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Abstract. This paper proves that the optimal exercise time for the holder of an American
option depends upon the physical drift of the underlying asset and the utility of the option
holder. We illustrate our results by applying them to several families of utility functions,
namely the CARA, the HARA, and the expected return. While the option holder maxim-
ises his utility, the issuer gains from the di�erence between the price maximising exercise
boundary and the exercise boundary performed by the option holder. We provide the nu-
merical results which describe the e�ect of the physical drift and the risk aversion on the
issuer's expected pro�t.

1



1 Introduction

The American option is an option contract that allows the option holder to exercise before
the maturity if he is better o� doing so. Because of the 
exibility of choosing the exercise
time, the price of the option is calculated as the value of the option in the worst case
for the issuer among all feasible exercise strategies that the option holder may perform.
Typically the price maximising exercise time, and hence the least favourable exercise time
for the issuer, is described as an optimal stopping time, and the resulting pricing equation
becomes a free-boundary partial di�erential equation (PDE). Although it may sound that it
requires a rather sophisticated mathematics to price an American option, the fundamental
concept of the absence of arbitrage is still the integral part of determining the price. The
issuer can construct a hedging portfolio involving the trading of the underlying assets in
such a way that the value of the replicating portfolio (i.e., the upfront premium for the
option plus the result of the trading) is not less than his liability even when his customer
exercises the option at the least favourable time.

The option holder may hedge his position as well, constructing his portfolio exactly
opposite to that of the the issuer's and exercising his option at the price maximising exercise
time. In this case, both the issuer and the option holder have their balance equal to zero.
If this was what they intended, they could have chosen not to trade the option at the
beginning and saved their e�ort in maintaining their hedge positions. Thus it is reasonable
to assume that the option holder engages in some other strategies. For example, he may
adopt a stop-loss strategy: buy-and-hold the option until he decides to exercise it. Unlike
the previous case, the option holder may gain or lose depending upon the behavior of the
underlying asset price while the potential loss is not more than the premium he paid. The
issuer gains unless the option holder exercises at the �rst time that the asset price reaches
the price maximising exercise boundary. One of the questions we address in this paper is
\Should the option holder exercise at the price maximising exercise time?"

Trading an option is not a two-person-zero-sum game because both the issuer and the
holder can trade the underlying asset with other investors. Hence, the worst case for the
issuer is not necessarily the best case for the holder. It is not true that the option holder is
better o� exercising the option at the price maximising exercise time. First, we consider the
physical drift of the underlying asset. The price of an option depends upon the risk-neutral
drift, not the physical drift of the underlying asset. The reason is that the presence of an
option immediately allows one to construct locally riskless portfolios, and hence the risk-
free rate is the only one that governs its price. As a result, the price maximising exercise
boundary is also independent of the physical drift. Can we assert that the optimal exercise
boundary for the option holder is not a�ected by the market direction? Almost certainly
not. For example, it is well known that the price maximising exercise time for the American
call is the maturity of the contract, provided that the underlying stock pays no dividend.
If there is any evidence that the price of the underlying asset is expected to fall, however, a
wise investor would exercise his call earlier before it expires worthless. Second, each investor
has his own risk preference. Two di�erent rational decision makers may exercise di�erently,
even when they agree with the probability distribution of outcomes. It is nonsense to argue
that a single exercise strategy is the optimal strategy for every investor.
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This paper establishes the optimal exercise boundary provided that the option holder
is a utility maximising investor. The optimal exercise boundary, or the utility maximising
exercise boundary, depends upon the risk aversion and the physical drift. In Theorem 3.1
we con�rm the followings: (i) if the option holder is su�ciently risk averse, early exercise
is optimal even for a call; (ii) the optimal exercise time is a non-decreasing function of the
physical drift, if the option is a call; (iii) if the option is a put, the optimal exercise time
is a non-increasing function of the physical drift. We illustrate these results with several
families of utility functions: the constant absolute risk averse (CARA), the hyperbolic
absolute risk averse (HARA), and the linear utility (i.e., the expected return). Some of the
highlights are:

(a) If the option holder's utility is of the CARA type, early exercise prevails for both call
and put regardless of the absolute risk aversion parameter.

(b) Certain HARA utilities may yield two separate exercise boundaries.

(c) Upon the expected return criterion, a call option is exercised early only when the
physical drift is surpassed by the risk-free rate.

Another accomplishment in this paper is the equation for the expected pro�t selling
American options. As we stated earlier, the issuer gains from the di�erence between the
price maximising exercise time and the exercise time performed by his customer. The
pro�t grows as the occupation time of the asset price in the region between the exercise
boundaries of the price maximisation and the utility maximisation. The di�erence between
the value of the option and the exercise value is the �nal piece of the pro�t. We provide
numerical results on how the physical drift and the risk aversion a�ect the issuer's pro�t.

The paper is structured as follows. In the next section we review the classical results
of pricing and hedging American options. In Section 3, we �nd the optimal exercise time
for the utility maximising investor. In Section 4, we analyse the e�ect of option holder's
optimal exercise strategy on the issuer's pro�t. Section 5 contains concluding remarks.

2 Preliminary : Pricing and Hedging

The early exercise feature makes the valuation of the American option more intriguing than
that of the European counterpart. The main concepts are the optimal stopping and the
corresponding parabolic variational inequalities. Myneni (1992) surveyed literature on the
subject and summarized key results. Here we state the standing assumptions for the rest
of the paper and review the variational inequalities.

The classical theory of option pricing is predicated on many assumptions for mar-
ket completeness. We assume that the market is frictionless, that short-selling is allowed
without restriction, that one can trade assets as frequently as one wishes, that all risk-free
assets grow at the common rate r which is known a priori, and that there is a unique risk-
neutral equivalent martingale measure. The last assumption becomes less abstract when
we assume that the price of the underlying asset follows a geometric Brownian motion and
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that market participants are not capable of foreseeing the future. Thus, in what follows
the price of the underlying asset evolves as:

dSt = �StdWt + �Stdt (1)

where W is a standard Brownian motion. In addition the �ltration is natural, meaning
that the stream of information consists of the observations of the asset price only.

As shown in Harrison and Pliska (1981), the completemarket assumption allows a trader
to replicate the payo� of an arbitrary contingent claim by trading the underlying assets.
We start by assuming that the issuer of the option maintains � shares of the underlying
asset to hedge his position. In other words, the value of the issuer's portfolio is given by
�S�v where v is the value of the option. This portfolio must grow at least at the risk-free
rate r:

�dSt � dv � r(�St � v)dt : (2)

Because of the Markovian nature of the underlying asset price (1), the value of the option
v at time t is a function of t and the asset price St: For the time being, we assume that
v is continuously di�erentiable with respect to t and twice continuously di�erentiable with
respect to s: Then we have

dv(t; St) = vt(t; St)dt+ vs(t; St)dSt +
1

2
�2S2t vss(t; St)dt : (3)

which follows from Itô's formula. It is required for the issuer to pick � = vs in order to
ful�ll (2) because the random growth dSt is of the order

p
dt and is much bigger than terms

with dt: Rearranging (2) after replacing � by vs yields:

Lv = vt +
1

2
�2s2vss + r(svs � v) � 0 (4)

for each s: The value of the option will never fall below an immediate exercise value.
Otherwise the issuer loses. This yields the second condition for v:

v � � (5)

where � is the payo� of the option: �(s) = max(s � K; 0) for a call with strike K and
�(s) = max(K � s; 0) for a put. Each time t; the option holder may or may not exercise
his option. If v > � at the moment, then exercising the option is not the least favourable
to the issuer because he can claim a non-zero pro�t v � � instantly. In this case, Lv = 0
because the issuer has an arbitrage opportunity if Lv were strictly less than zero. Therefore
we obtain the third condition:

(Lv) � (v � �) = 0 : (6)

The inequalities (4), (5), and (6) subject to v(T; s) = �(s) form a parabolic obstacle
problem. We refer to Friedman (1988) for the existence and the uniqueness of the solution
to such problems. Jaillet, Lamberton, and Lapeyre (1990) showed that the solution of the
parabolic variational inequalities (4), (5), and (6) has a continuous gradient at the free
boundary (i.e., a smooth �t), and Van Moerbeke (1976) showed that the optimal stopping
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boundary is continuously di�erentiable. Thus Itô's formula (3) is valid at least in a weak
sense: see San Martin and Protter (1993) for detail.

In the theory of optimal stopping, the space-time domain de�ned by v > � is called
the continuation region as the stopping is premature in this region and the graph of its
boundary is called the optimal stopping boundary. In this paper we call this the price
maximising exercise boundary, distinguishing it from the optimal stopping boundary from
the utility maximisation problem in the next section.

3 Utility Maximising Exercise Time

We assume that the option holder possesses a utility function U : IR ! IR that is strictly
increasing and twice continuously di�erentiable. The investor, who purchases an American
option at time 0, will select his exercise time by maximising the expected utility of the
discounted wealth. The class of feasible exercise times consists of stopping times that are
less than or equal to T; the maturity of the option. This includes exercise times that are
strategically selected based upon the price of the asset up to date as well as pre-scheduled
times (i.e., non-random). A feasible exercise time will be denoted by �: If the option holder
never exercises the option we set � = T: As before � is designated for the payo�. Then, at
time t; the option holder faces the following optimal stopping problem:

u(t; s) = ess sup
t���T

Et;s
h
U(e�r��(S� ))

i
(7)

where Et;s is the conditional expectation given that St = s, � is the option holder's exercise
time, and � is the payo�. The essential supremum is taken over all the feasible exercise
times. Finally the expectation is governed by the physical measure not the risk-neutral
equivalent martingale measure. We consider only when (7) is well de�ned. A su�cient
condition is that U � � is bounded by a polynomial.

We could have de�ned u as the expected utility of e�r��(S� )� v(0; S0); the discounted
payo� minus the option price. In our de�nition, the option price is a part of the utility
function U; as we treat the option price as a constant.

As in the case of the price maximisation, the optimal stopping problem (7) is equivalent
to a parabolic obstacle problem. Thus u satis�es a set of variational inequalities. We will
describe the variational inequalities �nancially, omitting technical details. For notational
convenience, we de�ne g(t; s) = U(e�rt�(s)): First we check that

u � g : (8)

This is because the maximum expected utility is not smaller than the utility of the imme-
diate exercise which is a special case of feasible stopping times. Next we will explain the
following inequality for t < T :

u(t; s) � E
h
u(t+ �; St+�)

i
(9)
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for each � that makes t+ � a feasible exercise time. Note that the right side of (9) coincides
with the expected utility when the option holder pursues the optimal stopping only after
� elapses. In other words, the option holder is dormant until time t + � and he tries to
�nd an optimal exercise time from then on. Thus the value of this expected utility cannot
exceed the maximum expected utility which is on the left side of (9). The implication of
(9) is the following inequality:

L�u = ut + �sus +
1

2
�2s2uss � 0 (10)

which is obtained by applying Itô's formula on u: If L�u < 0; then the maximum expected
utility is expected to fall in an in�nitesmal time, and hence the optimal strategy is to
exercise the option immediately. That is, u = g: Therefore u must satisfy

(L�u) � (u� g) = 0 : (11)

The set of variational inequalities (8), (10), and (11) with terminal data g(T; s) characterises
the maximum expected utility u: The optimal exercise time is the �rst time that the asset
price St hits the free boundary of the inequalities.

Next we consider h = ertU�1 � u; the maximum expected certainty equivalence. U�1;
the inverse of U; is well de�ned as U is an increasing function of wealth. The merit of using
this change of variable is that it facilitates us comparing the utility maximisation to the
price maximisation. We con�rm that h must satisfy the following variational inequalities:

h � �

Dh = ht +
1

2
�2s2

�
hss +

U 00

U 0
(e�rth)e�rt(hs)

2
�
+ �shs � rh � 0 (12)

(Dh) � (h� �) = 0

subject to h(T; s) = �(s): Therefore the utility maximising exercise boundary depends upon
the physical drift and Pratt's measure of absolute risk aversion �U 00=U 0, and is di�erent
from the price maximising exercise boundary. The distortion in discount is caused by the
non-linearity of the utility funciton.

Theorem 3.1. The utility maximising exercise time for an American option has the fol-

lowing properties:

(i) If the absolute risk aversion is su�ciently large, then there is a positive probability

of early exercise for both call and put.

(ii) The exercise time is a non-decreasing in �; when the option is a call.

(iii) The exercise time is a non-increasing in �; when the option is a put.
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Proof. Note that the exercise region coincides with the space-time domain of Dh < 0:
If the absolute risk aversion �U 00=U 0 tends to in�nity uniformly in its argument, then
f(t; s) : Dh < 0; 0 � t < T; s > 0g is a set of a positive measure. Since the support
of a non-degenerate geometric Brownian motion (i.e., �2 > 0) occupies the entire positive
plane, the utility exercise maximising time can be less than the maturity with a positive
probability. This proves (i). When the option is a call, hs is positive. Thus Dh becomes
more negative when � becomes smaller. If the option is a put, hs is negative, and hence
Dh becomes more negative when � becomes larger. Therefore we have (ii) and (iii).

2

Our next task is to locate the the boundary when the time to maturity is arbitrarily
close to zero. Note that the certainty equivalence h tends to � as t ! T and the utility
maximising exercise boundary (as a function of time) is continuously di�erentiable. Thus
when t is near T; the utility maximising exercise boundary is close to the boundary of
D� < 0: This is the boundary at maturity. If �(s) = max(s�K; 0) (i.e., a call option), then
the boundary is above the strike K for each t 2 [0; T ) and hence the boundary at maturity
is

@
h
s > K :

1

2
�2s2

U 00

U 0

�
e�rT (s�K)

�
e�rT + (�� r)s + rK < 0

i
: (13)

Here, the symbol @ is used for indicating the boundary a set. Similarly, if �(s) = max(K�
s; 0) (i.e., a put option), the boundary at maturity is

@
h
s < K :

1

2
�2s2

U 00

U 0

�
e�rT (K � s)

�
e�rT � (�� r)s � rK < 0

i
: (14)

Sometimes (13) and (14) may contain more than one element. In such a case, we have
more than one free boundary. In the remaining of this section, we provide an explicit
expression for the boundary at maturity when the option holder's utility belongs to one of
the following categories: the CARA, the HARA, and the expected return (i.e., the linear
utility).

3.1 Constant Absolute Risk Aversion

This is the case when the absolute risk aversion is a constant regardless of the wealth of
the investor. That is, �U 00=U 0 � � for a positive constant �: Up to a constant, the utility
is of the form U(!) = ��e��! for a positive constant �:

First we consider a call option. We con�rm that the boundary at maturity (13) is
reduced to

max
n
K;

1

��2

�
� � r +

q
(� � r)2 + 2��2Kre�rT

�
erT

o
: (15)

Note that (15) tends to in�nity as � tends to zero. Hence as the risk aversion of the option
holder vanishes, the utility maximising exercise time tends to the maturity which coincides
with the price maximising exercise time. Next we consider a put option. The inequality in
(14) is

�1

2
�2�e�rT s2 � (�� r)s� rK < 0 : (16)
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If the physical drift is at least the risk-free rate (� � r), (16) is true for all positive s:
Thus the boundary at maturity is K: Suppose that � < r: The quadratic inequality (16) is
always satis�ed if

d = (m� r)2 � 2��2Kre�rT < 0:

in this case the boundary at maturity is also K: Now suppose that d � 0 as well as � < r:
Solving the quadratic inequality (16), we obtain the boundary at maturity:

min
n
K;

1

��2

�
r � � +

q
(r � �)2 � 2��2Kre�rT

�
erT

o
:

3.2 Hyperbolic Absolute Risk Aversion

Merton (1990) provides a complete description to this family of utility functions. The
hyperbolic absolute risk aversion means �U 00=U 0(!) = �=(! +�) for a positive constant �:
This utility applies to the case when the wealth of the investor is bounded below: !+� > 0:
Thus the richer the investor is, the less he is risk averse. Up to a constant shift,

U(!) =

8>>><
>>>:

1

��

(! + �)1��

1 � �
; if � 6= 1

1

�
log(! + �); otherwise

where � > 0: The parameter � is assumed positive as the option payo� could be zero.
A simple algebra reduces the inequalities in (13) and (14) to quadratic inequalities. For

example (13) is equivalent to

@
h
s > K : As2 +Bs+ C < 0

i
(17)

where A = (��r� 1

2
�2�)e�rT ; B = (��r)(��e�rTK)+re�rTK; and C = rK(��e�rTK):

The continuation region and the exercise boundary depends upon the choice of parameters.
An unusual case is when parameters satisfy the followings:

r +
1

2
�2� < � <

1

2
�2�

e�rTK

�
:

In this case, the continuation region near the maturity is separated by the exercise region:

h
s > K : As2 +Bs+ C < 0

i
= [s : K < s <

�B +
p
B2 � 4AC

2A
] :

If the physical drift is su�ciently large, the option is very valuable to the holder when the
option is very in-the-money. If not, the curvature reduces the holder's utility. Also note
that there is no exercise boundary if

� > r +
1

2
�2� and � > e�rTK :

This is the case when the physical drift is large while the risk aversion is not.
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3.3 The Expected Return

This is a special case of U(!) = �! + � for a positive constant �: As U 00 vanishes in this
case, our analysis on the boundary at maturity becomes straightforward.

When the option is a call, the inequality in (13) becomes (� � r)s + rK < 0: This is
never satis�ed if � � r: Thus the utility maximising exercise time is the maturity when the
physical drift is at least the risk-free rate. If � < r; on the other hand, the boundary at
maturity is

max
n
K;

r

r � �
K
o
:

Next we consider a put option. If � � r; then the inequality in (14) is always satis�ed.
Thus the boundary at maturity is K in this case. If � < r; the boundary at maturity
becomes

min
n
K;

r

r � �
K
o
:

4 Pro�t by Selling American Options

In the previous section, we observed that the option holder's exercise time could di�er from
the price maximising exercise time, when he optimises his utility. When this happens, the
issuer gains from the di�erence. In this section we examine the pro�t by selling American
options to utility maximising investors.

The issuer charges v(0; S0) at time 0 as he sells an American option. He will hedge his
short position in option as described in Section 2 until his customer exercises the option
or the option expires. The discounted potential liability of the issuer is e�r��(S�) where
� is the actual time that his customer exercises. When the option holder never exercises,
� = T by convention. Thus the present value of the issuer's pro�t becomes:

P = v(0; S0) +
Z �

0

e�rt�
�
dSt � rStdt

�
� e�r��(S�) (18)

The second term in the right side of (18) is the result of delta hedging with the cost of
carry. First we add and subtract e�r�v(�; S�) from the pro�t P: Applying Itô's formula on
v yields:

v(0; S0) +
Z �

0

e�rt�
�
dSt � rStdt

�
� e�r�v(�; S�) = �

Z �

0

dte�rtLv

where L is the Black-Scholes di�erential operator de�ned in (4). Thus we may rewrite the
pro�t (18) as

P = �
Z �

0

dte�rtLv + e�rt
�
v(�; S�)� �(S�)

�
: (19)

We de�ne the expected pro�t at time t as

 (t; s) = Et;s
h
�
Z �

0

dte�rtLv + e�rt
�
v(�; S�)� �(S�)

�i
(20)
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We will show that  satis�es a di�usion equation with a moving boundary which is known
a priori. Recall that h is the maximum expected certainty equivalence of the option holder
and its free boundary gives the optimal exercise time �: Let H and V be the domains
de�ned by h > � and v > �; respectively. These are the regions of continuation for the
utility maximisation and the price maximisation. We also de�ne G = HnV; see Figure 1.
Since Lv vanishes on V; the expected pro�t  satis�es

 t + �s s +
1

2
�2s2 ss � e�rtLv1IG = 0 (21)

subject to  (T; s) = 0 and  = e�rt(v��) on @H; the utility maximising exercise boundary.
The indicator 1IG is one if (t; s) belongs to G and zero otherwise. If the option is a call,
the left side of (21) vanishes because G is empty. If the option is a put, then v = � on the
complement of V; and therefore

e�rtLv1IG = e�rtL�1IG = �re�rtK1IG

where K is the strike price. Here we used the fact that the price maximising exercise
boundary is not above the strike when the option is a put.

-
T

t

6

?

price max boundary (@V)
6

option holder's boundary (@H)
6

G

G

K

s

Figure 1: Overlapping exercise boundaries

Figure 2 shows the expected pro�t by selling an at-the-money American put to an
investor who maximises the expected return. In this case, the option holder's criterion
in choosing the exercise time is free from the risk aversion, and hence the outcome is
considered as the marginal e�ect of the physical drift to the issuer's expected gain. The
initial asset price is 50, the asset volatility is 20% annum, the maturity of the option is 6
months, and the risk-free rate is 8% annum. When the physical drift coincides with the
risk free rate, the exercise boundary that maximises the expected return coincides with the
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price maximising exercise boundary, and hence there is no pro�t for the issuer. When the
physical drift surpasses the risk-free rate, the holder's exercise boundary is inside the price
maximising exercise boundary. In this case, G is empty and the only source of the issuer's
pro�t is the di�erence between the value of the option and the exercise value (i.e., the value
of  on the moving boundary @H). If the physical drift is less than the risk-free rate, then
the holder's exercise boundary is outside of the price maximising exercise boundary, and
hence the issuer's pro�t grows with the occupation time of the asset price in between two
boundaries. This explains the asymmetry in the picture.

drift
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Figure 2: The e�ect of the pysical drift

Figure 3 is the issuer's expected pro�t as a function of the absolute risk aversion. The
option holder's exercise time maximises the expected CARA utility, while the physical drift
coincides with the risk-free rate 8% annum. Thus, the outcome is the marginal e�ect of
the absolute risk aversion to the issuer's expected pro�t. Again, the option is an at-the-
money American put, the initial asset price is 50, the asset volatility is 20% annum, the
maturity is 6 months. If the absolute risk aversion vanishes and the physical drift and the
risk-free rate coincide, then the utility maximising exercise boundary coincides with the
price maximising one, and hence the expected pro�t vanishes.

5 Concluding Remarks

The theory of optimal stopping has been applied to the valuation of the American option.
People are prone to use the terminologies of the theory of optimal stopping even when they
talk about American options. For example, the price maximising exercise boundary has
been referred to the optimal exercise boundary, while it is optimal to neither the issuer
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Figure 3: The e�ect of the absolute risk aversion

nor the option holder. This causes confusion to students, practitioners, and even academic
researchers in the �eld. There are two obvious sources of confusion. First, �nancial software
packages almost invariably value contracts, and �nd exercise strategies, from the option
writer-hedger point of view. Rarely does it have anything to say about what is optimal for
the contract holder. Some research papers even suggest that we price an American option
by estimating the price maximising exercise boundary from the empirical data of exercise
boundaries. Throughout this paper, we have explained why these are wrong. The holder of
an American option should pursue his own pro�t maximisation and choose the right exercise
time for himself apart from the price maximising exercise boundary, unless the last thing he
wants to see is when the issuer gains. As the exercise times of the market participants are
a�ected by the market direction, their risk aversion factors, and their �nancial structures,
the estimate of the price maximising exercise boundary from the empirical data is not valid.

In this paper, we have assumed that the option holder maximises his expected utility
while his strategy is rather academic: buy-and-hold the option until he decides to exercise.
A more realistic set-up is to allow the option holder to sell his option to another investor and
to construct a dynamic portfolio including the underlying asset. Nevertheless the results
in this paper are not violating common senses.
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