i . The constants mi and v2

i were determined by Kim, Shephard, and Chib (1998) on

the basis of K = 7 components. These values are reproduced in the first block of columns in

Table 1. In this paper we have favoured a tighter approximation, based on K = 10, which is

given in the second block of Table 1.

Figure 1 shows the differences between the approximate and the true densities of the log χ2
1
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KSC K = 10
i pi mi v2

i
pi mi v2

i
ai bi

1 0.04395 1.50746 0.16735 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.24566 0.52478 0.34023 0.04775 1.34744 0.17788 1.02248 0.51124
3 0.34001 −0.65098 0.64009 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.25750 −2.35859 1.26261 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.10556 −5.24321 2.61369 0.22715 −0.85173 0.62699 1.08153 0.54076
6 0.00002 −9.83726 5.17950 0.18842 −1.97278 0.98583 1.13114 0.56557
7 0.00730 −11.40039 5.79596 0.12047 −3.46788 1.57469 1.21754 0.60877
8 0.05591 −5.55246 2.54498 1.37454 0.68728
9 0.01575 −8.68384 4.16591 1.68327 0.84163
10 0.00115 −14.65000 7.33342 2.50097 1.25049

Table 1: Selection of (pi, mi, v
2
i , ai, bi). Left hand side was determined by Kim, Shephard and

Chib, the ones on the right hand side are new and represent a better approximation.

and
√

χ2
1 (for the range from the 1st percentile to the 99th percentile) for the two mixtures. We

can see that the move to K = 10 components improves the approximation.
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Figure 1: The difference between the approximate and the true densities (for the range from the
1st percentile to the 99th percentile). The log χ2

1 density (top) and the
√

χ2
1 density (bottom).
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2.2 Reformulation in general case

Now consider the general case of ρ 6= 0. The main complication is that dt is not ignorable

because, for example,

ηt|dt, ξt ∼ N
(
dtρσ exp (ξt/2) , σ2(1 − ρ2)

)
. (5)

Another complication is that ξt now enters both (3) and (5). To extend the approach of Kim,

Shephard, and Chib (1998) we consider the novel strategy of approximating the bivariate con-

ditional density of

ξt, ηt|dt

This bivariate density is key as

(ξt, ηt|dt) ⊥⊥ (ξs, ηs|ds)

for all t 6= s, where ⊥⊥ denotes probabilistic independence. Clearly

f(ξt, ηt|dt) = f(ξt|dt)f(ηt|ξt, dt)

= f(ξt)f(ηt|ξt, dt). (6)

Our idea now is to maintain the mixture approximation g(ξt) given in (4) and to consider the

approximation

g(ξt, ηt|dt) =
K∑

i=1

pifN (ξt|mi, v
2
i )fN

[
ηt|dtρσ exp(mi/2) {ai + bi (ξt − mi)} , σ2(1 − ρ2)

]
, (7)

where (ai, bi) are known constants. In other words, we utilize a mixture of bivariate Gaussian

densities to approximate the distribution of ξt, ηt|dt. The remaining question is the determination

of the density

fN

[
ηt|dtρσ exp(mi/2) {ai + bi (ξt − mi)} , σ2(1 − ρ2)

]

to well approximate the density of ηt|dt, ξt in the i-th component of the mixture distribution.

Due to the form of (5) this amounts to approximating

exp (ξt/2) exp(−mi/2)

by

(ai + bi (ξt − mi)),

given

ξt ∼ N(mi, v
2
i ).

We focus on this approximation because it does not depend upon ρ. Interestingly, ρ does not

affect the quality of the approximation as we show below. We find the values of (ai, bi) by

considering the mean square norm and setting

(ai, bi) = arg min
a,b

E{exp (ξt/2) exp(−mi/2)−a−b (ξt − mi)}2, ξt ∼ N(mi, v
2
i ), i = 1, 2, ..., K.
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By calculation we find that the solutions to this minimization problem are given by

ai = exp(v2
i /8),

bi = E{zt exp(vizt/2)} =
1

2
exp

(
v2
i

8

)
, i = 1, 2, ..., K.

The implied values of (ai, bi) are given in Table 1.

Remark 1 The key question is how well (7) approximate (6). We give results for ρ = −0.3,−0.6

and −0.9. Figure 2 shows f and g for ηt|ξt, dt = 1 evaluated with ξt set at its 25th, 50th and

75th percentiles. Likewise Figure 1 shows f and g for ξt|ηt, dt = 1 evaluated with ηt = −0.67σ,
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Figure 2: The conditional density of ηt given dt = 1 and vt = log χ2
1(0.25), log χ2

1(0.5),
log χ2

1(0.75) (left, middle, right) for ρ = −0.3, −0.6, −0.9 (top, middle, bottom).

0, 0.67σ. The results suggest the approximation is quite good for it is very hard to see any

difference between the true densities f and the approximations g. Further, Figure 4 shows the

marginal density of ηt given dt = 1. It is clear that the true conditional joint density given dt is

well approximated by the stated bivariate normal mixture.
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Figure 3: The conditional density of vt given dt = 1 and ηt = −0.67σ, 0, 0.67σ (left, middle,
right) for ρ = −0.3, −0.6, −0.9 (top, middle, bottom). The value of σ is set to 1 in this
example.

2.3 MCMC algorithm

2.3.1 Broad principles

The SV model can be expressed as

(
y∗t

ht+1

)
=

(
ht

µ + φ(ht − µ)

)
+

(
ξt

ηt

)
.

Now on using the mixture approximation (7) to the density ξt, ηt|dt and introducing the mixture

component indicator st ∈ {1, 2, ..., K} we have that

{(
ξt

ηt

)
|dt, st = i

}
L
=

(
mi + vizt

dtρσ(ai + bivizt) exp(mi/2) + σ
√

1 − ρ2z∗t

)
,

(
zt

z∗t

)
i.i.d.∼ N(0, I).
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Figure 4: The marginal density of ηt given dt = 1 for ρ = −0.3, −0.6, −0.9 (left, middle, right).
The value of σ is set to 1 in this example.

If we let s = (s1, ..., sn), θ = (φ, ρ, σ) and assume that µ ∼ N(µ0, σ
2
0) and h1|µ ∼ N(µ0, σ

2/(1−
φ2)), then under the auxiliary notation

µ̃1 = µ̃2 = ... = µ̃n = µ,

we have that the SV model with leverage can be expressed in linear Gaussian state space form

(e.g. Harvey (1989), West and Harrison (1997) and Durbin and Koopman (2001))




y∗t

ht+1

µ̃t+1


 =




ht

µ̃t + φ(ht − µ̃t)

µ̃t


+




ξt

ηt

0


 , (8)

where (
h1

µ̃1

)
∼ N

((
µ0

µ0

)
,

(
σ2/(1 − φ2) + σ2

0 σ2
0

σ2
0 σ2

0

))
. (9)

Under a given prior π(θ) on θ, it is now possible to efficiently sample the posterior density

g(s, h, θ, µ|y∗, d), where h = (h1, ..., hn) , (10)

by MCMC techniques (see for example Chib (2001) for a review of these methods). Of course,

this posterior is not exactly the correct one, but we will see in subsection 2.4 that it is easy to

correct the small error by reweighting the sampled draws.

There are a number of different ways of sampling the posterior density above but the scheme

given next is relatively simple, fast and efficient as we will show.

1. Initialize s, h, µ and θ.

2. Sample s|h, µ, θ, y∗, d.

3. Sample (h, µ, θ)|s, y∗, d by
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(a) Sampling θ|s, y∗, d.

(b) Sampling µ, h|θ, s, y∗, d.

4. Go to 2.

2.3.2 Step 2

We first define

ξt = y∗t − ht, ηt = (ht+1 − µ) − φ(ht − µ),

then evaluate for each i = 1, 2, ..., K

π(st = i|h, µ, θ, y∗, d)

∝ π(st = i|ξt, ηt, dt, µ, θ)

∝ Pr(st = i)v−1
i exp

{
−(ξt − mi)

2

2v2
i

− [ηt − dtρσ exp(mi/2) {ai + bi (ξt − mi)}]2
σ2(1 − ρ2)

}
.

This discrete distribution is sampled by the inverse distribution method.

2.3.3 Step 3

In Step 3a we sample the density

π(θ|s, y∗, d) ∝ g(y∗|d, s, θ)π(θ),

marginalized over µ. The density g(y∗|d, s, θ) is found from the output of the Kalman filter

recursions applied to the model in (8) and (9). As one of the elements of the state vector is µ,

which is time-invariant, this density can also be computed by the so-called augmented Kalman

filter (e.g. Durbin and Koopman (2001)) but this procedure is computationally more involved.

For the sampling we rely on the Metropolis-Hastings algorithm with a proposal density based

on a Laplace approximation of π(θ|s, y∗, d) (e.g. Chib and Greenberg (1995)). We define θ̂ =

(φ̂, σ̂2, ρ̂)′ which maximizes (or approximately maximizes) g(y∗|d, s, θ)π(θ). Then we generate a

candidate γ∗ from the truncated normal distribution, TNR(θ̂, Σ∗), where

Σ−1
∗

= − ∂2 log g(y∗|d, s, θ)π(θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂

,

and R = {γ : |φ| < 1, σ2 > 0, |ρ| < 1}. Alternatively, we may generate a candidate using

a transformation θ1 = log(1 + φ) − log(1 − φ), θ2 = log σ2
1, θ3 = log(1 + ρ) − log(1 − ρ). The

proposal values are accepted or rejected according to the Metropolis-Hastings probability of

move. When the Hessian matrix is not be negative definite (e.g. when |ρ̂| ≈ 1), we take a flat

proposal µ∗ = θ̂ and Σ∗ = c0I using some constant c0.

Step 3b, the sampling of g(h, µ|d, s, θ), is simple and is implemented with the help of the

Gaussian simulation smoother (Frühwirth-Schnatter (1994), Carter and Kohn (1994), de Jong
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and Shephard (1995) and Durbin and Koopman (2002)). Software for carrying out Gaussian

simulation smoothing is widely available (Koopman, Shephard, and Doornik (1999)).

2.4 Correcting for misspecification

In our approach we approximate the true bivariate density f(ξt, ηt|dt, θ) with our convenient

mixture density g(ξt, ηt|dt, θ). Thus the draws from our MCMC procedure

hj , µj , θj , j = 1, 2, ..., M,

are from the approximate posterior density g(h, µ, θ|y∗, d). To produce draws from the correct

posterior density f(h, µ, θ|y∗, d) we simply re-weight the sampled draws. Define

ξj
t = y∗t − hj

t , ηj
t = (hj

t+1 − µj) − φj(hj
t − µj).

Then we compute the weights

w∗

j =
n∏

t=1

f(ξj
t , η

j
t |dt, θ

j)

g(ξj
t , η

j
t |dt, θj)

, j = 1, 2, ..., M,

and let

wj =
w∗

j∑M
i=1 w∗

i

.

We can now produce a sample from f(h, µ, θ|y∗, d) by resampling the sampled variates with

weights proportional to wj . Furthermore, posterior moments can be computed by weighted

averaging of the MCMC draws. We will see in the Monte Carlo experiments and in the em-

pirical work that the variance of these weights is small, a consequence of the accuracy of our

approximation, and so the effect of reweighting is modest.

2.5 Associated particle filter

In order to complete our inferential approach for this model we discuss a simulation-based

approach to filtering. In particular, we show how we can recursively sample the distributions

ht|y1, ..., yt, ht+1|y1, ..., yt and yt+1|y1, ..., yt, all conditional on µ, σ, ρ, φ. These sampled variates

allow us to calculate marginal likelihoods, Bayes factors and goodness of fit statistics. The

filtering and the associated computations are carried out by particle filter methods (e.g., in

this context, Kim, Shephard, and Chib (1998) and Pitt and Shephard (1999) or more generally

Doucet, de Freitas, and Gordon (2001)).

To implement particle filtering it is helpful to define the state as αt = (ht+1, ht) in which

case the SV model with leverage can be expressed in the form of a non-linear, non-Gaussian

state space model with measurement density

f(yt|αt) = fN (yt|ρηtσ
−1 exp(ht/2),

(
1 − ρ2

)
exp(ht)), (11)

10



where

ηt = (ht+1 − µ) − φ(ht − µ),

and evolution equations

(
ht+2

ht+1

)
=

(
µ(1 − φ)

0

)
+

(
φ 0

1 0

)(
ht+1

ht

)
+

(
ηt+1

0

)
. (12)

Our particle filtering method, which we now describe, is based on draws from (12) followed by

evaluations of the density in (11).

1. Initialize t = 0, αi
0 from its unconditional distribution for i = 1, 2, ..., I.

2. For each i simulate

αi,j
t+1|αi

t, j = 1, 2, ..., J, (13)

and compute wi,j = f(yt+1|αi,j
t+1) and Wi,j = F (yt+1|αi,j

t+1). Record

wt+1 =
1

IJ

J∑

j=1

I∑

i=1

wi,j , W t+1 =
1

IJ

J∑

j=1

I∑

i=1

Wi,j .

3. Resample αi,j
t+1 with probabilities proportional to wi,j to produce a sample of size I, which

we label as α1
t+1, α

2
t+1, ..., α

I
t+1.

4. Increment t and go to 2.

It can be shown that as I, J → ∞, wt+1
p→ f(yt+1|y1, ..., yt), and W t+1

p→ F (yt+1|y1, ..., yt),

the predictive distribution function. In addition, the draws on αt+1 are particles from αt+1|y1, ..., yt,

while the resampled items at stage 3 are samples from αt+1|y1, ..., yt+1. It therefore follows that

n∑

t=1

log wt
p→

n∑

t=1

log f(yt|y1, ..., yt−1, µ, σ, ρ, φ),

is a consistent estimate of the conditional log-likelihood and can be used as an input in the

calculation of the marginal likelihood by the method of Chib (1995). Likewise the sequence

of W t, and its reflected version 2
∣∣W t − 1/2

∣∣, can be used to check for model fit as these are

approximately i.i.d. standard uniform if the model is correctly specified. This diagnostic was

introduced into econometrics by Kim, Shephard, and Chib (1998), while earlier work along these

lines in statistics include Shephard (1994), Smith (1985) and Rosenblatt (1952). Diagnostic

checking of this type has been further popularized by Diebold, Gunther, and Tay (1998).

3 Illustrative example

This section gives illustrative examples to show the performance of the approximation discussed

above. In the examples, we use y∗t = log(y2
t +c) where the offset c is introduced to deal with very

small values of y2
t as in Kim, Shephard, and Chib (1998). Because our ten component mixture
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approximation provides an improved fit to the left tail of the log χ2
1 density we set c equal to

0.0001 which is smaller than the value of c = 0.001 used by KSC.

We simulated the data from the stochastic volatility model (1) by letting φ = 0.97, β ≡
exp(µ/2) = 0.65, σ = 0.15 and ρ = −0.3. These values are based on the estimates reported by

KSC and Yu (2004) in their analysis of daily returns on foreign exchange rates and the S&P500

index. In addition, we also consider models with ρ = 0, −0.6, −0.9 to investigate the effect of ρ

on the quality of our inferences. In each case, we consider samples with n = 1, 000 observations.

The results are based on the prior distribution

µ ∼ N(0, 1),
φ + 1

2
∼ Beta(20, 1.5),

σ−2 ∼ Gamma

(
5

2
,
0.05

2

)
, ρ ∼ U(−1, 1),

where U(−1, 1) denotes a uniform distribution on (−1, 1). In the MCMC sampling of the poste-

rior distribution, the initial 500 variates are discarded and the subsequent M = 5, 000 values are

retained for purposes of analysis. Figure 3 shows the sample paths, the sample autocorrelations

function and the posterior densities of parameters for the case ρ = −0.3. The sample paths look

stable and the sample autocorrelations decay quickly. In Table 2, the summary statistics are

given for the cases ρ = −0.3, −0.6 and −0.9. The posterior means are close to the true values,

and all true values are contained in the 95% credible intervals.

To measure how well the chain mixes, we calculate the inefficiency factors. The inefficiency

factor (equivalently the autocorrelation time) is defined as 1 + 2
∑

∞

s=1 ρs where ρs is the sample

autocorrelation at lag s calculated from the sampled values. In KSC, where the ρ = 0 case was

considered, the inefficiency factors were in the range 30 ∼ 150 (Table 5, KSC) for the original

mixture sampler and 10 ∼ 16 for the improved integration sampler (Table 6, KSC). In our

MCMC implementation, these values are still small for ρ = −0.3,−0.6 and −0.9, showing that

our sampler is highly effective.

In order to judge the quality of our approximation we next report the distribution of the

weights as discussed above. Figures 3 and 7 shows the distribution of log(w(i) × M), which

would all have been zero if the approximation were exact. Figure 3 looks at the case of ρ = 0

and compares the K = 7 component analysis advocated by Kim, Shephard, and Chib (1998) to

our more refined K = 10 component analysis. While the standard deviation of the log-weights

based on K = 7 is 0.92, it is 0.05 when K = 10. Kim, Shephard, and Chib (1998) demonstrated

that reweighting had little impact on posterior inference about θ, µ, so we would expect that

the improvement here is gratifying but small from a practical viewpoint.

In Figure 7, the distributions of log(w(i) × M) are shown for our new approximation in an

asymmetric volatility model (ρ = −0.3,−0.6,−0.9). For ρ = −0.3, its standard deviation is 0.41,

which is much smaller than that of KSC in the symmetric volatility model. For ρ = −0.6, the

distribution is skewed to the left, and we have a slightly larger but still small standard deviation,

0.83. For ρ = −0.9, the distribution is skewed to the left and the standard deviation is 1.73.

This latter case is, however, somewhat special because in our analysis of real financial data we

usually find that ρ = −0.3 ∼ −0.5.

12



0 400 800 1200

0

1 φ

0 400 800 1200

0

1 σ

0 400 800 1200

0

1 ρ

0 400 800 1200

0

1 exp(µ/2)

0 2000 4000

0.90

0.95

φ

0 2000 4000

0.1

0.2

0.3
σ

0 2000 4000

−0.75

−0.50

−0.25

0.00 ρ

0 2000 4000

0.6

0.7

0.8

0.9 exp(µ/2)

0.85 0.90 0.95 1.00

10

20

φ

0.1 0.2 0.3

5

10

15 σ

−0.5 0.0

1

2

3

ρ

0.6 0.8

5

10
exp(µ/2)

Figure 5: Asymmetric stochastic volatility model (ρ = −0.3). Sample autocorrelation functions,
sample paths and estimated posterior densities.

4 Real data example

In this section, we apply our approximate bivariate mixture model to the stock returns data.

The data are daily returns of TOPIX (Tokyo Stock Price Index), and are calculated as the

differences in the logarithm of the daily closing value of TOPIX. The sample period is from

January 5, 1998 through December 30, 2002 leading to a sample of 1, 232 days on which the

market was open. Table 3 gives the summary statistics of the data. The mean and standard

deviation of the returns are −0.026 and 1.284 respectively. In addition, there were 602 days

when yt > 0 and 630 days when yt ≤ 0.

In our analysis of these data, we use the same prior distribution given above. Again as

above, in the MCMC design, the initial 500 iterations are discarded and the following 5, 000

values are recorded. Figure 8 shows the sample paths, the posterior densities and the sample

autocorrelation functions of (φ, σ, ρ, β = exp(µ/2)). The sample autocorrelations decay quickly

and the output mixes well.

Table 4 shows the estimated posterior means, standard deviations, the 95% credible intervals

and inefficiency measures. Inefficiency factors are small, suggesting that 1, 000 variates would
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Figure 6: Histogram of the log(w(i) × M) where M = 5, 000 is a number of samples for a
symmetric stochastic volatility model (ρ = 0). Left: KSC (K = 7). Right: New (K = 10).
Other line: the normal density function setting its mean and variance equal to the sample mean
and sample variance.

be enough to calculate posterior moments of the parameters. The posterior means of φ, σ, β are

0.95, 0.13 and 1.21 respectively, which are typical of the values found in prior analysis of these

data.

The posterior mean of ρ is −0.36 and negative as expected. Since its 95% credible interval

is [−0.59, −0.11], the correlation coefficient ρ is significantly below zero. The negative value of

ρ indicates that the leverage effect is present in these data.

Figure 9 shows the distributions of log(w(i) × M) for the proposed sampler. As in the

illustrative examples when ρ = −0.3, the log weights are concentrated around zero, and the

standard deviation is 0.34. In contrast, Kim, Shephard, and Chib (1998) in the context of the

basic SV model report a standard deviation of around 1.0 in their analysis of similar data. This

shows that our overall approach is well behaved.

Table 4 shows the effect of reweighting on inference. We see that reweighting has a small

effect on the estimates of the posterior mean. In the first column of Table 5 we present the log

of the marginal likelihood for the SV model in the ρ = 0 case. The marginal likelihood here and

elsewhere was calculated by the method of Chib (1995). The log-likelihood ordinate, which is an

input into this computation, was calculated from a run of the particle filter run with I = 2, 500

and J = 10. The marginal likelihood of this model can be compared to the SV model with

leverage given in the third column of the table. The results show that the model with leverage

improves the likelihood, evaluated at the posterior mean, by around 4 at the cost of a single

parameter. On the basis of the log marginal likelihood, which contains an automatic penalty

for model complexity, we find that the log of the Bayes factor in favor of the leverage model is

around 2.
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Figure 7: Histogram of the log(w(i) × M) where M = 5, 000 is a number of samples for an
asymmetric stochastic volatility model. Top right: New (ρ = −0.3, K = 10). Top left: New
(ρ = −0.6, K = 10). Bottom left: New (ρ = −0.9, K = 10). Other line: the normal density
function setting its mean and variance equal to the sample mean and sample variance.

5 More general dynamics

5.1 Framework

Precisely the same methods can be used to handle flexible models of the type

yt = ǫt exp(ht/2), ht = z′tαt, (14)

αt+1 = bt + Ttαt + ηt, (15)

where zt, bt and Tt are non-stochastic processes, potentially dependent on some parameter θ.

We assume that (
ǫt

ηt

)
∼ N (0, Σ) , Σ =

(
1 σ′

σ Ω

)
. (16)

In order to simplify the exposition assume that Ω is non-singular. In principle this framework

can allow general forms of leverage wherein the dependence between ǫt and the elements of ηt

is allowed to vary over the individual elements.
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Unweighted Weighted
Parameter True value Mean Stdev. Mean Stdev. 95% interval Inefficiency

φ 0.97 0.9533 0.0173 0.9532 0.0172 [0.9123, 0.9795] 8.5
σ 0.15 0.1554 0.0325 0.1556 0.0326 [0.1009, 0.2257] 14.7
ρ -0.3 -0.4728 0.1253 -0.4673 0.1253 [-0.6915, -0.1984] 7.9
β 0.65 0.6993 0.0393 0.6988 0.0392 [0.6267, 0.7812] 2.2
φ 0.97 0.9563 0.0145 0.9562 0.0147 [0.9237, 0.9781] 12.6
σ 0.15 0.1667 0.0305 0.1669 0.0310 [0.1152, 0.2337] 16.1
ρ -0.6 -0.7069 0.0951 -0.7027 0.0962 [-0.8623, -0.4922] 11.0
β 0.65 0.6862 0.0355 0.6865 0.0355 [0.6195, 0.7593] 2.5
φ 0.97 0.9700 0.0074 0.9703 0.0073 [0.9537, 0.9827] 7.5
σ 0.15 0.1844 0.0268 0.1828 0.0268 [0.1360, 0.2399] 9.5
ρ -0.9 -0.8296 0.0607 -0.8290 0.0610 [-0.9301, -0.6859] 11.0
β 0.65 0.6370 0.0446 0.6367 0.0442 [0.5584, 0.7345] 3.8

Table 2: Summary statistics for three simulation experiments using a variety of values of ρ.
Sample size is 1,000 throughout.

TOPIX (1998/1/5 - 2002/12/30)
Obs. Mean Stdev Max Min pos(+) neg(-)
1,232 -0.0255 1.2839 5.3749 -5.6819 602 630

Table 3: Summary statistics for TOPIX return data (log-difference).

This structure implies that

ηt|dt, ξt ∼ N
(
dtσ exp (ξt/2) , Ω − σσ′

)
.

Then, if we use our bivariate mixture approximation, we get that

{(
ξt

ηt

)
|dt, st = i

}
L
=

(
mi + vizt

dtσ(ai + bivizt) exp(mi/2) + (Ω − σσ′)1/2 z∗t

)
,

where (zt, z
∗

t )
′ i.i.d.∼ N(0, I). Therefore, except for an increase in the dimension of the problem,

this extension raises no new issues for our MCMC implementation.

Unweighted Weighted
Parameter Mean Stdev. Mean Stdev. 95% interval Ineff Posterior correlation

φ 0.9511 0.0185 0.9512 0.0185 [0.908, 0.980] 9.3 1 -.66 -.30 -.06
σ 0.1343 0.0262 0.1341 0.0264 [0.091, 0.193] 13.0 1 .19 -.08
ρ -0.3617 0.1265 -0.3578 0.1257 [-0.593,-0.107] 6.8 1 .13
β 1.2056 0.0573 1.2052 0.0571 [1.089, 1.318] 2.7 1

Table 4: Estimation result for TOPIX. Sample size was 5,000, based on 5,500 MCMC draws,
discarding the first 500. Posterior correlation denotes the posterior correlation matrix.
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Figure 8: Estimation result for TOPIX. Sample autocorrelation functions, sample paths of
MCMC output and estimated posterior densities.

5.2 Example: superposition model

Suppose that

ht =
I∑

i=1

αi,t,

where

αt+1 =




µ

0

0
...

0




+




φ1 0 0 · · · 0

0 φ2 0 · · · 0

0 0 φ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · φI







αt −




µ

0

0
...

0







+ ηt,

and

(
ǫt

ηt

)
∼ N (0, Σ) , Σ =




1 ρ1σ1 ρ2σ2 · · · ρIσI

ρ1σ1 σ2
1 0 · · · 0

ρ2σ2 0 σ2
2 · · · 0

...
...

...
. . .

...

ρIσI 0 σ2
I




.

Then the log-volatility is made up of the sum of independent autoregressions, each with a

different persistence level and degree of leverage. Superposition models of this type have become

popular in financial econometrics as they are more general than empirically limiting Markov
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Figure 9: Sampling result of log-weights log(w(i) × M) for the TOPIX series. Shows histogram
and fitted normal density.

volatility models while close to corresponding continuous time models (Shephard (1996), Engle

and Lee (1999), Barndorff-Nielsen and Shephard (2001) and Chernov, Gallant, Ghysels, and

Tauchen (2003)). It is easy to check that for Σ to be positive definite we need
∑I

i=1 ρ2
i < 1.

Column 6 of Table 5 shows that for the TOPIX data set adding a second volatility component

to the model has a modest effect on the fit of the model as measured by the log marginal

likelihood. These results are based on a prior where (φ2 + 1)/2 ∼ Beta(10, 10) with the side

constraint that φ2 < φ1. Further, we assume (ρ2 + 1)/2 ∼ Beta(10, 10) with the constraint

that 0 < ρ2
1 + ρ2

2 < 1. Finally, σ−2
2 ∼ Gamma(5/2, 0.05/2). To generate a candidate with such

constraints, we may consider a transformation θ1 = log(1 + φ1)− log(1−φ1), θ2 = log(1 + φ2)−
log(φ1 − φ2), θ3 = log σ2

1, θ4 = log σ2
2, θ5 = log(1 + ρ1) − log(1 − ρ1) and θ6 = log(

√
1 − ρ2

1 +

ρ2)− log(
√

1 − ρ2
1 − ρ2). Even though the log-likelihood, evaluated at the posterior mean of the

parameters, is higher than the one component model, the new model has three extra parameters

σ2, ρ2 and φ2, which is obviously penalized in the marginal likelihood computation.
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SV SV-t ASV ASV-t ASV-g SP

Likelihood ordinate -2033.98 -2033.24 -2029.85 -2029.30 -2028.87 -2029.75

(S.E.) (0.38) (0.33) (0.54) (0.48) (0.57) (0.25)

Prior ordinate 3.75 0.16 3.09 3.38 3.38 7.84

Posterior ordinate 8.87 5.17 10.25 12.50 12.50 14.81

(S.E.) (0.02) (0.20) (0.02) (0.04) (0.04) (0.04)

Marg Likelihood -2039.10 -2038.24 -2037.00 -2038.41 -2037.98 -2036.72

(S.E.) (0.38) (0.39) (0.54) (0.49) (0.57) (0.25)

Table 5: Marginal likelihood estimation by the Chib (1995) method for the TOPIX data. All
values are in the natural-log scale. SV, SV-t and SV-g denote the SV models with Gaussian,
student t and normal log-normal errors. ASV allows ρ 6= 0. SP denotes superposition model.

5.3 Example: heavy-tailed error distribution

Many writers have followed Harvey, Ruiz, and Shephard (1994) in extending the SV model to

allow for heavier tailed returns. For example, Chib, Nardari, and Shephard (2002) extended the

basic Kim, Shephard, and Chib (1998) approach by letting

yt =
√

λtǫt exp(ht/2), (17)

ht+1 = µ + φ(ht − µ) + ηt, t = 0, 1, . . . , n, (18)

where λt is an i.i.d. scale mixture variable and λt ⊥⊥ (ǫt, ηt). This is relevant empirically and

also maps into the literature on time-change Lévy processes and Lévy based SV models (Carr,

Geman, Madan, and Yor (2003), Carr and Wu (2004) and Cont and Tankov (2004)). Papers on

various inferential aspects of these models include Barndorff-Nielsen and Shephard (2003) and

Li, Wells, and Yu (2004). In this subsection we will assume that

log λt ∼ N(−0.5τ2, τ2),

in which case λ
1/2
t ǫt has a normal log-normal distribution. This specification is closed in the

empirical work by assuming that τ2 ∼ Gamma(1, 1).

The above model fits into the framework put forward in (14)-(16) by writing

yt = ǫt exp(ht/2), (19)

ht = h∗

t+1 + λt, (20)

h∗

t+1 = µ + φ(h∗

t − µ) + ηt, t = 0, 1, . . . , n, (21)

where 


ǫt

ηt

λt


 ∼ N







0

0

−0.5τ2


 ,




1 ρσ 0

ρσ σ2 0

0 0 τ2





 .

Therefore, this extension again raises no new inferential issues.
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Table 5 gives results for the three different heavier tailed specifications. In the second

column we report the results when
√

λtǫt follows a student-t distribution with ν degrees of

freedom, where ν ∼ Gamma(16, 0.8). The fit of this model is better than the basic model, but

not over the leverage model. The fifth column reports the results for the Gaussian SV model

which is marginally better than the student-t model. Overall, however, the simple Gaussian SV

model with leverage is preferred for these data.

6 Conclusion

In this paper we have extended the Kim, Shephard, and Chib (1998) approach to SV models

with leverage. This approach starts with the joint distribution of log ǫ2t , ηt|sign(yt) which is

then approximated by a suitably constructed ten-component mixture of bivariate normal dis-

tributions. We show that this approach, which is easy to implement and produces output that

mixes well, effectively solves the problems of fitting SV models with leverage. We also show

how our new approach can be further extended to cover even more general SV models such

as those with heavy-tailed distributions and superposition effects. In each case, our algorithm

performs as well as the original Kim, Shephard, and Chib (1998) algorithm but is applicable

under wider conditions. We also discuss the computation of the marginal likelihood and Bayes

factors and provide an empirical analysis of real Japanese stock return data where the SV model

with leverage is preferred over competing models.
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