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Abstract. We study price formation in securities markets, using the sequential trade framework of Glosten

and Milgrom [7]. This paper makes one basic methodological advance over previous research on sequen-

tial securities trading: we allow traders to choose fromn trade sizes in a multi-period market, wheren can

be arbitrarily large. We examine how trade size multiplicity affects the intertemporal dynamics of trading

strategies, bid-ask spreads, and information revelation. We show that price impact, as a function of trade

size, is increasing and exhibits (discrete) concavity.
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1 Introduction

Market microstructure studies the price formation process, and how this process is affected by the orga-

nization of the market. The main objective of this paper is to understand how trade sizes affect the price

formation process dynamically within an environment where traders can choose from multiple trade sizes.

There are two standard reference frameworks in the market microstructure theory. One is the contin-

uous auction framework, first developed by Kyle [13]. The other is the sequential trade framework, intro-

duced by Copeland and Galai [4] and Glosten and Milgrom [7]. In the Kyle framework the asset orders

are submitted first then the asset prices are set and made public whereas in the sequential trade framework

the prices are announced before the orders are submitted. Both frameworks are sufficiently simple and

well-behaved that they easily lend themselves to analysis of policy issues and empirical tests.1 Although

most markets are organized as in the sequential trade models, these models tend to be less tractable than

the Kyle model as Back and Baruch [2] point out.2

In this paper, we adopt the sequential trade framework to study the relationship between price, trade

size, and information. Sequential trade models consider markets where a risky asset is traded between a

market maker, strategic traders and liquidity traders. First, the market maker, who is not informed of the

risky asset payoff, quotes the bid and ask price. Then either a strategic trader or a liquidity trader arrives

at the market in a random manner. The liquidity trader’s trading motive is not related to the risky asset

payoff at all. Whereas the strategic trader has information on the risky asset payoff, hence her trades reveal

information. In the model of Copeland and Galai [4], the risky asset payoff becomes public information

after each trade. In the Glosten and Milgrom [7] model, trading goes on for many rounds before the risky

asset payoff is made public. Therefore, the latter allows us to see how price compounds information over

time. Glosten and Milgrom [7] also show that the bid-ask spread declines in expectation, and that the

spread eventually vanishes almost surely as the number of trading rounds tends to infinity.

One of the simplified assumptions in Glosten and Milgrom [7] is that traders can only trade one share

at any given period. Easley and O’Hara [6] extend the Glosten-Milgrom model by allowing for two

trade sizes: one small and one large. By doing so, they theoretically justify the empirically observed

phenomenon that block trades are made at “worse” prices than small trades. However, Easley and O’Hara

[6] mostly focus on the static characterization of equilibrium prices and spreads.3

Our analysis extends the analyses by Glosten and Milgrom [7] and Easley and O’Hara [6] in two

directions: time and trade size. We extend Glosten and Milgrom’s [7] model by allowing for multiple

1See Madhavan [14] and Biais, Glosten and Spatt [1] for extensive surveys of the literature.
2In a continuous time setup, Back and Baruch [2] show that the equilibrium of the Glosten-Milgrom model is approximately

the same as the equilibrium of the Kyle mode, when the trade size is small and uninformed trades arrive frequently.
3Having said that, Easley and O’Hara [6] employ a model with a richer information structure (compared to the Glosten-

Milgrom model and ours) which makes the analysis of intertemporal equilibrium dynamics more difficult.
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trade sizes for traders to choose from. Also, in comparison to Easley and O’Hara [6], we are not confined

in our analysis to two trade sizes and we focus more on the intertemporal equilibrium dynamics. In our

model, both trade sizes and trading rounds can be arbitrarily many.

The main contribution of this paper is to examine how trade size (i.e. trading volume) affects the

intertemporal dynamics of trading strategies, bid-ask spreads and information revelation. In particular, we

establish the following results. In each period there is a positive cutoff trade size for the informed trader

who observes that the risky asset payoff is high. She assigns no probability to purchasing amounts below

this trade size while assigning positive probability to each trade size above the cutoff. The situation is

symmetric for the informed trader who observes that the risky asset payoff is low: there is a positive least

amount that she sells with positive probability, and she assigns positive probability to selling each allowed

amount greater than this cutoff. The bid-ask spreads exist only in the trade sizes where informed trading

is considered probable by the market maker. The cut-off trade sizes for the informed traders can decrease

over time, and small trade sizes initially with zero bid-ask spreads can later have positive spreads.

Moreover, we prove a couple of asymptotic results comparable to those of Glosten and Milgrom [7]:

the market maker learns the true risky asset payoff almost surely as the number of trading rounds tends to

infinity, and the bid-ask spreads vanish in the limit.

Our work also yields results which provide testable hypotheses. We show that large trades cause bid-

ask spreads to widen and that this widening in the spreads is temporary. We further show that the price

impact,4 as a function of trade size, is increasing and exhibits (discrete) concavity. Both of these results

are supported by empirical evidence.

The organization of our paper is as follows. Section 2 presents the model and the equilibrium concept.

In Section 3, we present the equilibrium analysis and our results. Section 4 concludes. Most of the proofs

are delegated to the appendix.

2 The Model

We consider a market in which potential buyers and sellers trade a risky asset with a competitive market

maker. The economy lasts forT + 2 many periods. The periods are indexed byt = 0, 1, ..., T, T + 1.

Trade takes place in periodst = 1, ..., T and consumption of a single good in periodT + 1. The risky

asset pays off in periodT + 1. The risky asset payoff̃v takes values from the set{0, V } with the prior

probabilityPr(ṽ = 0) = δ. We assume thatV > 0 and0 < δ < 1.

There are three types of agents in the economy: informed traders, liquidity traders and a competitive

market maker. Informed traders are risk neutral, and they try to maximize their expected profits by trading.

Informed traders also know the realization of the risky asset payoffṽ. Liquidity traders trade according to

4Price impact is the absolute value of the price change caused by the latest trade.
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their liquidity needs, which are exogenous to the model. The competitive market maker supplies against

the demands of informed traders and liquidity traders.

Traders can choose from multiple trade sizes when they are trading the risky asset. In particular, they

can trade the risky asset in the trade sizes which are elements of the setΩn := {−n, ..., −1, 0, 1, ..., n}.
In our notation,k and−k represent the purchase and the sale ofk units of the risky asset, respectively.

Ω+
n := {1, ..., n} denotes the set of possible purchase trade sizes whileΩ−

n := {−n, ..., −1} denotes the

set of possible sales trade sizes.0 represents no trade.

The timing of events in our model is as follows:

1. In period0, nature chooses the realizationv ∈ {0, V } of the risky asset payoff̃v. Informed traders

observev.

2. In successive periods, indexed byt = 1, ..., T , the events realize in the following order:

· Having observed the realized trades in periods1, ..., t− 1, the competitive market maker posts

a price for each trade size inΩn.

· A new trader (either an informed trader or a liquidity trader) arrives at the market and learns

market maker’s price quote for each trade size.

· If the trader is informed, she takes the profit-maximizing quote. If the trader is a liquidity

trader, she trades in the trade size determined by her liquidity needs.

3. In periodT + 1, the realization of̃v is publicly disclosed, and consumption takes place.

The type of the trader arriving in periodt is determined by the random variableθ̃t which takes values

from the set{iv, l}. The letters,iv and l, denote the informed type and the liquidity type, respectively.

The random variables{θ̃t : t = 1, ...T} are i.i.d. across the periods1, ..., T and satisfyPr(θ̃t = iv) = µ.

If the trader type in periodt is l, then the demand at that period is determined by the random variableL̃t

which takes values fromΩn. The random variables{L̃t : t = 1, ..., T} are i.i.d. and satisfyPr(L̃t = q)

= γ(q) > 0. Also, for any given periodt, the random variables̃θt, L̃t, ṽ are mutually independent.

We assume that informed traders, who trade once, gets the chance to re-trade with probability0. Thus,

informed traders behave myopically and they (rationally) ignore the effect of their trades on future periods.

The market maker is risk-neutral and her price quotes make her zero expected profit in each period,5 i.e.

in periodt, t = 1, ..., T , she chooses the price of each trade sizeq ∈ Ωn equal to the expected value of

the risky asset payoff conditional on her information at periodt and the trade realization being equal to

5A Bertrand competition among market makers is the standard assumption to have zero expected profit for the (competitive)

market maker.
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q. Informed traders and market maker correctly anticipate each other’s trading and pricing strategies. The

structure of the economy, described so far, is common knowledge.

Next we describe the details with regard to market maker’s pricing strategy and informed traders’

trading strategy. To that end, we first need to introduce some notation. Letqt denote the trade size that

the market maker receives in periodt, i.e. qt is the realized trade size for periodt. A period-t history

ht := (q1, ..., qt) is the sequence of realized trade sizes for periods up untilt+1. The space of all possible

period-t histories,t ≥ 1, is denoted byΩt
n :=

∏t
τ=1 Ωn, andht is taken to be the generic element of

Ωt
n. hT ∈ ΩT

n is called acomplete history. ht is said to beconsistentwith hT = (q1, ..., qT ) ∈ ΩT
n if

hT = (ht, qt+1, ..., qT ). For notational convenience, we leth0 = ∅. Also, we letπt : Ωt−1
n × Ωn → R

represent the market maker’s pricing strategy function (i.e. her price menu for all trade sizes) so that

πt(ht−1, q) is the market maker’s price quote for trade sizeq given historyht−1.

Since there is a price quote for each trade size, it is possible for informed traders to obtain the same

profit from two or more different trade sizes. In such cases, informed traders assign positive prob-

abilities to those trade sizes that yield equal profit when they determine their demands. We formal-

ize this as follows: In our model, a trading strategy is a probability functionψ : Ωn → [0, 1] such

that
∑

q∈Ωn
ψ(q) = 1. The support ofψ is given by supp(ψ) :=

{
q ∈ Ωn

∣∣ψ(q) 6= 0
}

. We let

∆(Ωn) :=
{
ψ : Ωn → [0, 1]

∣∣∑
q∈Ωn

ψ(q) = 1
}

denote the set of all possible trading strategies.Informed

trader’s trading strategy for price menuπt prescribes a probability distributionψt(v, ht−1, πt) ∈ ∆(Ωn)

over trade sizes inΩn for eachv ∈ {0, V } and historyht−1 ∈ Ωt−1
n . We letψt(q|v, ht−1, πt) denote

the probability assigned to trade sizeq by the probability distributionψt(v, ht−1, πt). Among all trading

strategies, the informed trader chooses the strategy which maximizes her expected profit given the market

maker’s price menu. Therefore,informed trader’s optimal trading strategy for price menuπt prescribes

the probability distributionψ∗t (v, ht−1, πt) ∈ ∆(Ωn) over trade sizes inΩn for eachv ∈ {0, V } and

historyht−1 ∈ Ωt−1
n such that

ψ∗t (v, ht−1, πt) ∈ arg max
ψ∈∆(Ωn)

∑
q∈Ωn

ψ(q) [q (v − πt(ht−1, q) )] .

The market maker is Bayesian. She updates her belief about the risky asset payoff in each period after

having observed the realized trade size for that period. Formally,δt(ht−1, q) is the probability assigned

by the market maker to the risky payoff being equal to0 given that realized history isht−1 ∈ Ωt−1
n and

the realized trade size in period-t is going to beq. As a notational convenience, we letδ0 = δ. Bayesian

updating dictates

δt(ht−1, q) := Pr(ṽ = 0|ht−1, q)

=
Pr(ṽ = 0|ht−1) [µψt(q|0, ht−1, πt) + (1− µ) γ(q)]∑

v∈{0,V } Pr(ṽ = v|ht−1)µψt(q|v, ht−1, πt) + (1− µ) γ(q)
(1)
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if the market maker believes that informed trader is employing trading strategyψt in period-t. As the

market maker makes zero profit from her price quotes, her price menuπt satisfies

πt(ht−1, q) = (1− δt(ht−1, q))V, ∀ht−1 ∈ Ωt−1
n , ∀q ∈ Ωn. (2)

We say thatπt(ht−1, q) satisfies the zero-profit condition if equation (2) holds.

Next we define the equilibrium for our economy:

Definition 1 An equilibrium consists of market maker’s price menus{π∗t : t = 1, ..., T}, informed trader’s

trading strategies{ψ∗t : t = 1, 2, ..., T}, and posterior beliefs{δ∗t : t = 1, 2, ..., T} such that for all

t ∈ {1, · · · , T} and for allht−1 ∈ Ωt−1
n

(P1) π∗t (ht−1, q) satisfies the zero-profit condition (2) given the posterior beliefδ∗t (ht−1, q) for all q ∈ Ωn,

(P2) ψ∗t (v, ht−1, π
∗
t ) is informed trader’s optimal trading strategy for price menuπ∗t for all v ∈ {0, V },

(B) for all q ∈ Ωn,

δ∗t (ht−1, q) =
Pr(ṽ = 0|ht−1) [µψ∗t (q|0, ht−1, π

∗
t ) + (1− µ) γ(q)]∑

v∈{0,V } Pr(ṽ = v|ht−1)µψ∗t (q|v, ht−1, π∗t ) + (1− µ) γ(q)
.

Condition (B) specifies the equilibrium belief. It essentially reflects two critical assumptions of our

model: first, market maker is Bayesian; second, informed traders and market maker correctly anticipate

each other’s trading and pricing strategies.6

Finally, we define the bid-ask spread for trade sizeq: the period-t bid-ask spread for historyht−1 ∈ Ωt−1
n

and trade sizeq ∈ {1, ..., n} is given by

St(ht−1, q) := πt(ht−1, q)− πt(ht−1,−q), (3)

whereπt is the market maker’s price menu.

3 Sequential Trades with Multiple Trade Sizes

Our analysis makes one basic methodological advance over previous research on sequential trade models:

we let traders choose from multiple trade sizes. This allows us to see the impact of trade size on price

menus, trading strategies, and information revelation in a multi-period economy.

6In other words, informed traders and market maker have rational expectations about each other’s strategies.
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3.1 Informed Traders’ Equilibrium Trading Strategies

We first examine the impact of trade size on trading strategies. To that end, we analyze informed traders’

equilibrium trading strategies. The following proposition lists some of the basic properties of the equilib-

rium trading strategies of informed traders:

Proposition 1 If
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
is an equilibrium, then for allht−1 ∈ Ωt−1

n andt ∈ {1, ..., T}
informed traders’ equilibrium trading strategyψ∗t satisfies the following:

(a) ψ∗t (0|v, ht−1, π
∗
t ) = 0 for all v ∈ {0, V },

(b) ψ∗t (q|V, ht−1, π
∗
t ) = 0 for all q ∈ Ω−

n ,

(c) ψ∗t (q|0, ht−1, π
∗
t ) = 0 for all q ∈ Ω+

n .

Part (a) of Proposition 1 states that informed traders always trade in non-zero quantities. This is simply

a consequence of the information asymmetry between informed traders and the market maker. Since the

market maker can never fully infer the risky payoff realizationv at any given periodt < ∞ due to the

presence of liquidity traders, informed traders, who knowv, are better off trading non-zero quantities of

the risky asset as they can make non-zero profits by doing so. Parts (b) and (c) say that informed traders

sell whenv = 0 and buy whenv = V , respectively. Since the market maker always quotes a price strictly

between0 andV (due to her uncertainty about the risky asset payoff), informed traders are better off

selling when they knowv = 0 and they are better off buying when they knowv = V .

The next result shows that informed traders’ equilibrium trading strategies satisfy a special condition:

given any history and period, there is a cut-off trade size above which informed traders buy with positive

probabilities ifv = V and another cut-off size above which informed traders sell with positive probabilities

if v = 0. Formally:

Theorem 2 If
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
is an equilibrium, then for allht−1 ∈ Ωt−1

n andt ∈ {1, ..., T}
there exist cut-off trade sizesk+

t (ht−1) ≥ 1 andk−t (ht−1) ≥ 1 such that

supp{ψ∗t (V, ht−1, π
∗
t )} = {k+

t (ht−1), · · · , n}, and

supp{ψ∗t (0, ht−1, π
∗
t )} = {−n, · · · ,−k−t (ht−1)}.

Theorem 2 essentially says the following: if informed traders assign positive probability to trade size

q in their equilibrium trading strategy, then they also assign positive probabilities to trade sizes larger than

q. The key to this result lies in the fact that informed traders’ equilibrium trading strategies affect the

market maker’s price menu. If there were a uniform price per share, then an informed trader, who makes

a profit by tradingq shares, would make higher profits by trading more thanq shares. However, in our

8



differential pricing setup, when informed trader wants to buy more thanq shares, sayq + x, x ≥ 1, she is

given a “worse” price quote by the market maker. How much worse the price quote will be is determined

by the market maker’s belief on how likely she thinksq + x shares will be traded by an informed trader.

Therefore, informed traders would like to assign a positive probability to the larger trade size,q + x, so

that the profit they make by trading on the larger trade size,q + x, at a worse price would equal the profit

they make by trading on the smaller trade size,q, at a better price. Existence of such a positive probability

essentially implies that bothq andq+x are in the support of informed traders’ equilibrium trading strategy,

and Theorem 2 proves that this positive probability exists.

Also, Theorem 2 lets us use a simple classification system for informed traders’ equilibrium trading

strategies. Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. The equilibrium trading strategy of

informed traders,ψ∗t , is said to be

· k partially pooling on the long side for historyht−1 if 0 < ψ∗t (q|V, ht−1, π
∗
t ) ≤ 1 for all

q ∈ {k, k + 1, ..., n} andψ∗t (q|V, ht−1, π
∗
t ) = 0 for all q ∈ {0, ..., k − 1},

· k partially pooling on the short side for historyht−1 if 0 < ψ∗t (q|0, ht−1, π
∗
t ) ≤ 1 for all

q ∈ {−n,−n− 1, ...,−k} and ψ∗t (q|0, ht−1, π
∗
t ) = 0 for all q ∈ {0, ...,−k + 1}.

According to this simple classification, Theorem 2 implies that there existk+
t andk−t such that informed

traders’ equilibrium trading strategy isk+
t partially pooling on the long side andk−t partially pooling on

the short side. For convenience, we also employ the following terminology: we sayψ∗t is

· separating on the long side (short side) for historyht−1 if ψ∗t is n partially pooling on the long side

(short side) for historyht−1,

· completely pooling on the long side (short side) for historyht−1 if ψ∗t is 1 partially pooling on the

long side (short side) for historyht−1.

We now turn our attention to the necessary and sufficient conditions for informed traders’ equilibrium

trading strategies to bek partially pooling,1 ≤ k ≤ n.

Proposition 3 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. The equilibrium trading strategy of

informed traders,ψ∗t , is

(a) k+
t partially pooling on the long side for historyht−1 if and only if

(1− µ)
n∑

i=k+
t

(
1− i

k+
t

)
γ(i) + (1− δ∗t−1(ht−1))µ > 0, and (4a)

(1− µ)
n∑

i=k+
t −1

(
1− i

k+
t − 1

)
γ(i) + (1− δ∗t−1(ht−1))µ ≤ 0, (4b)
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(b) k−t partially pooling on the short side for historyht−1 if and only if

(1− µ)
n∑

i=k−t

(
1− i

k−t

)
γ(−i) + δ∗t−1(ht−1)µ > 0, and (4c)

(1− µ)
n∑

i=k−t −1

(
1− i

k−t − 1

)
γ(−i) + δ∗t−1(ht−1)µ ≤ 0. (4d)

To better understand the implications of Proposition 3, we examine the necessary and sufficient condi-

tions for the two special cases ofk partially pooling trading strategies: separating and completely pooling.

We have following result for separating strategies:

Corollary 4 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. The equilibrium trading strategy of

informed traders,ψ∗t , is

(a) separating on the long side for historyht−1 if and only if

n

n− 1
≥ 1 +

(1− δ∗t−1(ht−1))µ
γ(n)(1− µ)

, (5a)

(b) separating on the short side for historyht−1 if and only if

n

n− 1
≥ 1 +

δ∗t−1(ht−1)µ
γ(−n)(1− µ)

. (5b)

In the case of separating trading strategies, traders trade only in the largest trade size, namelyn. Ob-

serve that, for separating trading strategies, conditions (4a) and (4c) in Proposition 3 become redundant as,

for k+
t = k−t = n, these conditions reduce to(1−δ∗t−1(ht−1))µ > 0 andδ∗t−1(ht−1)µ > 0, respectively,

which necessarily hold since the market maker can never fully infer the risky payoff realizationv at any

given periodt or historyht−1 due to the presence of liquidity traders (meaning that0 < δ∗t−1(ht−1) < 1).

This observation and straightforward manipulations on (4b) and (4d) prove Corollary 4.

Now let us focus on the implication of this result. Corollary 4 implies that as the probabilityµ of

informed trading goes up an equilibrium trading strategy becomes less likely to be separating. The intuition

is straightforward: Following Theorem 2, informed traders always assign positive probability to the largest

trade sizen in their equilibrium trading strategies. If the probability of informed trading is high, then the

market maker posts a large bid-ask spread for trade sizen to avoid loss inflicted by informed traders.

This makes trading in the largest trade size less attractive for informed traders, hence they decrease their

likelihood of trading in sizen by assigning positive probabilities to smaller trade sizes in their trading

strategies. Therefore, an equilibrium trading strategy is less likely to be separating if the probability of

informed trading is high.

The following result provides the necessary and sufficient conditions for equilibrium trading strategies

to be completely pooling:
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Corollary 5 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. The equilibrium trading strategy of

informed traders,ψ∗t , is

(a) completely pooling on the long side for historyht−1 if and only if

(1− µ)
n∑
i=1

(1− i)γ(i) + (1− δ∗t−1(ht−1))µ > 0, (6a)

(b) completely pooling on the short side for historyht−1 if and only if

(1− µ)
n∑
i=1

(1− i)γ(−i) + δ∗t−1(ht−1)µ > 0. (6b)

In the case of completely pooling trading strategies, informed traders trade in all possible trade sizes

with positive probabilities. Therefore, conditions (4b) and (4d) in Proposition 3 are redundant, and the

result above is obtained as a straightforward corollary of Proposition 3.

Note the following implication of Corollary 5: as the probability of informed tradingµ increases in-

formed traders’ equilibrium trading strategy becomes more likely to be completely pooling. The intuition

behind this result is very much in line with the intuition we gave for Corollary 4. Following Theorem 2,

the market maker knows that informed traders are more likely to trade in large trade sizes and as a conse-

quence she posts large bid-ask spreads for these large sizes. This makes informed traders to assign positive

probabilities to smaller trade sizes so that they can enjoy “better” price quotes. Essentially, increased pool-

ing gives informed traders increased coverage by liquidity traders against the market maker. Therefore, if

the probability of informed trading is sufficiently high, the equilibrium trading strategy of informed traders

is completely pooling.

3.2 Existence and Uniqueness of Equilibrium

In the standard sequential trade models, traders, who trade once, get the chance to re-trade with probability

zero. This is also the case in our model. Therefore, informed traders’ time scope for portfolio decisions is

confined to one period. As a consequence, the only link between consecutive periods is the market maker’s

belief on the risky asset payoff. That is,δ∗t−1 is the only parameter from period-(t− 1), which the period-t

equilibrium strategiesπ∗t , ψ
∗
t and the period-t equilibrium beliefδ∗t depend on. Let us demonstrate this in

detail:

Take a complete historyhT ∈ ΩT
n , and let{ht : t = 1, ..., T} be the sequence of histories consistent

with hT . Fix periodt ∈ {1, ..., T} and historyht−1. Recall from equilibrium condition (B) that

δ∗t (ht−1, q) =
δ∗t−1(ht−1) [µψ∗

t (q|0,ht−1,π∗t )+(1−µ) γ(q)]

δ∗t−1(ht−1)µψ∗
t (q|0,ht−1,π∗t )+(1−δ∗t−1(ht−1))µψ∗

t (q|V,ht−1,π∗t )+(1−µ) γ(q) . (7)
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Equation (7) shows the functional relation between the period-t equilibrium beliefδ∗t (ht−1, ·) : Ωn → R
and the period-(t − 1) equilibrium beliefδ∗t−1(ht−1). Also, the zero-profit condition of the equilibrium,

namely (P1), dictates that the market maker’s price menu is of the form

π∗t (ht−1, q) = (1− δ∗t (ht−1, q))V

=
(1−δ∗t−1(ht−1)) [µψ∗

t (q|V,ht−1,π∗t )+(1−µ) γ(q)]V

δ∗t−1(ht−1)µψ∗
t (q|0,ht−1,π∗t )+(1−δ∗t−1(ht−1))µψ∗

t (q|V,ht−1,π∗t )+(1−µ) γ(q) . (8)

Equation (8) shows the functional relation between the period-t price menuπ∗t (ht−1, ·) : Ωn → R and

δ∗t−1(ht−1). Finally, the functional relation between informed traders’ period-t equilibrium trading strate-

giesψ∗t (·, ht−1, π
∗
t ) : {0, V } → R|Ωn| andδ∗t−1(ht−1) is derived in Lemma 1.7 It states that ifψ∗t is k+

t

partially pooling on the long side andk−t partially pooling on the short side for historyht−1, then

ψ∗t (q|V, ht−1, π
∗
t ) =


0 : q ∈ {−n, · · · , k+

t − 1}
(1−µ)

Pn

i=k+
t

�
1− i

q

�
γ(i)+(1−δ∗t−1(ht−1))µ

(1−δ∗t−1(ht−1))µ
Pn

i=k+
t

i γ(i)
q γ(q)

: q ∈ {k+
t , · · · , n};

(9a)

ψ∗t (q|0, ht−1, π
∗
t ) =


0 : q ∈ {−k−t + 1, · · · , n}
(1−µ)

Pn

i=k−t

�
1− i

|q|

�
γ(−i)+δ∗t−1(ht−1)µ

δ∗t−1(ht−1)µ
Pn

i=k−t

i γ(−i)
|q| γ(q)

: q ∈ {−n, · · · ,−k−t }.
(9b)

So far, we have been able to derive the period-t equilibrium strategies and belief solely as a function

of δ∗t−1(ht−1). It is easy to check thatδ∗t−1(ht−1) ∈ R satisfies the inequalities (4a)-(4d) for some

k+
t , k

−
t ∈ Ω+

n as these inequalities span the whole space of real numbers. Also, the inequalities (4a)-(4d)

are mutually exclusive across different values ofk+
t andk−t . All these imply that, givenδ∗t−1(ht−1), there

exist period-t equilibrium strategiesπ∗t , ψ
∗
t and period-t equilibrium beliefδ∗t , and they are uniquely iden-

tified by the equations (7), (8), (9a)-(9b). Note that the same argument applies to all periodst ∈ {1, ..., T}
and historiesht−1, and sinceδ0 = δ is an exogenous parameter of the model the overall equilibrium of the

economy can be derived in a recursive fashion, using (7), (8), (9a)-(9b). In summary we have proven the

following result:

Proposition 6 There exists a unique equilibrium
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
. That is, given a complete

historyhT ∈ ΩT
n , the sequence of histories{ht : t = 1, ..., T} consistent withhT , and t ∈ {1, ..., T},

the equilibrium price menuπ∗t (ht−1, ·) : Ωn → R, the equilibrium trading strategy of informed traders

ψ∗t (·, ht−1, π
∗
t ) : {0, V } → R|Ωn|, and the equilibrium posterior beliefδ∗t (ht−1, ·) : Ωn → R uniquely

exist.
7See Appendix.
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3.3 Equilibrium Dynamics

In this section we turn our attention to the equilibrium dynamics. First, we examine the dynamics of the

equilibrium trading strategies of informed traders. As trades unfold over time, the market maker updates

her belief on the risky asset payoff. Consequently, she also updates the price menu, and in turn informed

traders revise their trading strategies. Given ak partially pooling trading strategy in period-t, the revision

of the trading strategy in period-(t+1) can take place in two ways: (1) informed traders can maintaink as

the cut-off size and just change the probabilities they assign to trade sizes overk, or (2) they can alter the

cut-off size, hence change the support of their trading strategy. Naturally, the latter implies a significant

change in the trading behavior of informed traders, and that is what we are after: we would like to see if

informed traders ever change the support of their trading strategies over time. The following result sheds

light on this.8

Proposition 7 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium andht = (ht−1, qt) ∈ Ωt

n. Letψ∗t be

k+
t partially pooling on the long side andk−t partially pooling on the short side for historyht−1. Also, let

ψ∗t+1 bek+
t+1 partially pooling on the long side andk−t+1 partially pooling on the short side for historyht.

(a) k+
t+1 < k+

t if qt ∈ {k+
t , ..., n} and

δ∗t−1

(
(1−µ)

Pn

i=k+
t

�
1− i

qt

�
γ(i)+(1−δ∗t−1(ht−1))µ

(1−µ)
Pn

i=k+
t
γ(i)+(1−δ∗t−1(ht−1))µ

)
≥ (1−µ)

µk+
t (k+

t −1)

∑n
i=k+

t
i γ(i). (10a)

(b) k−t+1 < k−t if qt ∈ {−n, ...,−k−t } and

(
1− δ∗t−1

)( (1−µ)
Pn

i=k−t

�
1− i

|qt|

�
γ(−i)+δ∗t−1(ht−1)µ

(1−µ)
Pn

i=k−t
γ(−i)+δ∗t−1(ht−1)µ

)
≥ (1−µ)

µk−t (k−t −1)

∑n
i=k−t

i γ(−i). (10b)

For the sake of exposition, we call{k+, ..., n} the domain of informed purchasing, {−n, ...,−k−} the

domain of informed selling, and{−n, ...,−k−} ∪ {k+, ..., n} the domain of informed tradingif the equi-

librium trading strategy isk+ partially pooling on the long side andk− partially pooling on the short side

for the given history and period. Proposition 7 reveals the following: (a) the domain of informed purchas-

ing gets bigger in period-(t+ 1) provided that the probabilityµ of informed trading is sufficiently high, a

trade from the period-t domain of informed purchasing has occurred, and the market maker believed that

the risky asset payoff was highly likely to be0 before the purchase realization; (b) the domain of informed

8Note the following weaker version of Proposition 7: (a) ifψ∗
t is k+

t partially pooling on the long side for historyht−1 and

qt > 0, thenψ∗
t+1 is k+

t+1 partially pooling on the long side for history(ht−1, qt) with k+
t+1 ≤ k+

t , (b) if ψ∗
t is k+

t partially

pooling on the short side for historyht−1 andqt < 0, thenψ∗
t+1 is k−t+1 partially pooling on the short side for history(ht−1, qt)

with k−t+1 ≤ k−t . This result follows in a fairly straightforward manner from the updating rule (1) and Proposition 3.
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selling gets bigger in period-(t+1) provided that the probabilityµ of informed trading is sufficiently high,

a trade from the period-t domain of informed selling has occurred, and the market maker believed that the

risky asset payoff was highly likely to beV before the sale realization.

Part (a) and part (b) of Proposition 7 can be motivated in similar fashions. Let us consider part (a).

Suppose that the probabilityµ of informed trading is sufficiently high, a trade from the period-t domain

of informed purchasing has realized, and the market maker believed that the risky asset payoff was highly

likely to be 0 before the purchase realization. An informed purchase would take place only if the risky

asset payoff wereV . Since the probability of informed trading is high and the market maker previously

believed that the risky asset payoff was highly likely to be0, the realized purchase leads to a significant

change in her belief. If informed trading strategy were not to be revised in period-(t + 1), the market

maker would substantially increase prices for the period-t domain of informed purchasing. Consequently,

the period-t domain of informed purchasing would yield lower profits in period-(t + 1). Therefore, if

the true risky asset payoff is indeedV , informed traders revise their trading strategy by decreasing the

cut-off size. By doing so, they increase the probability of liquidity trading within the domain of informed

purchasing and this allows higher probability of profit-making for the market maker. As the market maker

is bound to make zero expected profit in equilibrium, the enlarged domain of informed purchasing yields

more favorable price quotes for the informed traders.

As illustrated by the argument above, the dynamics of informed trading strategies and the market

maker’s learning process are closely related. We next tackle whether the market maker’s belief on the

risky asset payoff converges to the truth as the number of trading periods tends to infinity. Glosten and

Milgrom [7] show that such convergence is obtained almost surely if the only available trade size is the

unit trade size. In our generalized framework, where multiple trade sizes are available, the asymptotic

result of Glosten and Milgrom [7] still holds.

Theorem 8 SupposeT = ∞. Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ....,∞

}
be an equilibrium. Given a complete

historyh∞ ∈ Ω∞
n , let (ht : t = 1, ...,∞) be the sequence of histories consistent withh∞.

(a) δ∗t (ht) converges to0 almost surely ast tends to infinity ifv = V ,

(b) δ∗t (ht) converges to1 almost surely ast tends to infinity ifv = 0.

This result is driven by the fact that transaction prices (i.e. the prices of trade sizes that have been acted

upon) form a martingale. The martingale property of prices guarantees their convergence. Of course, even

if the beliefs converge, they need not converge to the truth. However, as in Glosten and Milgrom [7], after

sufficiently high number of periods, the market maker observes sufficient number of informed trades, and

these trades reveal the truth in the limit.
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3.4 Bid-Ask Spreads

In this section, we investigate the equilibrium bid-ask spreads. The bid-ask spreads compensate the market

maker for the risk of doing business with informed traders. Therefore the equilibrium bid-ask spreads

depend on informed traders’ equilibrium trading strategies: positive bid-ask spreads are observed only in

the trade sizes which belong to the domain of informed trading. The following proposition formally states

this result:

Proposition 9 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. Also, letψ∗t bek+

t partially pooling

on the long side andk−t partially pooling on the short side for historyht−1. The equilibrium bid-ask

spreadS∗t (ht−1, ·) : Ω+
n → R satisfies the following:

(a) S∗t (ht−1, q) > 0 if and only if min{k+
t , k

−
t } ≤ q ≤ n,

(b) S∗t (ht−1, q) = 0 if and only if 1 ≤ q < min{k+
t , k

−
t }.

Notice that small trade sizes initially with zero bid-ask spreads can later have positive spreads as the

trades unfold over time. This actually follows from Proposition 9 and our discussions in Section 3.3.

Section 3.3 has revealed that informed traders can enlarge the domain of informed trading over time as a

remedy against the market maker getting close to the truth. In light of Proposition 9, this means that the

domain of positive bid-ask spreads will get bigger over time if the domain of informed trading is indeed

enlarged. Formally, we have the following result as a direct corollary of Proposition 7 and Proposition 9:

Remark 10 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. Also, letψ∗t bek+

t partially pooling on

the long side andk−t partially pooling on the short side for historyht−1.

(a) If k+
t ≤ k−t , qt ≥ k+

t , andδ∗t (ht−1, qt) satisfies (10a), then

S∗t (ht−1, k
+
t − 1) = 0 while S∗t (ht, k

+
t − 1) > 0.

(b) If k−t ≤ k+
t , qt ≤ −k−t , andδ∗t (ht−1, qt) satisfies (10b), then

S∗t (ht−1, k
−
t − 1) = 0 while S∗t (ht, k

−
t − 1) > 0.

The bid-ask spreads exist due to the asymmetric information between the market maker and informed

traders. If the market maker were to learn the truth about the risky asset payoff, there would be no spreads

as the price of the risky asset would be set equal to its payoff. So, following Theorem 8, we know that the

bid-ask spreads vanish almost surely as the number of trading periods tends to infinity.
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Proposition 11 SupposeT = ∞. Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ....,∞

}
be an equilibrium. Given a complete

historyh∞ ∈ Ω∞
n , let (ht : t = 1, ...,∞) be the sequence of histories consistent withh∞. The equilibrium

bid-ask spreadS∗t (ht) converges to0 almost surely ast tends to infinity.

Finally, we would like to examine the functional relation between bid-ask spreads and trade sizes. To

that end, we first make the following mathematical definition. LetX ∈ Z. We sayf : X → R exhibits

discrete concavityif, for anyx, x− 1, x+ 1 ∈ X, it holds that

f(x+ 1)− f(x) ≤ f(x)− f(x− 1). (11)

f is said to exhibitstrict discrete concavityif (11) holds with strict inequality. Notice that our definition

for discrete concavity essentially provides an extension of the concavity definition of continuous functions

to discrete spaces. Recall that a differentiable function is concave if and only if its first order derivative is a

decreasing function. In a discrete space, this corresponds to first order difference being a decreasing func-

tion, as in (11). The following proposition sheds light on the functional relation between the equilibrium

bid-ask spreads and trade sizes.

Proposition 12 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. Also, letψ∗t bek+

t partially pooling

on the long side andk−t partially pooling on the short side for historyht−1. The equilibrium bid-ask

spreadS∗t (ht−1, q), as a function ofq > 0, is strictly increasing and exhibits strict discrete concavity in

the domain{max{k−t , k
+
t }, ..., n}.

Proposition 12 reveals that the equilibrium bid-ask spread, as a function of trade size, is strictly increas-

ing and exhibits strict discrete concavity within the domain of trade sizes where both informed purchasing

and informed selling are deemed probable by the market maker.

In Hasbrouck’s [11] empirical study, it is shown that large trades cause bid-ask spread to widen. This

empirical finding is consistent with our results. Theorem 2 suggests that large trade sizes are likely to be in

the domain of informed trading. Also, Proposition 12 implies that the bid-ask spread, as a function of trade

size, is strictly increasing within the domain where both informed purchasing and informed selling are

considered probable by the market maker. Therefore, Theorem 2 and Proposition 12 together suggest that

large trades are likely to be associated with a widening of the bid-ask spread. Furthermore, Hasbrouck [11]

notes that the widening in the spread after a large trade is temporary. This finding can also be justified by

our model. As large trades are likely to be in the domain of informed trading, they lead to the market maker

updating her posterior belief. Theorem 8 shows that the market maker gets close to the truth regarding the

risky asset payoff after a sufficiently number of periods. Hence, bid-ask spreads are eventually bound to

vanish, as indicated by Proposition 11. Consequently, the widening in the spread can only be temporary.
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3.5 Price Impact

The last notion to be examined in our equilibrium analysis is the price impact. Price impact measures the

absolute impact of trade size on the risky asset price. Formally,the period-t price impact of tradeq ∈ Ωn

for historyht−1 ∈ Ωt−1
n is given by

It(ht−1, q) = |πt(ht−1, q)− πt−1(ht−1)| . (12)

Hasbrouck’s [11] estimates for a sample of NYSE suggests that price impact, as a function of trade

size, is increasing and concave. Moreover, this concavity is quite typical of all the stocks in his sample.

We provide a theoretical justification for Hasbrouck’s [11] empirical finding in the following proposition:

Proposition 13 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. Also, letψ∗t bek+

t partially pooling

on the long side andk−t partially pooling on the short side for historyht−1.

(a) The equilibrium price impactI∗t (ht−1, q), as a function of trade size|q|, is increasing and exhibits

discrete concavity.

(b) The equilibrium price impactI∗t (ht−1, q), as a function of trade size|q|, exhibits strict discrete

concavity in the domain{−n, ...,−k−t } ∪ {k
+
t , ..., n}.

This result follows from two basic equilibrium properties: (1) only a transaction in the domain of

informed trading leads to a change in the market maker’s posterior belief, hence a change in her price

menu, (2) given the market maker’s price menu, all transactions in the domain of informed trading yield the

same expected profit (if a transaction yielded a lower expected profit compared to others, informed traders

would not have made that transaction in equilibrium). The first equilibrium property implies that the

equilibrium price impact of tradeq equals zero ifq is outside the domain of informed trading. The second

equilibrium property implies that informed traders’ expected profit,(v − π∗t (ht−1, q)) q, is same over all

trades,q, within the domain of informed trading. Consequently, period-t equilibrium priceπ∗t (ht−1, q) is

proportional to−1
q within the domain of informed trading. This in turn implies that the equilibrium price

impact, as a function of trade size|q|, is increasing and exhibits discrete concavity.

4 Concluding Remarks

To quote an old adage in the Wall Street, “it takes volume to move prices”. This paper investigates the

relationship between trade sizes and the dynamic process of price formation. Following Glosten and

Milgrom [7] and Easley and O’Hara [6], we assume that the response of asset prices to trading activity is

a consequence of asymmetric information. Our theoretical study reveals the following:
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1. In each period there is a positive cutoff trade size for the informed trader who observes that the risky

asset payoff isV . She assigns no probability to purchasing amounts below this trade size because,

even at the price induced by the market maker’s priors, such trades cannot capture her equilibrium

information rents. She assigns positive probability to purchasing the cutoff trade size, by definition.

In equilibrium any positive trade size that she assigns zero probability to is priced according to the

market maker’s priors, so she must assign positive probability to each trade size above the cutoff

because otherwise purchasing the cutoff trade size would be suboptimal. The situation is symmetric

for the informed trader who observes that the risky asset payoff is0. There is a positive least amount

that she sells with positive probability, and she assigns positive probability to selling each allowed

amount greater than this cutoff.

2. Bid-ask spreads exist only in the trade sizes where informed trading is deemed probable by the

market maker.

3. The cut-off trade sizes decrease following a trade provided that the trade leads to a substantial change

in the market maker’s belief. Consequently, the domain of trade sizes, where informed trading is

deemed probable by the market maker, can get bigger over time. Therefore, small trade sizes initially

with zero bid-ask spreads can later have positive spreads.

4. The market maker learns the true risky asset payoff almost surely as the number of trading rounds

tends to infinity. Hence, the bid-ask spreads are eventually bound to vanish.

5. The bid-ask spread, as a function of trade size, is strictly increasing and exhibits strict (discrete)

concavity within the domain where both informed purchasing and informed selling are deemed

probable by the market maker. Also, the price impact, as a function of trade size, is increasing and

exhibits (discrete) concavity. Both results are consistent with Hasbrouck’s [11] empirical findings.

There are a number of directions in which our theoretical study can be furthered. One of them is

to introduce price discreteness. Numerous empirical studies tackle the dynamics of discrete bid and ask

quotes and investigate the impact of tick size reduction (i.e. price decimalization) on market quality.9

Another possible extension is to allow for re-trading: as in Glosten and Milgrom [7], traders re-trade

with probability zero in our current model. Chakraborty and Yilmaz [3] show that there is room for

manipulation when re-trading is allowed and the information structure is enriched.

9See Goldstein and Kavajecz [8], Harris [9], [10], and Hasbrouck [12].
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Appendix

Proof of Proposition 1. (a) Supposeψ∗t (0|V, ht−1, π
∗
t ) > 0 for somet ≥ 1 andht−1 ∈ Ωt−1

n . Then we

have

0 ≥ (V − π∗t (ht−1, q)) q = δ∗t (ht−1, q)V q, ∀q ∈ Ωn. (13)

Following (1),0 < δ∗t (ht−1, q) < 1 as the probability of liquidity trading is positive over all trade sizes.

Therefore inequality (13) fails to hold whenq ∈ Ω+
n . This proves thatψ∗t (0|V, ht−1, π

∗
t ) = 0 for all t ≥ 1

andht−1 ∈ Ωt−1
n . In a similar fashion, it can be easily proved thatψ∗t (0|0, ht−1, π

∗
t ) = 0 for all t ≥ 1 and

ht−1 ∈ Ωt−1
n .

(b) Suppose there existt ≥ 1 andht−1 ∈ Ωt−1
n such thatψ∗t (q|V, ht−1, π

∗
t ) > 0 for someq ∈ Ω−

n .

Then it must hold that

(V − π∗t (ht−1, q)) q ≥ 0. (14)

However, since0 < δ∗t (ht−1, q) < 1 andq ∈ Ω−
n ,

(V − π∗t (ht−1, q)) q = δ∗t (ht−1, q)V q < 0.

This contradicts with (14).

(c) The proof is similar to that of (b).�

Proof of Theorem 2.Suppose there exists an equilibrium{(π∗t , ψ∗t , δ∗t ) : t = 1, ..., T} such that for some

t ≥ 1, ht−1 ∈ Ωt−1
n , andi, j ∈ Ω+

n with i > j

ψ∗t (j|V, ht−1, π
∗
t ) > 0, ψ∗t (i|V, ht−1, π

∗
t ) = 0.

Then it must hold that

(V − π∗t (ht−1, j)) j ≥ (V − π∗t−1(ht−1, i)) i.

This in turn implies together with (1), (2), and Proposition 1 that

j

i
≥ V − π∗t (ht−1, i)

V − π∗t (ht−1, j)
= 1 +

(1− δ∗t (ht−1, j))ψ∗t (j|V, ht−1, π
∗
t )µ

(1− µ)γ(j)
. (15)

Since ji < 1 andψ∗t (j|V, ht−1, π
∗
t ) > 0 by assumption, (15) fails to hold. This proves that there exists

k+
t (ht−1) ∈ Ω+

n such thatsupp{ψ∗t (V, ht−1, π
∗
t )} = {k+

t (ht−1), · · · , n}. In a similar fashion, it can be

proved thatsupp{ψ∗t (0, ht−1, π
∗
t )} = {−n, · · · ,−k−t (ht−1)} for somek−t (ht−1) ∈ Ω−

n . �

Some of the proofs in the rest of the Appendix are based on the following lemma.
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Lemma 1 Let
{
(π∗t , ψ

∗
t , δ

∗
t ) : t = 1, ...., T

}
be an equilibrium. Also, letψ∗t bek+

t partially pooling on

the long side andk−t partially pooling on the short side for historyht−1. Then

ψ∗t (q|V, ht−1, π
∗
t ) =


0 : q ∈ {1, · · · , k+

t − 1}
(1− µ)

∑n
i=k+

t

(
1− i

q

)
γ(i) +

(
1− δ∗t−1(ht−1)

)
µ(

1− δ∗t−1(ht−1)
)
µ
∑n

i=k+
t

iγ(i)
qγ(q)

: q ∈ {k+
t , · · · , n}

(16a)

and

ψ∗t (q|0, ht−1, π
∗
t ) =


0 : q ∈ {−k−t + 1, · · · ,−1}
(1− µ)

∑n
i=k−t

(
1− i

|q|

)
γ(−i) + δ∗t−1(ht−1)µ

δ∗t−1(ht−1)µ
∑n

i=k−t

i γ(−i)
|q| γ(q)

: q ∈ {−n, · · · , k−t }.
(16b)

Proof of Lemma 1. Asψ∗t is k+
t partially pooling on the long side for historyht−1, ψ∗t (q|V, ht−1, π

∗
t ) = 0

for q ∈ {1, · · · , k+
t − 1}. Now letq ∈ {k+

t , ..., n}. The equilibrium definition imposes that

q[V − π∗t (ht−1, q)] = i[V − π∗t (ht−1, i)], ∀i ∈ {k+
t , ..., n}, (17a)

q[V − π∗t (ht−1, q)] ≥ i[V − π∗t (ht−1, i)], ∀i ∈ {0, 1, · · · , k+
t − 1}. (17b)

Following (2) and (17a),
i

q
=

δ∗t (ht−1, q)
δ∗t (ht−1, i)

, ∀i ∈ {k+
t , ..., n}.

The equation above, (1), and Proposition 1 together imply that fori ∈ {k+
t , ..., n}

(1− δ∗t−1(ht−1))µ
[
ψ∗t (q|V, ht−1, π

∗
t )
iγ(i)
qγ(q)

− ψ∗t (i|V, ht−1, π
∗
t )
]

= (1− µ)
(

1− i

q

)
γ(i). (18)

Summing left and right hand side of (18) overi ∈ {k+
t , ..., n} \ {q}, we obtain

(1− δ∗t−1(ht−1))µ

ψ∗t (q|V, ht−1, π
∗
t )

n∑
i=k+

t ,i6=q

iγ(i)
qγ(q)

−
n∑

i=k+
t ,i6=q

ψ∗t (i|V, ht−1, π
∗
t )


= (1− µ)

n∑
i=k+

t ,i6=q

(1− i

q
)γ(i). (19)

Replacing
∑n

i=k,i6=q ψ
∗
t (i|V, ht−1, π

∗
t ) with 1− ψ∗t (q|V, ht−1, π

∗
t ) and rearranging the terms in (19) yield

ψ∗t (q|V, ht−1, π
∗
t ) =

(1− µ)
n∑

i=k+
t

(
1− i

q

)
γ(i) + (1− δ∗t−1(ht−1))µ

(1− δ∗t−1(ht−1))µ
n∑

i=k+
t

iγ(i)
qγ(q)

.
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Hence, equation (16a) is obtained. Equation (16b) can be obtained in a similar fashion.�

Proof of Proposition 3. (a) Supposeψ∗t is k+
t partially pooling on the long side for historyht−1. This

meansψ∗t (q|V, ht−1, π
∗
t ) > 0 for q ∈ {k+

t , ..., n} andψ∗t (q|V, ht−1, π
∗
t ) = 0 for q 6∈ {k+

t , ..., n}. Hence,

following Lemma 1, the inequalities (4a) and (4b) must hold.

Now suppose the inequalities (4a) and (4b) hold. Following Theorem 2, there exists someK such that

ψ∗t isK partially pooling on the long side for historyht−1. From Lemma 1, we have

ψ∗t (q|V, ht−1, π
∗
t ) =


0 : q ∈ {1, · · · ,K − 1}
(1− µ)

∑n
i=K

(
1− i

q

)
γ(i) +

(
1− δ∗t−1(ht−1)

)
µ(

1− δ∗t−1(ht−1)
)
µ
∑n

i=K
iγ(i)
qγ(q)

: q ∈ {K, · · · , n}

Asψ∗t isK partially pooling on the long side forht−1, it must be true that

(1− µ)
n∑

i=K

(
1− i

K

)
γ(i) + (1− δ∗t−1(ht−1))µ > 0,

(1− µ)
n∑

i=K−1

(
1− i

K − 1

)
γ(i) + (1− δ∗t−1(ht−1))µ ≤ 0.

Since the inequalities (4a) and (4b) hold, we havek+
t = K. This proves thatψ∗t is k+

t partially pooling on

the long side for historyht−1.

(b) The proof is similar to that of (a).�

Proof of Proposition 7. (a) Let (10a) hold andqt be from the domain{k+
t , ..., n}. Assume to the contrary

thatkt+1 ≥ kt. Sinceψ∗t+1 is kt+1 partially pooling on the long side for historyht = (ht−1, qt), from

Proposition 3 we have

(1− µ)
n∑

i=k+
t+1−1

(
1− i

k+
t+1 − 1

)
γ(i) + (1− δ∗t (ht−1, qt))µ ≤ 0. (20)

As kt+1 ≥ kt, from (20) we obtain

(1− µ)
n∑

i=k+
t −1

(
1− i

k+
t − 1

)
γ(i) + (1− δ∗t (ht−1, qt))µ ≤ 0. (21)

Sinceψ∗t is k+
t partially pooling on the long side forht−1, by Proposition 3, the inequalities (4a)- (4b) also

hold. (4a) and (21) together yield

(1− µ)

 n∑
i=k+

t

(
1− i

k+
t

)
γ(i)−

n∑
i=k+

t −1

(
1− i

k+
t − 1

)
γ(i)

 > (δ∗t−1(ht−1)− δ∗t (ht−1, qt))µ
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Given thatqt ∈ {k+
t , ..., n}, The inequality above, (1), and Proposition 1 imply

(1− µ)
µk+

t (k+
t − 1)

n∑
i=k+

t

i γ(i) > (δ∗t−1(ht−1)− δ∗t (ht−1, qt))

= δ∗t−1

(
(1−µ)

Pn

i=k+
t

�
1− i

qt

�
γ(i)+(1−δt−1(ht−1))µ

(1−µ)
Pn

i=k+
t
γ(i)+(1−δt−1(ht−1))µ

)
. (22)

(22) contradicts (10a). Therefore, it must hold thatkt+1 < kt.

(b) The proof is similar to that of (a).�

Proof of Theorem 8. LetH∞ denote the sigma field generated by all the possible historiesh∞. We con-

sider the market maker’s equilibrium belief as a stochastic process, which we denote by{δt : t = 1, ..., T}.
Following a theorem in Fristedt and Gray [5] (Theorem 3, p. 432), there exists a unique distribution over

δt conditional on(δ0, · · · , δt−1). Therefore, the collection of probability distributions{δt : t = 1, ..., T}
and the probability space(Ω∞

n ,H∞,P) are well-defined. Notice thatδt is a martingale with respect to the

market maker’s information set. By the martingale convergence theorem,δt converges almost surely to a

random variablêδ. Next we prove that̂δ = 0 if v = V andδ̂ = 1 if v = 0. Let v = V and suppose to the

contrary that there exists a periodτ and historiesh′t such that for allt ≥ τ

Pr(h′t : |δt(h′t)− p| > ε) = 0 (23)

for somep ∈ (0, 1] and arbitrary smallε. Following Theorem 2, for allt ≥ τ there exists somek+
t such

that informed traders’ equilibrium trading strategyψ∗t is k+
t partially pooling on the long side for history

h′t−1. By (1), if a trade larger thank+
τ+1(h

′
τ ) realizes in period-(τ + 1), the market maker’s beliefδτ+1

deviates from the interval of[p− ε, p+ ε]. Formally,

Pr(h′τ+1 : |δτ+1(h′τ+1)− p| > ε) = Pr(h′τ : |δτ (h′τ )− p| ≤ ε)

µ+
n∑

i=k+
τ (h′τ )

γ(i)

 > 0,

which contradicts with (23). Therefore, it must hold thatδ̂ = 0. It can be similarly shown that̂δ = 1 if

v = 0. �

Proof of Proposition 9. From (1), (2), and Lemma 1, we have

S∗t (ht−1, q) = (δt(ht−1,−q)− δt(ht−1, q))V

= δ∗t−1(ht−1)V

×
[

µψ∗
t (−q|0,ht−1,π∗t )+(1−µ)γ(−q)

δ∗t−1(ht−1)µψ∗
t (−q|0,ht−1,π∗t )+(1−µ)γ(−q) −

(1−µ)γ(q)
µ (1−δ∗t−1(ht−1))ψ∗

t (q|V,ht−1,π∗t )+(1−µ)γ(q)

]
= δ∗t−1(ht−1) (1− δ∗t−1(ht−1))µV

× (1−µ)[ψ∗
t (q|V,ht−1,π∗t )γ(−q)+ψ∗

t (−q|0,ht−1,π∗t )γ(q)]+µψ∗
t (q|V,ht−1,π∗t )ψ∗

t (−q|0,ht−1,π∗t )

((1−δ∗t−1(ht−1))µψ∗
t (q|V,ht−1,π∗t )+(1−µ) γ(q))(δ∗t−1(ht−1)µψ∗

t (−q|0,ht−1,π∗t )+(1−µ) γ(−q)) . (24)
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If 1 ≤ q < min{k−t , k
+
t }, thenψ∗t (q|V, ht−1, π

∗
t ) = ψ∗t (−q|0, ht−1, π

∗
t ) = 0 and consequently (24) yields

S∗t (ht−1, q) = 0. If min{k−t , k
+
t } ≤ q ≤ n, thenmax {ψ∗t (q|V, ht−1, π

∗
t ), ψ

∗
t (−q|0, ht−1, π

∗
t )} > 0

hence (24) yieldsS∗t (ht−1, q) > 0.

On the other hand, ifS∗t (ht−1, q) = 0, then following (24) it must hold thatψ∗t (q|V, ht−1, π
∗
t ) =

ψ∗t (−q|0, ht−1, π
∗
t ) = 0 and this together with Lemma 1 implies1 ≤ q < min{k−t , k

+
t }. If S∗t (ht−1, q) >

0, then following (24) it must hold thatmax {ψ∗t (q|V, ht−1, π
∗
t ), ψ

∗
t (−q|0, ht−1, π

∗
t )} > 0, which together

with Lemma 1 impliesmin{k−t , k
+
t } ≤ q ≤ n. �

Proof of Proposition 11.The result immediately follows from (24) and Theorem 8.�

Proof of Proposition 12.From Lemma 1 and (24), we have

S∗t (ht−1, q) = δ∗t−1(ht−1)V

[
1−δ∗t−1(ht−1)

δ∗t−1(ht−1)

(1−µ)
Pn

i=k−t

�
1− i

q

�
γ(−i)+δ∗t−1(ht−1)µ

(1−µ)
Pn

i=k−t
γ(−i)+δ∗t−1(ht−1)µ

+
(1−µ)

Pn

i=k+
t

�
1− i

q

�
γ(i)+(1−δ∗t−1(ht−1))µ

(1−µ)
Pn

i=k+
t
γ(i)+(1−δ∗t−1(ht−1))µ

]
. (25)

if q ≥ max{k−t , k
+
t }. The result immediately follows from (25).�

Proof of Proposition 13.Using (1), (2), and Lemma 1, we derive the following:

· if q 6∈ {−n, ...,−k−t } ∪ {k
+
t , ..., n}, then

I∗t (ht−1, q) = 0; (26a)

· if q ∈ {k+
t , ..., n}, then

I∗t (ht−1, q) = δ∗t−1(ht−1)V

1−
(1−µ)

Pn

i=k+
t
i γ(i)

q

�
(1−µ)

Pn

i=k+
t
γ(i)+(1−δ∗t−1(ht−1))µ

�
 ; (26b)

· if q ∈ {−n, ...,−k−t }, then

I∗t (ht−1, q) = δ∗t−1(ht−1)V

×

 (1−µ)

�
(1−δt−1(ht−1))

Pn

i=k−t

�
1− i

|q|

�
γ(−i)+δt−1(ht−1)

Pn

i=k−t
γ(−i)

�
+δt−1(ht−1)µ

δt−1(ht−1)

�
(1−µ)

Pn

i=k−t
γ(−i)+δt−1(ht−1)µ

� − 1

 . (26c)

The results immediately follow from (26a), (26b), and (26c).�
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