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Abstract

In this paper we present a new model for pricing and hedging a portfolio of derivatives that takes into
account the effect of an extreme movement in the underlying. We make no assumptions about the
timing of this‘crash’ or the probability distribution of its size, except that we put an upper bound on
the latter. The pricing and hedging follow from the assumption that the worst scenario actually
happensii.e. the size and time of the crash are such as to give the option its worst value. The optimal
static hedge follows from the desire to make the best of this worst value. There are many applications
for this crash modelling, we shall focus on using the model to evaluate the Value at Risk for a
portfolio of options.



Introduction

The true business of afinancial institution isto manage risk. While the term ‘Value at risk’ (VAR)
may have become familiar, its definition and its measurement differ significantly at different
institutional levels. A book runner manages his market risk using the Black-Scholes framework where
the value at risk from his derivatives transactions may be mitigated by having a zero exposure to
various ‘greeks . At aninstitutional level, risk management concerns creating a consistent framework
to assess and communicate the maximum loss under some predefined ‘worst scenarios’ over a specific
time horizon. Unfortunately it requires significant effort to compute the maximum losses for a
derivatives portfolio using the traders’ risk data.

The rationale for the two different languages is obvious. The trader manages ‘normal event’ risk,
where the world operates much closer to a Black-Scholes one of random walks and dynamic (delta)
hedging. The institution, however, views its portfolio on a ‘big picture’ scale and focuses on ‘tail
events' where liquidity and large jumps are important (Figure 1).
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Figure 1: ‘Normal events' and ‘tail events

It is the latter meaning that the current generation of VAR models have attempted to model, although
their implementations differ, depending mostly on the nature of the business, the regulatory
reguirements and the sophistication of the technology infrastructure. The criticisms of this type of
VAR modelling have been well documented in Risk magazine. In general, the simplifying
assumptions made by the existing VAR models do not adequately capture the nuances of exotic and
complex structure trades over time, and can lead to substantial underestimation of the risks. On the
other hand, because of cancellation effects and the inherent ‘nonlinearity’ of VAR measurement, the
risks can be overestimated!

A marriage of the definitions will give a useful tool to both book runners and senior management. A
true measure of the risk in a portfolio will answer the question ‘What is the value of a crash to my
portfolio?

The approach taken here in finding the value at risk for a portfolio is to model the cost to a portfolio
of acrash in the underlying. The advantage of this bottom up VAR modelling isto alow usto



accurately value the cost of a crash and also to find an optimal static hedge to minimise this cost and
so reduce the value at risk.

Mathematical modelling

The main ideain the following model is simple. We assume that the worst will happen. We value al
contracts assuming this, and then, unless we are very unlucky and the worst does happen, we will be
pleasantly surprised. In this context, ‘ pleasantly surprised’” means that we make more money than we
expected. To start with we value any path-independent option portfolio in this framework and later we
show how to make the ‘worst’ less bad. (The final optimisation problem isinspired by the work of
Avellaneda & Paras.)

The binomial + crash model

We will model the underlying asset price behaviour as the classical binomial tree, but with the
addition of athird state, corresponding to a large movement in the asset. So, really, we have a
trinomial walk but with the lowest branch being to a significantly more distant asset value. The up
and down diffusive branches are modelled in the usual binomial fashion (see Wilmott, Dewynne &
Howison, 1993). For simplicity, we will assume that the crash, when it happens, is from Sto (1-k)S
with k given; this assumption can easily be dropped to allow k to cover arange of values, or evento
allow adramatic rise in the value of the underlying. We introduce the subscript ‘b’ to denote values of
the option/portfolio before the crash and ‘a’ to denote values after. Thus V, isthe value of the option
position after the crash. Thisisafunction of Sand t and, since we are only permitting one crash, V,
must be exactly the Black-Scholes option value.

As shown in Figures 2 and 3, the underlying asset which starts at value S (point O) can go to one of
three values: ', if the asset rises, S, if the asset falls or (1-K)S if thereis a crash. These three points
are denoted by A, B and C respectively. The values for S' and S’ are chosen in the usual manner for
the traditional binomia model.
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Figure 2: The tree structure



Before the asset price moves, we set up a‘hedged’ portfolio, consisting of our option position and -D
of the underlying asset. At thistime our portfolio has value V,. We must find both an optimal D and
then Vb-

A time dt later the asset value has moved to one of the three states, A, B or C and at the same time the
option value becomes either V. (for state A), Vi (for state B) or the Black-Scholes value V, (for
state C).

Pa=Vy' -DS"
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Crash

Pc=Va-D(1-k)S

Figure 3: The tree and portfolio values

The change in the value of the portfolio, between timest and t+dt (denoted by dP) is given by the
following expressions for the three possible states:

A (diffusiverise): dP , =V," - DS' + DS- V,

B (diffusivefal): dP, =V, - DS’ +DS-V,

C (crash): dP . =V, +DkS-V,

These three functions are plotted against D in Figures 4 and 5. We are going to choose the hedge ratio
D s0 as to maximise the pessimistic, worst outcome among the three possible.

There are two cases to consider, shown in Figures 4 and 5. The former, Case |, is when the worst case
scenario is not the crash but is the simple diffusive movement of S In this case V, is sufficiently large
for acrash to be beneficial:

V.3 VY +(S- S - kS)u. 1)
a b Su _ Sd



If V, issmaller than this, then the worst scenario is a crash; thisis Case ll.
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Figure 4: Case |
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Figure 5: Case Il

Casel: Black-Scholes hedging

Refer to Figure 4. In this figure we see the three lines representing dP for each of the movesto A, B
and C. Pick avalue for the hedge ratio D (for example, see the dashed vertical linein Figure 4), and
determine on which of the three lines lies the worst possible value for dP (in the example in the
figure, the point is the black square and lies on the A line). Change your value of D to maximise this
worst value.

In this case the maximal-lowest value for dP occurs at the point where



dP ,=dP, ,

\VARRVA

that is D= T
S'-S

(Thiswill be recognised as the expression for the hedge ratio in a Black-Scholes world.)

Having chosen D, we now determine V,, by setting the return on the portfolio equal to the risk-free
interest rate. Thus we set

dP , =rPadt

to get

©, -
V, = +(S- S +rdt) T 2
1+ rdtg -S'

Thisisthe equation to solve if we arein Case |. Note that it corresponds exactly to the usual binomial
version of the Black-Scholes equation, there is no mention of the value of the portfolio at the point C.
As dt goesto zero, Equation (2) becomes the Black-Scholes partial differential equation.

Casell: Crash hedging
Refer to Figure 5. In this case the value for V, islow enough for a crash to give the lowest value for
the jump in the portfolio. We therefore choose D to maximise this worst case. Thus we choose

dP ,=dP. ,
that is, p=_Ya Vo ©)
S- S'- kS
Now set
dP , =rPadt
to get
V, = + S(k + rdt)—‘ (4
dtg - S' - kS5

This is the equation to solve when we arein Case I1. Note that thisis different from the usual
binomial equation, and does not give the Black-Scholes pde as dt goes to zero. Also (3) is not the
Black-Scholes delta. To appreciate that delta hedging is not necessarily optimal, consider the simple
example of the butterfly spread. If the butterfly spread is delta hedged on the right ‘wing’ of the
butterfly, where the deltais negative, alarge fall in the underlying will result in alarge loss from the
hedge, whereas the loss in the butterfly spread will be relatively small. This could result in a negative
value for a contract, even though its payoff is everywhere positive!



Examples
All that remains to be done is to solve equations (2) and (4) (which oneisvalid at any asset value and
at any point in time depends on whether or not (1) is satisfied). Thisis easily done by working
backwards down the tree from expiry in the usual bi/trinomial fashion.

For our example, let us examine the cost of a 15% crash on a portfolio consisting of:

c/P Strike Expiry Bid Ask Quantity
100 75 days -3

80 75 days 2

90 75 days 11.2 12.0 0

Table 1: The available contracts and the initial position

(For the moment, the bid-ask prices will not concern us.) The volatility of the underlying is 17.5%
and the risk-free interest rate is 6%.

We have arbitrarily chosen a crash of 15%, although, in practice, one would relate the crash size to
the volatility of the underlying and atime horizon.

The solution to our problem is shown in Figure 6.
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Figure 6: Example showing Crash value and Black-Scholes value

Observe how the value of the portfolio assuming the worst (21.2 when the spot is 100), is lower than
the Black-Scholes value (30.5). Thisis especially clear where the portfolio’s gammais highly
negative. Thisis because when the gamma s positive, a crash is beneficial to the portfolio’s value.
When the gammavis close to zero, the delta hedge is very accurate and we are insensitive to a crash. If
the asset priceis currently 100, the difference between the before and after portfolio valuesis 30.5-
21.2 =9.3. Thisisthe value at risk under the worst-case scenario.



Optimal static hedging: VAR reduction

The 9.3 value at risk is due to the negative gamma around the asset price of 100. An obvious hedging
strategy that will offset some of thisrisk isto buy some positive gammaas a‘static’ hedge. In other
words, we want to buy an option or options having a counterbalancing effect on the value at risk. We
are willing to pay a premium for such an option i.e. we will pay more than the Black-Scholes fair
value for such a static hedge because of the extra benefit that it gives usin reducing our exposure to a
crash. Moreover, if we have a choice of contracts with which to statically hedge we should buy the
most ‘efficient’ one. To see what this means consider the above example in more detail.

Recall that the value of our initia portfolio under the worst-case scenario is 21.2. How many of the 90
Calls should we buy (for 12) or sell (for 11.2) to make the best of this scenario? Suppose that we buy |
of these Calls. We will now find the optimal value for | .

The cost of thishedgeis
I C(l)

where C(l ) is12if | ispositive and 11.2 otherwise. Now solve Equations (2) and (4) with the final
total payoffs

V,(S,T)=V, (S, T) = 2max(S- 80,0)- 3max(S- 100,0) +| max(S- 90,0).

Thisisthe payoff at time T for the statically hedged portfolio.

The net value of our origina portfolio (that is, the portfolio of the 80 and 100 Calls) is therefore
V, (100,0)- 1 C(1 ) 5)

i.e. the worst-case value for the new portfolio less the cost of the static hedge. The arguments of the
before-crash option value are 100 and 0 because they are today’ s asset value and date. The optimality
in this hedge arises when one chooses the quantity | to maximise the value (5).!

With the bid-ask spread in the 90 Calls as given in Table 1, we find that buying 3.5 of the Calls
maximises expression (5). The components of the optimally hedged portfolio are givenin Table 2.
The value of the new portfolio is 70.7 in a Black-Scholes world and 65.0 under our worst-case
scenario. The value at risk has been reduced from 9.3 to 5.7. The optimal portfolio values before and
after the crash are shown in Figure 7.

Cc/P Strike Expiry Bid Ask Quantity
100 75 days -3
80 75 days 2

90 75 days 11.2 12 3.5

Table 2: The optimally hedged portfolio

! This optimal hedging is identical in spirit to that of Avellaneda & Paras (1996). They were considering the
hedging of portfolios assuming uncertain volatility.
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Figure 7: Optimally hedged portfolio, before and after crash

Conclusion

We have presented a model for the effect of an extreme market movement on the value of portfolios of
derivative products. This can be related to Vaue at risk. In particular, we have shown how to employ
static hedging to minimise this VAR. In conclusion, we note that the above is not ajump diffusion
model since we have deliberately not specified any probability distribution for the size or the timing of
the jump: we model the worst-case scenario.
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