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Abstract:
In contrast to their role in theory options are in practise not only traded for hedging purposes.
Many investors also use them for speculation purposes. For these investors the Black-Scholes
price serves only as an orientation, their decisions to buy, hold or hedge an option are also
based on subjective beliefs and on their personal utility functions (in the widest possible
sense). The aim of this paper is to present a general framework to include different types of
investors, especially hedgers, pure speculators and speculators following strategies with
bounded risk. We derive their subjective values of an option endogenously from the solution
of their decision problems.
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1. Speculation, full and partial hedging : options as multipurpose
securities

While the theory of financial markets typically treats options as an instrument suited

for hedging purposes only (which is otherwise redundant) practitioners often use

them in different ways. First, there is the pure speculator who buys options only for

speculative reasons. He will buy an option only if his subjective value of it exceeds

the current market price. The replication argument for deriving the Black-Scholes

price has only minor importance for the actions of such a speculator (see also Korn

and Wilmott (1996)). In contrast to him, the hedger who needs an option position for

insurance reasons in his portfolio will strongly favour the Black-Scholes price. As a

third type one could think of a speculator who has a partial hedging approach to

bound his risk from speculating. His typical strategy could be of the form "Hold the

option until it reaches a sufficiently high value, then hedge this position to insure the

gain" or "Hedge a part of the option position, let the remaining part evolve freely (as

long as it is favourable". The strategy could also involve a second criterion to hedge

the whole position if the evolution of the underlying is totally different from the

investor's expectations. Of course, one could further include the possibility to sell the

option at the market again if the market price is favourable.

      One reason for the attractiveness of trading in options is the fact that the

derivative market is usually more liquid than the equity market and offers a great

flexibility due to the vast number of different types of contracts traded. Also,

agreement on prices is easier than in the equity market due to the acceptance of the

Black-Scholes formula (and its appropriate adaptations to contracts different from

European calls and puts) for pricing derivatives. Hence, if an investor has a subjective

view on the value of an option contract he can always base his decision on a

comparison between his subjective value and the Black-Scholes price.

     In this paper we outline a framework that includes all the above mentioned types

of investors and their strategies. The subjective value of an option will always be

determined via the solution of an investment problem. By specifying different

strategies of the investor, imposing constraints on the evolution of the (subjective)

wealth process describing the investment problem and on  measures for the riskiness

of a strategy we will consider a variety of situations where the subjective option value

can differ from the Black-Scholes price. In fact, the advantage of such an approach is

that an investor can determine his personal value of an option depending on the way

that he will use the option. Comparison to the traded price then tells him if the

intended use of the option is reasonable or not.
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     Section 2 will contain the basic set-up of this investment problem and the study of

some examples in the case with constant market coefficients. The extension of this

situation to the case of a two-valued drift rate as in Korn and Wilmott (1996) is the

subject of section 3. Here, we will also look at a situation where the subjective option

value will be underpinned by the Black-Scholes price by introducing the possibility of

a position closure. Numerical examples including a comparison of different option

values and other features of our new approach will be given in section 4.

2. The subjective value of an option

In this section we start by considering a very basic financial market consisting of a

bond and one risky asset with price dynamics given by

dBt = Bt   r dt B0 = 1 (2.1)

dSt = St [ µ dt + σ dWt ] S0 = s (2.2)

where the market coefficients are all assumed to be constant and Wt is a one-

dimensional Brownian motion. We look at an investor who holds an option on the

risky asset with a final payoff f(ST). To hedge himself fully or partly against the

uncertainty of this position he also trades in the underlying and in the bond. More

precisely, his strategy is given by the portfolio (1,-∆t,-ϕt) at time t consisting of an

option, -∆t units of the risky asset, and -ϕt units of the bond. Let V(t,S) be the

subjective value of the option at time t when the price of the risky asset is S. V is

assumed to be sufficiently smooth. Define

X(t) =  V(t,St) - ∆tSt - ϕtBt (2.3)

X(t) is the wealth process corresponding to the above portfolio if and only if V(t,St)

is the market price of the option. Otherwise it is just a subjective belief of the wealth

of the portfolio. The comparison of the subjective belief with the real market value

will indicate if it is worth (in the subjective view of the investor) holding the portfolio

or not. It is certainly no reasonable situation for an investor to hold a portfolio which

he thinks is overpriced (at least for his intended use of the portfolio). Because we

require the portfolio strategy to be self-financing we get

dX(t) = {Vt(t,St)+(VS(t,St)-∆t)µS t + ½ σ²St²VSS(t,St) - rϕtBt }dt + (VS(t,St)- ∆t)σ
St dWt

= {Vt + (VS - ∆t)µS t + ½ σ²St²VSS - r(V- ∆tSt- X(t)) }dt + (VS - ∆t)σSt dWt

= :    a(t) dt + b(t) dWt (2.4)

where we have omitted the arguments for V and its partial derivatives in the second

line. Of course, it is clear that V has to satisfy the terminal condition
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V(T,S) = f(S) (2.5)

where f should grow at most polynomial in S.

     We now have a lot of possible choices of the "free parameters" to specify the

portfolio and option valuation problem given by equations (2.3/4/5). In the following

we will specify certain forms of the coefficients a(t) and b(t) and/or the strategy ∆t

(respectively ϕt) or impose constraints on them. This will lead to a partial differential

equation (for short : pde) for V that thus determines the subjective value of the

option. By using

∆t = VS  - 
b t

St

( )

σ
(2.6)

the most general form of this pde would be

        Vt + ½ σ²S²VSS + rVSS - rV = a(t) - rX(t) - µ
σ
− r  b(t) (2.7a)

V(T,S) = f(S) (2.7b)

     The right side of equation (2.7a) is the part that is different to the Black-Scholes

equation. Its interpretation is highly dependent on the choice of a(t) and b(t). It can

be seen best during the following examples. In these examples we show how certain

goals, beliefs or strategies of an investor can be formulated in this approach.

Example 2.1 "Full hedging"

The requirement of a riskless portfolio, i.e. b(t) ≡ 0 for all t ∈ [0, T], leads to

∆t = VS      ∀ t ∈ [0, T] .

For arbitrage reasons it is clear that we must also require a(t) = r X(t) which leads to

        Vt + ½ σ²S²VSS + rVSS - rV = 0   ∀ t ∈ [0, T)

V(T,S) = f(S)

i.e. we have the Black-Scholes equation. Hence, our approach is a generalisation of

the usual replication approach  to option valuation. In this example the subjective

value of the investor equals the Black-Scholes price because his only intention was

hedging. The choice of x or X(T) in this example is more or less irrelevant. A choice

of x as the initial wealth of our portfolio leads to a terminal wealth of  X(T) = x

exp(rT) (note that the numbers of bonds and shares to obtain a perfect hedge are

already uniquely determined; a positive (negative) x corresponds to an additional long

(short) position in the bond).   

Example 2.2 "Pure speculating"

Now we look at an investor who buys an option for speculative reasons only. He has

no stock position and holds the unhedged option position, i.e. we obtain
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∆t = 0 ,   b(t) =  VSσSt    ∀ t ∈ [0, T] .

By requiring a(t) = rX(t) we get

Vt + ½ σ²S² VSS + µVSS - rV = 0   ∀ t ∈ [0, T)

V(T,S) =  f(S)

for the subjective value V(t,S) in this case. For a simple call option this value is

bigger than the Black-Scholes price iff the mean rate of stock return µ is bigger than

the riskless interest rate r. V(t,S) then coincides with the simplest example for a

subjective value of an option as defined in Korn and Wilmott (1996). Hence, our new

approach also generalises the one in Korn and Wilmott (1996).

Example 2.3 "Speculating with position closure"

If we consider options with a terminal payoff that is not monotonous in the stock

price then the subjective option value computed in the foregoing example need not be

monotonous in the drift rate µ. Hence, this subjective value can be higher or lower

than the corresponding Black-Scholes type price (which is the subjective value with µ

equal to r) according to the current stock price. It is therefore reasonable for an

investor whose decisions are (at least partly) based on the subjective option value that

he will buy and hold an option only if the subjective value exceeds the Black-Scholes

price (which we assume to be the market price). Thus, the investor would close his

position by selling the option at the market at the first time instant when the

subjective value and the Black-Scholes price coincide. As a result the pde of Example

2.2 for the subjective option value will be substituted by the free boundary problem

Vt + ½ σ²S² VSS + µVSS - rV = 0   ∀ t ∈ [0, T)

V(T,S) =  f(S)

V(t,S)  ≥ BS(t,S) ∀ t ∈ [0, T)

where we only require V and its first derivatives to be continuous. Of course, this

value is at least as big as the Black-Scholes price.

Example 2.4 "Partial hedging"

This example contains elements of  Examples 2.1 and 2.2. By putting the constraints

α VS  ≤  ∆t  ≤  β VS

on the stock position the investor cannot fully hedge the risk in his option position.

He will now choose ∆t to maximise the drift rate a(t). This leads to

∆t = 
α
β

V if V

V if V
S S

S S

,

,

≥
<





0

0

The usual requirement of a(t) = rX(t) leads to the pde
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Vt + ½ σ²S²VSS + VSS( µ - (µ-r)( α1 { }VS ≥0 + β1 { }VS <0 ))- rV = 0

V(T,S) = f(S)

which coincides with the Black-Scholes equation for α = β = 1 and with the equation

of Example 2.2 for α = β = 0. By approximating the function

g(VS) = µ - (µ-r)( α1 { }VS ≥0 + β1 { }VS <0

by a sequence gn of functions which are bounded and Hölder continuous we get the

existence of a unique solution to the above pde where g is substitued by gn (see

Karatzas and Shreve (1988), p. 368). But this is also the unique viscosity solution to

this corresponding pde. By the well-known stability features of viscosity solutions

there will also exist a unique viscosity solution of the limiting pde, i.e. the one above.

Looking at the form of the pde one can easily deduce that for µ > r the subjective

value V(t,S) will be bigger than the Black-Scholes price if we have  α ≤ 1≤  β.

     However, at first sight it seems to be a contradiction that on one hand the investor

chooses ∆t to maximise the drift rate of X(t) while on the other hand we require a(t)

to be equal to the riskless drift rate. The interpretation of this is as follows : the

requirement of a(t) = rX(t) gives us the possibility to compare the performance of the

resulting strategy with a riskless investment, and by choosing ∆t in the above way we

ensure that the pde for V(t,S) will be derived from an optimal action. More precisely,

there is no other strategy delivering the required drift rate for a lower value of V(t,S).

I.e. we avoid a possible overvalueing of the option by choosing a non-optimal

strategy.

     The form of ∆t can be interpreted as a form of "speculate until a sufficient gain is

made, then save it"-strategy. As long as the (subjective) option value grows with the

stock price the investor hedges as few as possible ("∆t=αVS"), or otherwise

expressed, tries to speculate on the maximum allowed level. If its value decreases the

investor tries to hedge as much of the achieved position as possible ("∆t=βVS").

Example 2.5 "A mean-variance strategy"

While in the examples considered so far we have more or less concentrated on the

risk in our portfolio (expressed by the diffusion coefficient of X(t)) we now look at

both the diffusion and drift coefficient at the same time. To do this we formulate a

mean-variance type problem (for the local parameters of the equation for X(t)) that

consists of maximising

f(∆t) = a(t) - δ b(t)²

= Vt + ½ σ²StVSS - r(V- ∆tSt- X(t)) + (VS - ∆t)µS t - δ ((VS - ∆t)σSt)²

where δ is a positive parameter describing the risk aversion of the investor. The

maximiser of f can be easily computed as
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∆t* = VS - 
µ

δσ

− r

S t
2

Note that such a strategy leads to a diffusion coefficient b(t) of the form

b(t) = 
µ
δσ
− r

which is constant (independent of the stock price !). The strategy ∆t* has the

remarkable feature that it tends to VS if the stock price is high while it will be

strongly negative for small values of St. Comparison of this type of option investment

to a riskless bond investment (i.e. requiring a(t) = rX(t)) leads to the following pde

for the subjective value of the option.

 Vt + ½ σ²S²VSS + rVSS - rV + ( )1
2

δ
µ

σ
−r

  =  0

V(T,S) = f(S)

where the additional constants is just the product of the square of the mean-variance

trade off and the inverse of the coefficient of risk aversion. Using standard argumnets

(as for example presented in Friedman (1964)) one can again verify that there exists a

unique solution to this pde. Compared to a riskless investment this strategy has a

higher drift rate as long as µ is bigger than r. Thus, the intended use of the option

delivers a higher drift rate than a riskless investment. Also, the form of the pde the

subjective value of the option is higher than the Black-Scholes price.

     Comparison of this strategy to a pure stock investment is not at all easy. On one

hand, the diffusion coefficient can be higher or lower than σSt (depending on the

value of St), on the other hand there is also no clear ordering of the resulting drift

coefficient.

3. Subjective option value and changing drift rates : A more complex
view

In this chapter we allow an investor to have a more detailed view towards the future

development of a stock price. While in the foregoing section he was forced to have a

unique view expressed in the choice of a single drift and a single diffusion coefficient

he is now allowed to think about possible changes in the future behaviour of the price

movements. As in section of Korn and Wilmott (1996) we model these possibilities

via a changing drift rate of the stock price. The drift coefficient µ t is allowed to attain

the values µ1 and µ2 with µ1 ≥ µ2. Such an approach increases the flexibility for mo-

delling. We assume that whenever the drift rate is µ1 (resp. µ2) then the intensity for a

change of the rate to µ2 (resp. µ1) is λ1dt (resp.λ2dt), i.e. the time until the next
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change of the drift parameter has an exponential distribution with parameter λ1 (resp.

λ2), or in stochastic differential notation :

dµ t = (µ2 - µ t- ) dN t
( )1

 + (µ1 - µ t- ) dN t
( )2

 = (
i=
∑

1

2
µ i - µ t- ) {d % ( )N t

i + λidt}

where N t
i( )

 ( % ( )N t
i ) is a (centered) Poisson process with intensity λi, i = 1,2. If we

now assume that the subjective option value V (as constructed in section 2) can also

depend on the current value µ t of the drift parameter then we have the following

representation :

dV(t,St,µ t) = [ Vt+µ t-SVS+½σ²S²VSS+{V(t,St,µ t-+(µ2-µ t-))-V(t,St,µ t-)}λ1

+ {V(t,St,µ t-+(µ1-µ t-))-V(t,St,µ t-)}λ2 ] dt  +  σSVSdWt +

 + {V(t,St,µ t-+(µ2-µ t-))-V(t,St,µ t-)}d % ( )N t
1

+ {V(t,St,µ t-+(µ1-µ t-))-V(t,St,µ t-)}d % ( )N t
2 (3.1)

     We refer the interested reader to Korn and Wilmott (1996) for a detailed

discussion of the   impact of the investor's beliefs on the choice of the parameters λi.

Before we look at the examples presented in section 2 in our new framework we

introduce a useful notation. Let V i be the subjective option value if the current value

of µ t is µ i. Then equation (3.1) simplifies to

dVi(t,St) = [ Vi
t+µ iSVi

S+½σ²S²Vi
SS+{V(t,St,µ i+(µ*-µ i))-Vi(t,St)}λi] dt

+  σSVi
SdWt +{V(t,St,µ i+(µ*-µ i))-Vi(t,St)}d % ( )N t

i (3.2)

with µ* = 
µ
µ

1

2

2

1

,

,

if i

if i

=
=





. We therefore introduce the notation Xi(t) with the obvious

interpretation. The stochastic differential equations for Xi(t) then have the form

dXi(t) = a i(t) dt + b i (t) dWt + c i (t) d % ( )N t
i (3.3)

with

 a i(t) =  Vi
t+µ iS(Vi

S -∆t) + ½σ²S²Vi
SS+{V(t,St,µ i+(µ*-µ i))-Vi(t,St)}λi - rϕtBt (3.4)

b i (t) = (Vi
S - ∆t)σSt (3.5)

ci (t) = V(t,St,µ i+(µ*-µ i))-Vi(t,St) (3.6)

Of course, the final condition for V i  should be independent of the value of the drift

rate :

Vi(T,S) = f(S) (3.7)

     We can again derive partial differential equations characterising the subjective

option value(s) Vi, i = 1, 2, by specifying certain forms of the coefficients a i(t),
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b i (t), ci (t) and / or the strategy ∆t (respectively ϕt). By noting that relation (2.6) is

still valid as

∆t = V i
S  - 

b t

S

i

t

( )

σ
(3.8)

we get the following general form of these pde

        Vi
t + ½ σ²S²Vi

SS + rVi
SS - rVi = a i(t) - rXi(t) - µ

σ
− r  b i (t)- λic

i (t) (3.9a)

Vi(T,S) = f(S) (3.9b)

     Due to the special form of a i(t) and ci (t) these equations form a coupled two-

dimensional sytem. Just remind yourself of the relations

V(t,St,µ1+(µ*-µ 1)) = V2 (t,St)    V(t,St,µ2+(µ*-µ 2)) = V1 (t,St) (3.10)

We now look at the examples already presented in section 2. Also, we will examine

the effect of position closure at the first time when the subjective value falls below

the Black-Scholes price of the option.

Example 3.1 "Full hedging"

The full hedging requirement would now force the coefficients b i (t) and ci (t) to be

identical to zero for all t ∈ [0, T] and i = 1,2. Hence,  we should have

V2 (t,S)   =  V1 (t,S)   ∀ (t,S) ∈ [0, T] × (0, ∞)

∆t =  Vi
S       ∀ t ∈ [0, T] .

Therefore, we end up with a single pde for V = V1 = V2  and the (local) no arbitrage

requirement a i(t) = r Xi(t) which leads to the Black-Scholes equation. As a special

consequence one could say that a total hedging requirement leaves no space for

having a non-unique view on the future price dynamics (or at least : this view does

not enter into the option value).

Example 3.2 "Pure speculating"

In this case where the investor has no stock position and holds the unhedged option

position  we obtain

∆t = 0 ,   b i (t) =  V
i
SσSt    ∀ t ∈ [0, T] .

By requiring a i(t) = rXi(t) and using relation (3.10) we get the following system

          ∂
∂t V1+ ½ σ²S² ∂

∂

2

2S
V1+ µ1S

∂
∂S V1- rV1+ λ1(V2 - V1

 ) = 0 (3.11)

∂
∂t V2 + ½ σ²S² ∂

∂

2

2S
V2 + µ2S

∂
∂S V2 - rV2 + λ2(V1-V2 ) = 0 (3.12)

(with the obvious final conditions) which was already reported in Korn and Wilmott

(1996).
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Example 3.3 "Speculating with position closure"

As a variant of the foregoing example we now introduce the possibility that the

investor sells the option at the first time where its subjective value V(t,St,µ t) falls

below (in the sense of lower or equal to) the Black-Scholes price. Note, that due to

the discontinuities in the paths  of the stock drift parameter process the subjective

option value need not be continuous in time along its paths. This new feature will

turn the pde system (3.11/12) into one with a free boundary condition

V2 , V1  ≥ BS(r,t,S) (3.13)

where we require V2 , V1  and its first derivatives to be continuous. Although the

argument in Example 2.3 for introducing the possibility of closing the position is valid

here too, the discontinuities in price paths are a different feature which is only

possible in a non-constant drift rate setting. We will compare the two cases of a

constant and a two-valued drift rate in Section 4.

Remarks on existence and uniqueness

Example 3.4 "Partial hedging"

This example contains elements of both the foregoing ones. By putting the

constraints

α Vi
S  ≤  ∆t  ≤  β Vi

S

on the stock position the investor cannot fully hedge the risk in his option position.

He will now choose ∆t to maximise the drift rate a(t). This leads to

∆t = 
α

β

V if V

V if V

i
S

i
S

i
S

i
S

,

,

≥

<







0

0
        if  µ(t) = µ i

The usual requirement of a(t) = rX(t) leads to the following system of pdes

V1
t + ½ σ²S²V1

SS + V1
SS( µ1 - (µ1-r)(α1 { }V S

1 0≥
+ β1 { }V S

1 0<
))- rV1+ λ1(V2 - V1) = 0

V2
t + ½ σ²S²V2

SS + V2
SS( µ2 - (µ2-r)(α1 { }V S

2 0≥
+ β1 { }V S

2 0<
))- rV1+ λ2(V1- V2 ) = 0

Vi(T,S) = f(S)

for the subjective option values Vi(t,S) as a generalisation of the pde of Example 2.4

. Again, the effect of introducing the more general model for the drift rate will be

demonstrated via some numerical examples in Section 4.

 Remark about existence/uniqueness in the sense of viscosity solutions.  

Example 3.4 "A mean-variance strategy"

Picking up the mean-variance example from Section 2 we try to maximise
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f i(∆t) = a i(t) - δ b i (t)²  - η c i (t)²

= Vi
t + ½ σ²StV

i
SS - r(Vi- ∆tSt- X(t)) + (Vi

S - ∆t)µ iSt - δ ((Vi
S - ∆t)σ

St)²

-  η (V(t,St,µ i+(µ*-µ i))-Vi(t,St))²

with positive parameters δ, η describing the risk aversion of the investor towards

(stock price) diffusion risk and (option value) jump risk. The maximiser of f has the

same form as in the mean-variance example of the last section. The jump risk has no

impact, and we have

∆t* = Vi
S - 

µ
δσ

i

t

r

S

−
2

b i (t) = 
µ

δσ
i r−

i.e. the diffusion coefficient of the subjective option value is piecewise constant

(independent of the stock price !). Comparison of this type of option investment to a

riskless bond investment (i.e. requiring a i(t) = rX(t)) leads to the following system of

pdes for the subjective option values Vi

 V1
t  + ½ σ²S²V1

SS  + rV1
SS - rV1 + ( )1

2
1

δ
µ

σ
− r

  + λ1(V2 - V1)  =  0

 V2
t + ½ σ²S²V2

SS + rV2
SS - rV2  + ( )1

2
2

δ
µ

σ
− r

 + λ2(V1- V2 ) =  0

Vi(T,S) = f(S) .

4. Numerical Examples
In this section we will give some numerical examples for comparing the different

subjective option values which were proposed in the foregoing sections. We will also

look at the effect of the introduction of a two-valued drift rate process in the

particular situations that were leading to the proposed subjective option values.
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