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Abstract. The passport option is a call option on the balance of a trading account. The
option holder retains the gain from trading, while the writer is liable for the loss. We estab-
lish pricing equations for various passport options including the multi-asset passport and
those with discrete trading constraints. The results are typically known as the Hamilton-
Jacobi-Bellman equations and multiple layers of free boundary partial di�erential equations
for a sequence of optimal stopping times. Also we examine the gain by selling passport op-
tions to utility maximising investors and to investors who guess the market from imperfect
information.
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1 Introduction

Market participants trade risky assets for better returns, at least on average. As long as the
risk remains signi�cant, however, investment in these assets does not guarantee a positive
payo� and traders are prone to become a victim of their own strategies. Nowadays, a variety
of �nancial instruments allow traders to generate non-linear returns and hence enable them
to avoid extreme �nancial loss to some extent. An example of such an instrument is the
passport or perfect trader option.

The passport option is a call option on the balance of a trading account. The option
holder trades an asset (or several assets) and takes the net pro�t of all the trades he made
before maturity. The issuer is liable for the net loss. This option certainly makes the fund
management straightforward and safer as long as fund managers are willing to pay the
upfront premium for the passport option.

The �rst version of the passport option was launched by Bankers Trust. The option
holder trades one asset with the position limit speci�ed in the contract and with an im-
munity from the net loss he may incur in trading. The puzzle in the price valuation is
that the option holder's trading strategy is not known a priori. As in the American option
valuation, we surmount the uncertainty of the option holder's strategy by maximising the
price over all feasible trading strategies. As a result the price of the option under the
complete market assumption (see Harrison and Pliska (1981), for example) is given by

sup
jqj�L

Ê
h
e�rT max(AT (q); 0)

i
(1)

where q = fq(t); 0 � t < Tg is the position of the option holder on the underlying asset,
AT is the balance of the trading account at the maturity T , r is the risk-free interest rate, L
is the position limit, and Ê is the expectation under the risk-neutral measure, also known
as the equivalent martingale measure which evaluates the value of the replicating portfolio
as an expectation. Hyer, Lipton-Lifschitz, and Pugachevsky (1997) describe the price (1)
as a solution of the Hamilton-Jacobi-Bellman (HJB) equation of the corresponding control
problem. Provided that the underlying asset pays no dividend and that the growth rate of
the cash balance in the account speci�ed in the contract coincides with the risk-free rate
(so called symmetric case), the equation becomes:

�vt = r(ava + svs � v) +
1

2
�2s2 sup

jqj�L

�
q2vaa + 2qvas + vss

�
(2)

with terminal data max(a; 0): The �rst term in the right side indicates that the return
of the replicating portfolio coincides with the risk-free rate. The balance of the trading
account inherits the movement of the underlying asset except that its volatility is ampli�ed
(or condensed) by the amount of assets the customer holds. Thus the meaning of the last
term in (2) is that the riskless portfolio of the issuer must absorb the curvature e�ect (i.e.,
gamma) in the worst case. The only other work that we know of is by Andersen, Andreasen,
and Brotherton-Ratcli�e (1998).

Various types of passport options are traded in the market, depending on the number
of underlying assets and on exotic trading constraints. In this paper, we establish the
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Figure 1: Pro�ts of writer (w) and holder (h)

pricing equations for such options using stochastic control and optimal stopping times.
In constructing a replicating strategy, the issuer must tune his position with the trading
strategy performed by the option holder, not the one that maximises the price. We provide
a description of the hedging strategy in the next section. We �nd that some trading
constraints make the valuation procedure delicate, and that their in
uence to the price of
the option is somewhat surprising. For example restrictions on the number of permitted
trades do not make the option much cheaper. See Figure 4 in Section 3.

Another issue that we address in the paper is how market participants will bene�t from
buying and selling passport options. For example, the issuer of the option will gain when
the option holder's strategy di�ers from the one that attains the maximum price (1). It is
unlikely that the option holder will follow the price maximising strategy when he perceives
the physical drift signi�cantly di�erent from the risk neutral one. In fact the option holder
will try to obtain the best out of his option utilizing his view on the market movement.
Thus it is conceivable that the passport option will remunerate both issuer and holder. We
examine the pro�t of the issuer as his customer guesses the market direction from imperfect
information. For a preview, Figure 1 shows a scatterplot of 5,000 simulations where the
issuer hedges his position (short 1 passport option with L = 1), while his customer guesses
the market direction. We alternate a rising market and a falling market 10 times during
the life of the option (6 months), and let the option holder guess correctly 60% of the time
(details in Section 4). The horizontal axis is for the issuer (writer) and the vertical is for
the option holder. The asset price volatility is 20% annum and the price of the option is
2.94. The mean pro�t is 1.14 for the issuer and 2.16 for the option holder. Thus the mean
return for the option holder is 72%. The few points at which the issuer loses money are
the result of discrete hedging in simulation (100 rebalancings) and of errors in numerical

3



computations.
The paper is structured as follows. In Section 2, we describe the pricing equation for

the multi-asset passport option in terms of the HJB equation. We show that the price
maximising trading strategy has its value in the boundary of the position limit. Also we
reduce the number of variables using the similarity solution. This reduces the burden of
severe numerical computation. In Section 3, we investigate several trading constraints. Due
to the complexity of the notations and the numerical procedures we restrict our treatment to
the single asset passport option. We consider two exotic trading constraints: (i) a restriction
on the number of trades; (ii) a restriction on the time between trades. We describe the
price maximising strategy as a sequence of optimal stopping times. The resulting pricing
equations become multiple layers of free boundary partial di�erential equations (PDE). We
provide a uni�ed methodology for resolving further complications caused by imposing a
penalty at each trade. In Section 4, we investigate the utility of the two positions, short
and long, in trading passport options. We will consider two models, one with perfectly
speci�ed drift and the other with imperfect information. Section 5 contains concluding
remarks.

2 Multi-Asset Passport Options

Let S = (S(1); : : : ; S(n))0 be a set of tradable assets. While we may use a broader class of
di�usion processes for describing the evolution of S; we insist on using a simple structure
where each S(i) follows a log-normal di�usion:

dS
(i)
t = �iS

(i)
t dt+ �iS

(i)
t dW

(i)
t

where W = (W (1); : : : ;W (n)) is a standard Brownian motion with correlation matrix
[�ij]n�n: The option holder maintains q(i) shares of the i-th asset, and the balance on
the trading account A evolves as

dAt = r
�
At �

nX
i=1

q(i)(t)S(i)
�
dt+

nX
i=1

q(i)(t) dS(i)
t (3)

where r is the risk-free interest rate. The �rst term appears in (3) describes how the cash
balance (i.e., deposit/withdraw) in the trading account is compounded. As mentioned in
Hyer et al. (1997), the rate is rather an attribute of the contract and it may di�er from the
risk-free rate. But we will stay with the one that we have chosen for simplicity. The payo�
of the passport option holder at the maturity is max(AT (q); 0): Note that AT (�q) = �AT (q)
for each scalar �; since A0 = 0: Therefore we set L = 1 without loss of generality.

2.1 Description of the Pricing Equation

In what follows we will use rather abstract notations: 5 and 52 are the gradient (the �rst
derivative) and the Hessian (the second derivative), respectively. The advantage of using
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these symbols is that they convey the meaning of the equations without requiring the e�ort
of tracking double indices. First we state the equation, and then we will try to justify it
�nancially.

We designate X to be the vector of size n+ 1 consists of A and S: For the time being,
we restrict the trading strategy q to be a Markov policy (also know as a feedback control),
meaning that q(t) is a function of t and Xt:We de�ne the value function of the problem as
follows:

v(t; x) = sup
jqj�1

Êt;x
h
e�r(T�t)max(AT (q); 0)

i
(4)

where the supremum is taken over all feasible Markov policies with position limit L = 1:
We have the following result:

Proposition 2.1. Let x = (a; s1; : : : ; sn)
0: The value function v(t; x) de�ned in (4) satis�es

the following HJB equation:

�vt = r
�
h5v; xi � v

�
+
1

2
� sup
jqj�1

n
hq; Cqi vaa + 2h52

0v;Cqi+ hs;Dsi
o
; (5)

v(T; x) = max(a; 0) ;

where C = [�ij�i�jsisj]n�n; D = [�ij�i�j 52
ij v]n�n; and 52

0v = (52
01v; : : : ;52

0nv)
0:

If the contract permits the option holder to trade only one asset (n = 1), the HJB
equation (5) is reduced to (2). Obtaining the above result is a standard procedure in
stochastic control and one can check that a unique viscosity solution to (5) exists. In
addition, the existence of a classical solution to (5) provides a justi�cation for restricting
the class of trading strategies to that of Markov policies, which is known as the \veri�cation
theorem" in stochastic control theory. Discussing this in detail is beyond the scope of this
paper, and we refer to Fleming and Soner (1992). The implication of the theorem is that
the value function of the control problem will not be increased by a non-Markovian policy
as long as the status at the moment is the same. Thus, as long as the issuer of the passport
option knows the current prices of the underlying assets and the balance of the trading
account of his customer, it is not important how his customer ends up with the current
balance.

Here we sketch an informal derivation of the HJB equation (5), and argue that it is the
pricing equation for our problem. Under the complete market assumption, the issuer of the
option can construct a risk-free portfolio using the underlying assets. Hence we consider
the following portfolio:

� = h�; Si � v =
nX

i=1

�(i)S(i) � v (6)

where v is the value of the option which is in short and � is the hedging strategy (i.e. the
amount of assets to hold). Our �rst task is to determine the correct � to make (6) riskless.
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Due to the Markovian nature, the value v of the option will depend upon the prices of
S(i); i = 1; : : : ; n; and the balance of the trading account A at the moment. Applying Itô's
formula to v yields:

dv = h5v; dXti+ vtdt+
1

2
52 v (dXt; dXt) (7)

where 52v (; ) is the bilinear form de�ned by the Hessian of v: Recall that X consists of A
and S: Thus we ascertain that the only random factor in the growth of � at the moment
is contained in

h�; dSi � h5v; dXi =
nX

i=1

(�(i) �5iv � q(i)va) dS
(i) � r

�
A� hq; Si

�
vadt

where q is the trading strategy performed by the customer. In order to eliminate the risk
caused by the random growth factor dS; we must choose � = (5iv+ q(i) va)0i=1;:::;n: Again q
is the actual trading strategy performed by the option holder. We emphasize this point. In
order to create a hedging strategy �, the issuer must be fully aware of the trading activities
conducted by his customer. Now we mandate the rest terms in � to grow at least at the
risk-free rate r even in the worst case for the issuer:

�r
�
A� hq; Si

�
vadt� vtdt� 1

2
52 v(dX; dX) � r� dt

which is equivalent to

�vtdt � r
�
h5v;Xi � v

�
dt+

1

2
52 v (dX; dX) : (8)

On the other hand, the equality must hold for at least one choice of trading strategy q to
avoid arbitrage. In fact, q is concealed in dX because the balance of the trading account
A is an element of X and hence by (3). Therefore we conclude the result (5) ascertaining
that the following must prevail regardless of the state of A and S at the moment:

�vt = r
�
h5v;Xi � vi

�
dt+ sup

jqj�1

1

2
52 v (dX; dX) :

2.2 Properties of the Pricing Equation

We will discover several properties of the pricing equation (5). First, the equation (5) does
not depend upon the risk-free rate r: Second, we construct a similarity solution in such a
way that the number of space variables in the equation can be reduced. This reduces the
computation time and error in solving the equation numerically. Finally, we will discuss
the behavior of q? the price maximising trading strategy.

Recall that X is a vector valued process consists of A and S: Thus X solves a linear
stochastic di�erential equation (SDE), and consequently, for each scalar �; �X solves the
same SDE with initial condition �x: This together with the payo� max(a; 0) assures that
the value function v is homogeneous of degree 1 in space variables: v(t; �x) = �v(t; x) for
each scalar �: Di�erentiating this identity with respect to � and evaluating it at � = 1; we
obtain the following:
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Proposition 2.2. The solution v of the HJB equation (5) satis�es h5v; xi = v:

As a result, the price of the passport option doesn't depend upon the risk-free rate.
As we mentioned earlier in the section, the growth rate of the cash balance in the trading
account is the value speci�ed in the contract. If it di�ers from the risk-free rate r then the
price of the option depends upon the growth rate as well as the risk-free rate. Also if the
terminal payo� is not max(a; 0); the result may fail.

Next we consider a di�eomorphism � on the state space IR� (IR+)n which satis�es the
following properties:

�i(�x) = �i(x) ; i = 0; : : : ; n� 1;

�n(�x) = ��n(x) ;

for each x in IR� (IR+)n: De�ne u via v(t; x) = v(t; ��1 � �(x)) = u(t; �(x)): Then we must
have

�u(t; �(x)) = u(t; �(�x)) = u(t; �0(x); : : : ; �n�1(x); ��n(x)) :

Therefore we conclude that u(t; �) = �nf(t; �0; : : : ; �n�1) for some function f: For example,
suppose we choose a di�eomorphism � on IR� (IR+)n de�ned by

�(x) =
�x0
xn
; : : : ;

xn�1
xn

; xn
�
:

Then the value function v can be rewritten as v(t; x) = xnf(t; y; z) where y = a=xn and z
is a vector of size n � 1 with its element zi = xi=xn: Furthermore f satis�es the following
HJB equation:

�ft = 1

2
� sup
jqj�1

n
hq; Ĉqi fyy + 2h52

0f;�qi+ hz; D̂zi
o
; (9)

f(T; y; z) = max(y; 0) ;

where D̂ = [(�2n��in�i�n��jn�j�n+�ij�i�j)5ijf ](n�1)�(n�1); 52
0f = (52

01f; � � � ;52
0(n�1)f)

0

and where

hq; Ĉqi = �2n(y � qn)
2 � 2�n(y � qn)

n�1X
i=1

�in�iziqi +
n�1X
i=1

n�1X
j=1

�ij�i�jzizjqiqj ;

( �q )i = �2n(y � qn)zi +
n�1X
j=1

�j (�ij�i � �nj�n) zizjqj + �ni�n�iziqn :

When n = 1; z is nulli�ed and all the sums vanish. Thus the value function for the
single-asset passport option can be written as v(t; a; s) = sf(t; a=s) where f(t; y) satis�es

�ft = 1

2
�2 � sup

jqj�1
(y � q)2fyy

�
or =

1

2
�2(1 + jyj)2fyy

�
(10)
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with terminal data max(y; 0):
Next we discuss the behavior of q? the price maximising trading strategy. Since the

terminal data max(a; 0) is convex in a; vaa stays positive as long as the solution of (5) does
not explode. Also note that C is a positive de�nite matrix. Therefore the supremum in
the HJB equation (5) is always attained in the boundary of the feasible set. Of course this
will fail when the terminal data is not convex.

Proposition 2.3. The price maximising trading strategy q? satis�es jq?t j = 1 for all t

almost surely.

2.3 Numerical Example : Dual Passport (n=2)
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Figure 2: Price of dual passport option with constraints q(1)q(2) = 0

�1 = 0:2; �2 = 0:4; � = 0:5

Figure 2 is a graph of the price of the 6 month dual passport option with constraint
q(1)q(2) = 0: i.e., the option holder may use his passport to enter into di�erent territories,
but given any time the physical presence has to be in either one of them. Intuitively this
constraint reduces the e�ect of correlation by not allowing the two assets to coalesce each
other in the trading account. Thus pricing and hedging are somewhat less sensitive to the
possible misspeci�cation of the correlation. In this example, the volatility of S(2) dominates
that of S(1): Thus, when the price of S(2) is greater than that of S(1); the price the option
is robust to the change of prices in S(1):

Figure 3 is the case when there is no constraint. Obviously the contract without the
constraint q(1)q(2) = 0 is more expensive than the one with the constraint.
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Figure 3: Price of dual passport option without constraints

�1 = 0:2; �2 = 0:4; � = 0:5

3 Discrete Trading Constraints

In this section, we discuss the trading constraints which force the option holder to trade
only a �nite number of times. We will con�ne the scope of our discussion to the single-
asset passport option. As in the previous section the value function is proportional to the
position limit L: Thus, we may set L = 1: Two constraints to be considered here are a
speci�cation of the total number of trades and a restriction on the time between trades. In
both cases, it is clear that the price maximising strategy has its value (i.e., the amount of
holding) equal to one of the limits�1. Then the price maximising strategy can be identi�ed
by a sequence of optimal stopping times. We will describe the option price with multiple
layers of free boundary PDE's. We refer to Van Moerbeke (1976) for the justi�cation of
the equivalence of the optimal stopping problems and free boundary PDE's.

When the option holder is permitted to trade only once, an analytical approach is
available. We demonstrate this case �rst. We will start by arguing that the value of the
option is maximised when the option holder trades at time 0. Suppose that the option
holder buys one share of the underlying at time � 2 [0; T ): Then the balance of his trading
account at the maturity becomes AT = ST � S�e

r(T��); and hence the value of max(AT ; 0)
at time � is the same as that of the European call with strike S�e

r(T��) :

S�

�
N(

1

2
�
p
T � � )�N(�1

2
�
p
T � �)

�
= S��(T � � ) (11)

where N is the distribution function of the standard normal random variable. If the option
holder shorts the underlying at time � 2 [0; T ); the balance ends up AT = S�e

r(T��) � ST
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at the maturity. In this case, the value of max(AT ; 0) at time � coincides with that of the
European put with strike S�e

r(T��); which is identical to (11) by the put-call parity. Note
that t! �(t) is a decreasing function. Therefore

Ê
h
e�r�S��(T � � )

i
� Ê

h
e�r�S�

i
�(T ) = S0�(T ) : (12)

The last equality is obtained from the fact that e�rtSt is a martingale under the risk neutral
measure and hence by the optional sampling theorem (see Karatzas and Shreve (1988),
for example). As a result, the stopping time that maximises the option value must be
identically 0, and the price of the option is s�(T ): This coincides with that of the European
call with strike se�rT ; or equivalently the European put with the same strike.

The hedging strategy is straightforward in this case. At time 0, the issuer buys �(T )
shares of the underlying asset and stays with the position until the option holder demands
a trade. This costs the issuer exactly the price of the option he wrote. Suppose the option
holder wants to trade at time �: The issuer cashes �(T � � ) shares of his assets, and pays
for a call or put at strike S�e

r(T��); depending on whether the option holder wants to be
long or short in the underlying asset. From then on, the vanilla option take cares of the
rest. Therefore when � is greater than zero, the issuer gains �(T )� �(T � � ) shares of the
underlying which he may cash in anytime. A risk neutral choice is to cash ��0(T � t)dt
shares of the underlying assets during [T � t; T � t + dt] until the customer demands a
trade.

3.1 Limited Number of Trades

Our goal is to describe the price maximising value function when only a �nite number of
trades permitted. As we discovered earlier in the case when only one trade is permitted,
the worst case for the issuer is when his customer demands a trade at the very moment he
signs the contract. So for the time being, we will assume that one trade is made at time 0.

We consider v(n+) and v(n�), where n is the number of trades to be made and +=�
indicates the current position, long or short. Then the price of the option is the maximum
of v(n+)(0; 0; s) and v(n�)(0; 0; s); if n+1 trades are allowed, because we assumed one trade
is made at time 0. These functions are homogeneous of degree 1 in space variables, and
hence av(n�)a + sv(n�)s = v(n�) regardless of n: If the option holder is not allowed to trade
any more (n = 0), the value functions evolve without an obstacle:

L+v(0+) = v
(0+)
t +

1

2
�2s2

�
v(0+)ss + 2v(0+)as + v(0+)aa

�
= 0 ;

L�v(0�) = v
(0�)
t +

1

2
�2s2

�
v(0�)ss � 2v(0�)as + v(0�)aa

�
= 0 ;

with terminal data v(0�)(T; a; s) = max(a; 0) : Now we investigate v(n+) for n > 0: Suppose
that � = �S � v(n+) is the riskless portfolio for the issuer. As we described in Section 2,
the issuer must choose � = v(n+)s + qv(n+)a where q is the actual trading strategy performed
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by his customer. Since the riskless portfolio must grow at least at the risk-free rate r;

L+v(n+) = v
(n+)
t +

1

2
�2s2

�
v(n+)aa + 2v(n+)as + v(n+)ss

�
� 0 : (13)

The equality must hold at least in one case to avoid arbitrage, and when it does, it is the
worst case for the issuer. Suppose that L+v(n+) is strictly less than 0 in a situation. This
means that the option holder staying with long position is no longer the worst case for the
issuer. Thus the value v(n+) must coincide with the residual value v((n�1)�): On the other
hand, if v(n+) exceeds v(n�1)�; the trade demanded by the option holder does not provoke
the worst case for the issuer. Thus L+v(n+) vanishes. Combining these, we obtain:

L+v(n+) �
�
v(n+) � v((n�1)�)

�
= 0 ; L+v(n+) � 0 ; v(n+) � v((n�1)�) (14)

with the terminal condition v(n+)(T; a; s) = max(a; 0): This is known as a variational for-
mulation of a free boundary PDE (i.e., linear complementary problem). For the theoretical
aspects of the problem such as regularity conditions, we refer to Friedman (1988). Similarly,
v(n�) satis�es the following:

L�v(n�) �
�
v(n�) � v(n�1)+

�
= 0 ; L�v(n�) � 0 ; v(n�) � v(n�1)+ (15)

with terminal data v(n�)(T; a; s) = max(a; 0) : If the contract speci�es a �xed amount of
penalty, say p, on each trade the option holder engages, then we replace the free boundary
conditions in (14) and (15) by

v(n+) � v((n�1)�) + p and v(n�) � v((n�1)+) + p :

Now we discuss how the issuer hedges the option. Suppose that n trades are allowed so
that the maximum of v((n�1)+) and v((n�1)�) is the price. The price is proportional to that
of the underlying asset, and hence we may write it as s�n(T ): When we construct v(k�);
k � 0; we assumed that the option holder trades at time 0 while he may not have to. If the
option holder indeed trades at time 0, the issuer follows v(k�); k = n � 1; : : : ; 0; tracking
his customer's position (+=� as long/short) and the number of trades to be made. For
example, if the customer holds 0.7 shares of the underlying and if he is allowed to engage
3 more trades, the issuer holds � = v(3+)s + 0:7v(3+)a : Next, suppose that the option holder
is not sure about the market direction at time 0 and he waits until time � > 0: In this
case, the issuer buys �n(T ) shares of the underlying asset at time 0. Since S��n(T � � )
is su�cient for the issuer to hedge the option from the the moment (i.e., � ) his customer
makes the �rst trade and since �n is decreasing, the issuer gains �n(T )��n(T�� ) shares of
the underlying asset. As before the issuer may cash in �n(T )� �n(T � � ) shares gradually
until his customer decides to make the �rst trade.

3.2 Restrictions on Time between Trades

Now the contract states that the option holder is allowed to trade only after a speci�ed
time, say !; has elapsed since the last trade. We introduce the idea of a clock which keeps
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track of time since the last trade. The clock is reset to zero immediately after each time
the option holder trades, and it keeps ticking until its hand reaches !; where it remains
until the next trade. To model this, we introduce an additional time variable �:

�(t) =

(
t� �i ; if �i � t < �i + !;
! ; if �i + ! � t < �i+1

where �i and �i+1 are adjacent trading times. The option holder is allowed to trade only
when the clock is dormant, i.e. � = !:

We will describe the value of the option using price maximising value functions, v(+)

and v(�): The status described by v(+)(t; a; s; �); for � 2 (0; !) is that the option holder is
currently long in asset, but not allowed to trade. v(+)(t; a; s; !) is for the case when the
option holder is currently long in asset and he is allowed to trade which puts him in a short
position in asset. v(+)(t; a; s; 0) describes the very moment the option holder puts himself
in a long position in asset. v(�) describes the opposite case. As before these functions are
homogeneous of degree 1 in space variables, and hence av�a + sv�s = v�:

The evolution of the price maximising value functions v(�) will depend on the status
of the clock, active or dormant. First we consider the case when the clock is active (� <
!). The option holder is not allowed to trade and all he can do is to watch the clock
ticking anxiously. The price maximising value functions evolve naturally (i.e., without any
obstacles) as the clock ticks:

v
(+)
t + v

(+)
� +

1

2
�2s2

�
v(+)ss + 2v(+)as + v(+)aa

�
= 0 ;

v
(�)
t + v

(�)
� +

1

2
�2s2

�
v(�)ss � 2v(�)as + v(�)aa

�
= 0 :

Next, we suppose that the clock is dormant (� = !), and hence the option holder is allowed
trade. Then the value functions evolve with several rules. First, the price maximising value
functions must stay above the residual values:

v(+)(t; a; s; !) � v(�)(t; a; s; 0) and v(�)(t; a; s; !) � v(+)(t; a; s; 0) : (16)

Second, the riskless portfolio for the issuer grows at least at the risk free rate:

L+v(+) = v
(+)
t +

1

2
�2s2

�
v(+)ss + 2v(+)as + v(+)aa

�
� 0 ; (17)

L�v(�) = v
(�)
t +

1

2
�2s2

�
v(�)ss � 2v(�)as + v(�)aa

�
� 0 : (18)

where each function is evaluated at (t; s; a; !): Here we dropped v
(�)
� as the clock is no

longer ticking. The third rule combines the �rst two in the following sense. L+v(+) < 0
indicates that trading demand does not provoke the worst case. This happens only when
v(+)(t; a; s; !) = v(�)(t; a; s; 0): On the other hand, if v(+)(t; a; s; !) exceeds v(�)(t; a; s; 0);
waiting does provoke the worst case. In summary,

L+v(+)(t; a; s; !) �
�
v(+)(t; a; s; !)� v(�)(t; a; s; 0)

�
= 0 : (19)
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In the opposite case, we have

L�v(�)(t; a; s; !) �
�
v(�)(t; a; s; !)� v(+)(t; a; s; 0)

�
= 0 : (20)

The conditions (16) to (20) de�ne a system of linear complementary problem. As in the case
without clock, the price is the maximum of v(+)(0; 0; s; 0) and v(�)(0; 0; s; 0); and hedging
is a matter of tracking the position of the option holder. If there is a �xed penalty p on
each trade, we replace the free boundary conditions in (16) by

v(+)(t; a; s; !) � v(�)(t; a; s; 0) + p and v(�)(t; a; s; !) � v(+)(t; a; s; 0) + p :

3.3 Numerical Results
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(a) Limited number of trades (b) Clock

Figure 4 : Discrete trading constraints

The price of the single-asset passport option is proportional to the price of the underlying
asset, even with discrete trading constraints. Let �(n) be the proportional constant when
n trades are permitted (i.e., the maximum of v(n�1)+ and v(n�1)�) and �c(!) for the clock.
Figure 4 (a) shows the value of 100 � �; thus the price of the option when the underlying
asset price is 100, for n = 1; : : : ; 10: The dotted line is the price of the passport option
without trading constraints, i.e., n =1: The volatility is 20% annum and the maturity is
six months. Figure 4 (b) is the price of the passport option with clock, 100 ��c: Parameters
are the same as (a). We have chosen the variable T=! for the horizontal axis. Thus the
number of permitted trades is the greatest integer not more than the variable T=!. Again
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the dotted line is the case when there is no clock, i.e., ! = 0: Note that the option with
clock is less expensive. This is because it has more restriction even with the same number
of trades are allowed.

Also it is noteworthy that the price of the option with 10 trades is already close to
that of the unconstrained passport option. In practice, however, it is customary that the
contract compels the option holder to refrain from frequent trades. In order the maintain
a delta-neutral position, the issuer of the passport option needs to trade the underlying
asset at least as often as his customer. When the customer trades very often, the issuer is
burdened with excessive transaction cost.

4 Utility of Trading Passport

In this section we examine how the option holder utilizes his option and how much the
issuer gains by selling the option. The investor who owns a passport option may construct
his trading strategy to maximise his utility, predicting the market movement. When the
physical trend of the market di�ers from the risk-neutral drift signi�cantly, the option
holder will bene�t as long as he has a correct view on the market. At the same time, the
issuer will gain from the di�erence between the price maximising trading strategy and the
trading strategy performed by his customer. We will focus on the case for the single asset
passport option with the position limit L = 1.

4.1 Perfectly Speci�ed Drift Model

Modeling the gain by investors may be �ctitious when one assumes a perfectly speci�ed
drift �: However, the presumption allows us to evaluate the gain by selling passport options
to a transcendental investor who trades ideally. Therefore, if the gain turns out signi�cant
in this case, then the result remains persuasive.

First we assume that the option holder �nds his strategy by solving the value of the
maximum expected utility of the payo�:

u(t; a; s) = sup
jqj�1

Et;a;s
h
e�r(T�t)U

�
max(AT (q); 0)

�i
(21)

where E is the expectation under the physical measure and U is the option holder's utility
function which is increasing in its argument. One can check that u satis�es the following
HJB equation:

�ut = raua + �sus � ru+ sup
jqj�1

�
qs(�� r)ua +

1

2
�2s2fq2uaa + 2quas + ussg

�
; (22)

u(T; a; s) = U
�
max(a; 0)

�
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where � is the physical drift of the underlying asset. If U is non-convex (in fact, most of
the popular utility functions are concave because of risk aversion), uaa need not be positive,
and consequently, the utility maximising strategy can have its value anywhere inside the
position limit. If U(x) = x, uaa stays positive, as in the case the value function of the option,
and hence the utility maximising strategy has its value either �1: The interpretation of the
linear utility is that the option holder maximises expected return, which can be transformed
from (21) by scaling it with the price of the option. A motivation for studying such utility
is that the investor's portfolio is already insured by the passport option he owns and that
it is tractable. In this case u is homogeneous of degree 1 in space variables, and hence it
has a similarity solution of the form u(t; a; s) = sh(t; a=s): Furthermore h(t; y) satis�es the
following HJB equation:

�ht = (� � r)(h� yhy) + sup
jqj�1

�1
2
�2(y � q)2hyy + q(�� r)hy

�
(23)

with the terminal data max(y; 0): From this, we obtain the option holder's trading strategy:

q = sign
��� r

�2
� hy
hyy

� y
�
: (24)

When � coincides with the risk-free rate r; (23) agrees with the price maximising value
function for the option (10), and q in (24) coincides with the price maximising strategy q�:
If � di�ers from r; then the option holder's choice will be di�erent from the price maximising
strategy.

Next we discuss the issuer's hedging strategy, �: In Section 2, we explained that the
hedging strategy must be in tune with the actual trading strategy performed by the option
holder, and that it is given by � = vs + qva where v solves the HJB equation (2). Then
the pro�t of the issuer becomes:

P = v(0; 0; S0) +
Z T

0
e�rt�

�
dS � rSdt

�
� e�rTv(T;AT ; ST ) : (25)

The �rst term is the price of the option he collects in cash, the second is the result of the
delta hedging, and the third is the present value of the potential liability. Applying Itô's
formula to v yields:

P = �
Z T

0
dt e�rt �

�
vt +

1

2
�2s2fvss + 2qvas + q2vaag

�
(t; At; St)

=
1

2
�2

Z T

0
dt e�rtS2

t �
�
(q2? � q2)vaa + 2(q? � q)vas

�
(t; At; St) (26)

where q? is the price maximising strategy and q is the strategy performed by the option
holder. Here we have exploited (2) as well as Proposition 2.3, i.e., ava+ svs� v = 0: Recall
that v(t; a; s) has a similarity solution sf(t; a=s) where f is de�ned in (10). In particular,
we have

vas = � a

s2
fyy and vaa =

1

s
fyy :
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Also recall that q? = � sign (y): Thus we have a further reduction in the integrand of (26):

s2 �
�
(q2? � q2)vaa + 2(q? � q)vas

�
= fyy(t;

a

s
) �
�
2jaj+ 2qa+ (1 � q)2s

�
(27)

Now suppose that the option holder �nds his strategy by maximising the expected return.
Then, as we computed earlier in (24), the option holder's strategy q depends on a and s
only through the ratio a=s and has its value either �1: Hence the last term in (27) drops
out, and the pro�t of the issuer becomes:

P = �2
Z T

0
dt e�rtSt �

�
jYtj+ q(t; Yt)Yt

�
fyy(t; Yt) (28)

where Y is the ratio A=S. To obtain the expected pro�t E[P ] of the issuer, we de�ne

g(t; a; s) = �2Et;a;s
hZ T

t
d� e�r�S� �

�
jY� j+ q(�; Y�)Y�

�
fyy(�; Y� )

i
:

Again we observe that g has a similarity solution of the form g(t; a; s) = s (t; a=s) and
that  (t; y) satis�es the following PDE:

� t = (� � r)(1 � y) y + � +
1

2
�2(1� y)2 yy + �2e�rt

�
jyj+ yq(t; y)

�
fyy :

subject to  (T; y) = 0: To solve this equation, we need to obtain f from (10) and q from
(23).
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Figure 5: Issuer's expected gain versus the drift of the underlying asset.

Figure 5 shows the expected gain by the issuer as a function of �, the physical drift,
that is  (0; 0) agains �. The asset volatility is 20% annum and the maturity of the option
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is 6 months. We calculate the pro�t 100 � at 81 di�erent values of the physical drift from
zero to 16%. When the drift coincides with the risk-free rate r = :08 (i.e., 8% annum), the
gain vanishes. As we explained earlier, the issuer gains more as the gap between the drift
and the risk-free rate become larger.

4.2 Imperfect Information Model

When the physical drift is positive, the price of the asset increases in the long run. In a
short period, however, the volatility dictates the price behavior and the e�ect of the drift
is reduced. Thus, even if the drift is positive, the price may fall in a short period. We use
the term \market direction" for the direction of the price in a short period to distinguish
it from the drift.

We investigate how investors bene�t from buying passport options in the environment
where he must guess the market direction from imperfect information. Thus the strategy
performed by the option holder will be di�erent from the one that maximises the price and
the issuer gains as long as he hedges well. In the following, we describe our simulation
model. Suppose that the price of the asset is a log normal di�usion with physical drift �
and volatility �: Then the probability that the price at time � is greater than the price at
time 0 is given by

N
�p

� (
�

�
� 1

2
�)
�

(29)

whereN is the distribution function for the standard normal random variable. For example,
if � = 0:2 (i.e., 20% annum) and � = 0:05 (18 days, roughly), then �+ = 0:2466 yields 60%
chance of rise and �� = �0:2066 yields 60% chance of fall. Thus, if the investor guesses

p
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Figure 6: Pro�ts and correct guessing probabilities.
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a rising market when �+ = 0:2466 (or a falling market when �� = �0:2066), then he will
be correct only 60% chance of the time. In general, we may choose �+(p) and ��(p) so
that the probability of a correct guess becomes p: As we alternate �+ and ��, the investor
guesses the market direction correctly only 100 � p% of the times.

Figure 6 shows the mean pro�t made by the issuer (the thin line) and the mean pro�t
made by the option holder (the broken line), as a function of the guessing probability. We
alternate �+ and �� 10 times during the life of the option which we set at six months.
As before, the volatility is 20% annum and the initial asset price $100. The curves in the
picture are in fact the present values of the mean pro�ts (i.e., it is already discounted).
Thus the issuer beats the risk-free rate regardless of the correct guessing probability. If the
option holder guesses correctly 53.8% of the time, then he beats the risk-free rate as well.

5 Concluding Remarks

Leland (1980) explained that the investors whose risk tolerance grows with wealth more
rapidly than that of the average investor would bene�t from portfolio insurance. Nowadays,
a variety of options serve market participants as portfolio insurance as well as investment
tools. Unlike people who buy-and-hold vanilla options to protect their static portfolio,
investors equipped with passport options can actively rectify their market position more
aggressively as well, with a limited downside. Thus passport options could attract the
investors with below average risk aversion as well.

In this paper, we established pricing equations for various passport options in a uni�ed
methodology. We have also addressed that how traders gain from selling passport options
and how the option holder maximises his utility. It is doubtful that the issuer is always
capable of hedging his position well against all the risks including those which are not
calibrated in the model. Also there is no guarrantee that the option holder has a correct
view on the market movement every time. Nevertheless it is meaningful to analyse the gain
by selling the options to ideal investors, as most investors may not be any near ideal. We
have also included simulation results for the gain by selling passport options to non-ideal
investors.
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