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Abstract

Non-Gaussian processes of Ornstein-Uhlenbeck type, or OU processes for short, offer the
possibility of capturing important distributional deviations from Gaussianity and for flexible
modelling of dependence structures. This paper develops this potential, drawing on and
extending powerful results from probability theory for applications in statistical analysis.
Their power is illustrated by a sustained application of OU processes within the context
of finance and econometrics. We construct continuous time stochastic volatility models for
financial assets where the volatility processes are superpositions of positive OU processes,
and we study these models in relation to financial data and theory.
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1 Introduction

1.1 Motivation

Non-Gaussian processes of Ornstein-Uhlenbeck type, or OU processes as we shall call them, have
considerable potential as building blocks for stochastic models of observational series from a wide
range of fields. They offer the possibility of capturing important distributional deviations from
Gaussianity and for flexible modelling of dependence structures. This paper aims at developing
this potential, drawing on and extending powerful results from probability theory for applications
in statistical analysis. We illustrate their power by a sustained application of OU processes
within the context of finance and econometrics. Based on well-known (empirical) stylized facts,
we construct continuous time stochastic volatility models for financial assets where the volatility
processes are superpositions of positive OU processes, and we study these models in relation
to financial data and theory. The study has also required the development of new numerical
methods and these are discussed in some detail.

The general definition of an OU process y(t) is as the solution of a stochastic differential
equation of the form

dy(t) = −λy(t)dt+ dz(t) (1)
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where z, with z(0) = 0, is a (homogeneous) Lévy process, i.e. a process with independent
and stationary increments (see, for example, Rogers and Williams (1994, pp. 73–84), Bertoin
(1996), Bertoin (1999), Protter and Talay (1999) and Sato (1999)). Familiar special cases of
Lévy processes are Brownian motion and the compound Poisson process. All Lévy processes
except for Brownian motion have jumps. As z is used to drive the OU process we will call z(t)
a background driving Lévy process (BDLP) in this context.

Our interest in this paper will be in the existence and properties of stationary solutions to
(1) in cases where z has no Gaussian component and the increments of z are positive, implying
positivity of the process y. We will write a continuous time stationary and nonnegative latent
process σ2(t) as representing the changing volatility underlying a financial asset. The simplest
OU based model for σ2(t) will have

dσ2(t) = −λσ2(t)dt+ dz(λt), λ > 0. (2)

The unusual timing dz(λt) is deliberately chosen so that it will turn out that whatever the value
of λ the marginal distribution of σ2(t) will be unchanged. Hence we separately parameterise
the distribution of the volatility and the dynamic structure. The process z(t) has positive
increments and no drift. This type of process is often called a subordinator (Bertoin (1996,
Ch. 3)). Correspondingly σ2(t) moves up entirely by jumps and then tails off exponentially1.
However, under the models we have in mind small jumps are predominant. Although having
OU dynamics looks restrictive, we will show we can construct more flexible processes by the
addition of independent OU processes.

The main advantage of these OU processes is that they offer a great deal of analytic tractabil-
ity which is not available for more standard models such as geometric Gaussian OU processes and
constant elasticity of volatility processes2. For example integrated3 volatility, which in finance
is a key measure,

σ2∗(t) =
∫ t

0
σ2(u)du

= λ−1(1− e−λt)σ2(0) + λ−1

∫ t
0

{
1− e−λ(t−s)

}
dz(λs)

= λ−1{z(λt)− σ2(t) + σ2(0)}, (3)

has a simple structure.
A more general class of processes, which is also quite mathematically tractable, is given by

σ2(t) =
∫ 0

−∞
f(s)dz(λt+ s),

for bounded, positive f(·) and with z as above4. Given f(·) such a process is stationary and
1This type of model has been used in storage theory by, for example, Cinlar and Pinsky (1972), Harrison and

Resnick (1976) and Brockwell, Resnick, and Tweedie (1982). Extensions to the ARMA case are discussed by
Brockwell (2001).

2For geometric Gaussian OU processes, log σ2(t) is assumed to follow a Gaussian OU process. For constant
elasticity of volatility processes

dσ2(t) = −λ
{
σ2(t)− ζ

}
dt+ δσ2(t)kdb(t),

where b(t) is standard Brownian motion, k ≥ 1/2. The former is highlighted by Hull and White (1987) while the
latter is used extensively by Meddahi and Renault (1996).

3All integrated processes will be denoted by having a superscript ∗. The main examples are integrated volatility
and intensity and the log-price level of a stock.

4To be technically precise: {z(t)}t≥0 is assumed to be caglad and {z(−t)}t≥0 is an independent copy of
{−z(t)}t≥0 but modified to be also caglad. Further, f(·) has to be a positive function tailing off sufficiently fast
to ensure the existence of the integral. In particular if f(s) = es we recover the OU processes.
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positive. This type of process is reminiscent of a standard infinite order linear moving average
model.

1.2 Stochastic volatility processes

Continuous time models built out of Brownian motion play a crucial role in modern finance,
providing the basis of most option pricing, asset allocation and term structure theory currently
being used. An example is the so called Black-Scholes or Samuelson model which models the
log of an asset price by the solution to the stochastic differential equation

dx∗(t) =
{
µ+ βσ2

}
dt+ σdw(t), t ∈ [0, S], (4)

where w(t) is standard Brownian motion5. This means aggregate returns over intervals of length
∆ > 0, are

yn =
∫ n∆

(n−1)∆
dx∗(t) = x∗(n∆)− x∗ {(n− 1)∆} (5)

implying returns are normal and independently distributed with a mean of µ∆ + βσ2∆ and a
variance of ∆σ2. Unfortunately for moderate to small values of ∆ (corresponding to returns
measured over 5 minute to one day intervals) returns are typically heavy-tailed, exhibit volatility
clustering (in particular the |yn| are correlated) and are skew (see the discussion in, for example,
Campbell, Lo, and MacKinlay (1997, pp. 17-21)), although for higher values of ∆ a central
limit theorem seems to hold and so Gaussianity becomes a less poor assumption for {yn} in that
case. This means that every single assumption underlying the Black-Scholes model is routinely
rejected by the type of data usually used in practice.

This common observation, which carries over to the empirical rejection of option pricing
models based on this model, has resulted in an enormous effort to develop empirically more
reasonable models which can be integrated into finance theory. The most successful of these
are the generalised autoregressive conditional heteroskedastic (GARCH) and the diffusion based
stochastic volatility (SV) processes. This very large literature, which was started by Clark
(1973), Engle (1982) and Taylor (1982), is reviewed in, for example, Bollerslev, Engle, and
Nelson (1994), Ghysels, Harvey, and Renault (1996) and Shephard (1996).

Our model will also be of an SV type, based on a more general stochastic differential equation,

dx∗(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t), (6)

where σ2(t), the instantaneous volatility, is going to be assumed to be stationary, latent and
stochastically independent of w(t). Even though σ2(t) exhibits jumps x∗(t) is a continuous
process for all parameter values. This formulation also makes it clear that in the special case
where µ = β = 0 an SV process can be thought of as a subordinated Brownian motion. We
will delay our discussion of this well known connection until Section 6 of this paper. Instead
our earlier sections will focus on our main innovation, which will be to use OU processes to
model σ2(t). We do this as it will allow us to gain a much better analytic understanding than
conventional diffusion based SV models.

SV models in general, by appropriate design of the stochastic process for σ2(t), allow ag-
gregate returns {yn} to be heavy-tailed, skewed, exhibit volatility clustering and aggregate to
Gaussianity as ∆ gets large. To see why this happens, whatever the model for σ2, it follows that

yn|σ2
n ∼ N(µ∆+ βσ2

n, σ
2
n).

where

σ2
n = σ2∗(n∆)− σ2∗ {(n− 1)∆} , and σ2∗(t) =

∫ t
0
σ2(u)du. (7)

5We have used x∗(t) to denote the price level as this is an integrated process.
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So returns are scaled mixtures of normals, where the scaling is typically time dependent inducing
dependence in the returns. Hence this model class can produce empirically reasonable models.
For example, if σ2(t) has an inverse Gaussian law then yn will be approximately a normal inverse
Gaussian variable. In turn, these models allowing us to think about the appropriate implications
for the pricing of derivatives written on underlying assets obeying SV processes. We will do this
in Section 5 and Subsection 6.2 of the paper.

It is possible to generalise (6) to allow for the feedback of the innovations of the volatility
process into the level of the asset price. In particular, we write

dx∗(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t) + ρdz̄(λt), (8)

where z̄(t) = z(t)− Ez(t), the centred version of the BDLP. This allows the model to deal with
the so called leverage type problem associated with the work of Black (1976) and Nelson (1991)
which formalises the observation that for equities a fall in the price is associated with an increase
in future volatility. We will discuss some aspects of this model in Section 4 of the paper.

1.3 Structure of the paper

This paper has six other sections and an Appendix. In Section 2 we discuss the detailed math-
ematical construction behind the OU processes we favour, focusing on building appropriate
BDLPs. We show that they are sufficiently flexible to allow us to design models to fit marginal
features of the distribution of returns as well as to separately deal with the observed dependence
structure in the returns. As this section is quite technical, readers whose main interest is in the
SV aspect of this paper could skip this section on their first reading of the paper. Related, more
advanced, technical details may be found in our second paper on this topic Barndorff-Nielsen
and Shephard (2000). Section 3 looks at the construction of volatility models by the addition
of OU processes. This provides a way of constructing a wide class of dynamics for volatility,
including (quasi-)long memory models. In Section 4 we give results for the temporal aggregation
of returns from a continuous time SV model. This allows us to relate our linear SV models to
the popular GARCH discrete time models associated with the work of Engle (1982). In Section
5 we discuss the empirical fitting of these models using linear and non-linear methods. We
show that it is not straightforward to implement likelihood based estimation procedures for our
models, although various moment based methods are simple to use. Section 6 discusses various
additional issues such as multivariate extensions of the models, the precise connection between
SV and subordination, as well as showing formally that SV models do not allow for arbitrage
and giving results on the pricing of derivatives written using an SV model. Section 7 concludes.
The Appendix collects various proofs and derivations we have omitted from the main text of the
paper.

2 Construction of OU processes

2.1 Definition and existence

Before we discuss the SV models in detail we will introduce the mathematical basis of the OU
processes, showing how they are constructed and how to simulate from them.

The stationary process σ2 is of Ornstein-Uhlenbeck type if it is representable as

σ2(t) =
∫ 0

−∞
esdz(λt+ s) (9)

in which case it may also be written as

σ2(t) = e−λtσ2(0) +
∫ t

0
e−λ(t−s)dz(λs).
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Here z = {z(t) : t ∈ R} is a (homogeneous) Lévy process and λ is a positive number. When this
is the case σ2(t) satisfies the stochastic differential equation (2). The process z(t) is termed the
background driving Lévy process (BDLP) or subordinator corresponding to the process σ2(t). A
simulated example of the paths that the σ2(t) and z(λt) processes follows is given in Figure 1.
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Figure 1: OU process with Γ(ν, α) marginals. Throughout, ν = 3, α = 8.5, λ= 0.01 and ∆ = 1.
Top left: plot of z(λn∆) against n. Top right: plot of σ2(n∆) against n. Same graph but for
longer series in bottom left. Bottom right: as a numerical check we also present the empirical
autocorrelation function for σ2(n∆).

In essence, given a one-dimensional distribution D (not necessarily restricted to the positive
halfline) there exists a stationary process of Ornstein-Uhlenbeck type (i.e. satisfying a stochastic
differential equation of form (1)) whose one-dimensional marginal law is D if and only if D is
selfdecomposable, i.e. if and only if the characteristic function φ of D satisfies φ(ζ) = φ(cζ)φc(ζ)
for all ζ ∈ R and all c ∈ (0, 1) and for some family of characteristic functions {φc : c ∈ (0, 1)}.
This restriction does, however, still leave a great flexibility in the choice of D. The precise
statement of existence is as follows, cf. Wolfe (1982) and Jurek and Vervaat (1983) (see also
Barndorff-Nielsen, Jensen, and Sørensen (1998)).
Theorem 2.1 Let φ be the characteristic function of a random variable x. If x is selfdecom-
posable, i.e. if φ(ζ) = φ(cζ)φc(ζ) for all ζ ∈ R and all c ∈ (0, 1), then there exists a stationary
stochastic process x(t) and a Lévy process z(t) such that x(t) L= x and

x(t) =
∫ t
−∞

e−λ(t−s)dz(λs) =
∫ 0

−∞
eλudz {λ (t+ u)} =

∫ 0

−∞
eudz (λt+ u) (10)

for all λ > 0.
Conversely, if x(t) is a stationary stochastic process and z(t) is a Lévy process such that x(t)

L= x and x(t) and z(t) satisfy the equation (10) for all λ > 0 then x is selfdecomposable.
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✷

If the stationary OU process σ2(t) is square integrable, it has autocorrelation function r(u) =
exp (−λ |u|). It will be helpful later to establish the notation that the cumulant generating
functions for σ2(t) and z(1) (if they exist) be written as

ḱ(θ) = log E
[
exp
{−θσ2(t)

}]
and k(θ) = log E [exp {−θz(1)}] ,

respectively. Indeed they are related by the fundamental equality (Barndorff-Nielsen (2000))

ḱ(θ) =
∫ ∞

0
k(θe−s)ds, (11)

which can be reexpressed as
k(θ) = θḱ′(θ) (12)

(where ḱ′(θ) = dḱ(θ)/dθ). It then follows that if we write the cumulants of σ2(t) and z(1) (when
they exist) as, respectively, κ́m and κm (m = 1, 2, ...) we have that κm = mκ́m, for m = 1, 2, ....

2.2 Lévy densities

Suppose we choose a probability distributionD on the positive halfline which is self-decomposable.
Then, as just discussed, there exists a strictly stationary Ornstein-Uhlenbeck process

σ2(t) = e−λtσ2(0) +
∫ t

0
e−λ(t−s)dz(λs). (13)

such that σ2(t) ∼ D and where z is a Lévy process. The increments of z are positive and

k(θ) = log E [exp {−θz(1)}] = −
∫ ∞

0+

(
1− e−θx

)
W (dx), (14)

whereW is the Lévy measure of the Lévy-Khintchine representation for z(1). We shall generally
assume that W has a density w. It is related to the Lévy density u of σ2(t) by the formula

w(x) = −u(x)− xu′(x) (15)

(this presupposes that u is differentiable) and, letting

W+(x) =
∫ ∞

x
w(y)dy, (16)

we have, moreover
W+(x) = xu(x) (17)

Barndorff-Nielsen (1998b). Finally, we shall denote the inverse function of W+ by W−1, i.e.

W−1(x) = inf
{
y > 0 :W+(y) ≤ x

}
.

2.3 Models via D

One approach to model building is to write down a specific parametric form for D and then
calculate the implied behaviour of the BDLP. We do this here for the generalized inverse Gaussian
(GIG) marginal law σ2(t) ∼ GIG(ν, δ, γ)6. The GIG class seems particularly interesting as a
plausible model basis for volatility models as special cases have been extensively used (though

6The standard notation for the generalised inverse Gaussian distribution is GIG(λ, δ, γ), however the notation
λ was not available to us.
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in different contexts from the present) particularly in various recent papers. See, in particular,
Eberlein and Keller (1995), Barndorff-Nielsen (1997), Barndorff-Nielsen (1998b), Rydberg (1999)
and Eberlein (2000). Recall that if x ∼ GIG(ν, δ, γ) then it has a density

(γ/δ)ν

2Kν(δγ)
xν−1 exp

{
−1
2
(δ2x−1 + γ2x)

}
, x > 0, (18)

where Kν is a modified Bessel function of the third kind. Note that when δ or γ are 0, the
norming constant in the formula for the density of the generalized inverse Gaussian distribution
has to be interpreted in the limiting sense, using the well-known results that for x ↓ 0 we have

Kν(x) ∼


− log x if ν = 0

Γ(|ν|)2|ν|−1x−|ν| if ν 
= 0.
.

Special cases of the GIG density are: (i) the inverse Gaussian law, where ν = −1
2 , (ii) the

positive hyperbolic law where ν = 1, (iii) inverse chi-squared law with df degrees of freedom
where ν = −df/2, δ = √

df and γ = 0, (iv) gamma, where δ = 0 and ν > 0. Of course if
σ2 ∼ GIG(ν, δ, γ) and is independent of ε ∼ N(0, 1), then x = µ+ βσ2 + σε is the generalized
hyperbolic distribution. If we define α =

√
β2 + γ2, then the density is

(γ/δ)ν√
2πα(ν−

1
2)Kν (δγ)

{
δ2 + (x− µ)2

} 1
2(ν− 1

2)
K(ν− 1

2)

(
α

√
δ2 + (x− µ)2

)
exp {β (x− µ)} . (19)

Hence a continuous time volatility model built using a volatility model of OU type with GIG
marginals will have generalized hyperbolic marginals for instantaneous returns. Special cases of
this include the normal inverse Gaussian distribution, the hyperbolic and the Student t. These
distributions have been studied in the context of finance in recent theses by Prause (1998) and
Raible (1998).

It is known that the GIG(ν, δ, γ) law is self-decomposable ( Halgreen (1979)) so that sta-
tionary OU processes with GIG marginals do exist. The following theorem specifies the Lévy
measure.
Theorem 2.2 The Lévy measure of the generalized inverse Gaussian distribution is absolutely
continuous with density

u(x) = x−1

[
1
2

∫ ∞

0
e−

1
2
δ−2xξgν(ξ)dξ +max{0, ν}λ

]
exp
(−γ2x/2

)
(20)

where
gν(x) =

2
xπ2

{
J2
|ν|(

√
x) +N2

|ν|(
√
x)
}−1

and Jν and Nν are Bessel functions.
✷

Proof See Appendix.
For the definitions and properties of Bessel functions see, for example, Gradstheyn and

Ryzhik (1965, pp. 958-71).
We note that the Bessel functions have simple forms when |ν| is half odd. We will now

discuss four special cases of this result.

• GIG(−1
2 , δ, γ): Inverse Gaussian. Its law means σ

2(t) ∼ IG(δ, γ) whose density is

δ√
2π

eδγx−3/2 exp
{
−1
2
(
δ2x−1 + γ2x

)}
, x > 0, (21)
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where the parameters δ and γ satisfy δ > 0 and γ ≥ 0. We find the upper tail integral
(recalling W+(x) = xu(x)) is

W+(x) =
δ√
2π

x−1/2 exp
(
−1
2
γ2x

)
. (22)

• GIG(1, δ, γ): Positive hyperbolic distribution. The density of the positive hyperbolic dis-
tribution is

(γ/δ)
2K1(δγ)

exp
{
−1
2
(δ2x−1 + γ2x)

}
, x > 0,

where the parameters δ and γ satisfy δ > 0 and γ ≥ 0. When the law of σ2(t) is positive
hyperbolic we find the upper tail integral is

W+(x) =
{
δ2

∫ ∞

0
e−xξg1(2δ2ξ)dξ + λ

}
exp
(−γ2x/2

)
. (23)

• GIG(−ν, δ, 0): Reciprocal gamma distribution. The reciprocal gamma distribution (i.e.
the law of the reciprocal of a gamma variate) has density

αν

Γ(ν)
x−ν−1 exp

(−αx−1
)
, x > 0, ν > 0, α = δ2/2.

The corresponding upper tail integral is

W+(x) =
1
2

∫ ∞

0
exp
(
−1
4
α−1xξ

)
gν(ξ)dξ. (24)

• GIG(ν > 0, 0, γ): Gamma distribution. The gamma marginal law has probability

αν

Γ (ν)
xν−1 exp (−αx) , x > 0, α = γ2/2.

This has the corresponding upper tail integral of the Lévy density W+(x) = νe−αx, which
has the convenient property that it can be analytically inverted:

W−1(x) = max
{
0,− 1

α
log
(x
ν

)}
. (25)

2.4 Models via the BDLP

Instead of specifying a model for σ2(t) and working out the density for the BDLP, it is possible
to go the other way and construct the model through the BDLP. Of course there are constraints
on valid BDLPs which must be satisfied. Specifically a necessary and sufficient condition for the
stochastic differential equation

dx(t) = −λx(t)dt+ dz(λt) (26)

to have a stationary solution is that E [log {1 + |z(1)|}] < ∞ (cf. Wolfe (1982) and Jurek and
Mason (1993, Theorem 3.6.6)).
Lemma 2.1 Let z be a Lévy process with positive increments and cumulant function

log E [exp {−θz(1)}] = −
∫ ∞

0+

(
1− e−θx

)
W (dx),
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and assume that ∫ ∞

1
log(x)W (dx) < ∞. (27)

Suppose moreover, for simplicity, that the Lévy measure W has a differentiable density w, and
define the function u on R+ by

u(x) =
∫ ∞

1
w(τx)dτ . (28)

Then u is the Lévy density of a random variable x of the form

x =
∫ ∞

0
e−sdz(s)

and the specification

x(t) =
∫ t
−∞

e−λ(t−s)dz(s)

determines a stationary process {x(t)}t∈R with z as its BDLP.
✷

Proof This may be concluded from a more general result given in Jurek and Mason (1993,
Theorem 3.6.6).

Example 1 We give a simple valid construction which allows easy simulation and analytic
results for the implied density of σ2(t). Let W be a Lévy measure determined in terms of its tail
integral by

W+(x) = cx−ε(1 + x)−β exp
(
−1
2
γ2x

)
where c is a positive constant, 0 ≤ ε < 1, 0 ≤ β, 0 ≤ γ and max{(β − 1), γ} > 0. Then

w(x) = c{εx−1 + β(1 + x)−1 +
1
2
γ2}x−ε(1 + x)−β exp

(
−1
2
γ2x

)
. (29)

Hence Lemma 2.1 applies and ensures the existence of an OU process σ2(t) whose BDLP z(t) has
w as the Lévy density of z(1). Furthermore, recalling that the Lévy density u of σ2(t) satisfies
xu(x) =W+(x), we find

u(x) = cx−1−ε(1 + x)−β exp
(
−1
2
γ2x

)
.

Note that for ε = 1
2 and β = 0 we recover the IG law for σ

2(t). If γ = 0, implying β > 1, then
for the moments of σ2(t) we have

E
[{
σ2(t)

}ν]
< ∞ if and only if ν < β + ε.

Furthermore, the j-th order cumulant of σ2(t) (j < β + ε) is cB(j − ε, β + ε− j) where B(x, y)
denotes the beta function.

The idea of modelling by choice of Lévy density rather than probability density has been
introduced into the study of turbulence by Novikov (1994) and Koponen (1995) in order to
capture the distributional characteristics of distributions of velocity differences in high Reynolds
number turbulent fluids (where, in fact, NIG laws generally give very good fits; for an example,
see Barndorff-Nielsen (1998a)). Related work is discussed in Cont, Potters, and Bouchaud (1997)
and Mantegna and Stanley (2000).
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2.5 Simulation via series representations

A crucial feature of our approach will be that we simulate from the volatility process

σ2(t) = e−λtσ2(0) +
∫ t

0
e−λ(t−s)dz(λs)

in order to simulate returns from the x∗(t) process and so analyse data. To be able to do that
we will have to simulate from

e−λt
∫ λt

0
esdz(s), (30)

rather than the BDLP z(s) itself. One approach to this is to directly simulate from the Lévy
processes and then approximate the corresponding integrals. This is difficult due to the jump
character of the processes. Instead we use infinite series representations of these types of inte-
grals. The required results are, in essence, available from work of Marcus (1987) and Rosinski
(1991). A self-contained exposition of this result is given in Barndorff-Nielsen and Shephard
(2000), while recent developments are surveyed in Rosinski (2000); see also Protter and Talay
(1999), Ferguson and Klass (1972), Vervaat (1979) and Walker and Damien (2000). The latter
three papers discuss, in particular, simulation procedures in line with those considered in the
present paper but for nonhomogeneous Lévy processes satisfying a regularity condition. Again
we let W be the Lévy measure of z(1) and W−1 denote the inverse of the tail mass function
W+. Then the desired result is that∫ λ

0
f(s)dz(s) L=

∞∑
i=1

W−1(ai/λ)f(λri). (31)

Here the {ai} and {ri} are two independent sequences of random variables with the r′is inde-
pendent copies of a uniform random variable r on [0, 1] and a1 < ... < ai < ... as the arrival
times of a Poisson process with intensity 1.

Our practical experience with using (31) is that it is quite quickly converging, however theory
suggests that it has to be used carefully. Consider the special case of the IG model, then (22)
implies W−1(x) will, for large values of x, behave essentially as x−2. This is studied in more
detail in Barndorff-Nielsen and Shephard (2000).

Example 2 Gamma-OU (Γ(ν, α) marginals) process. We need a method to sample from (30).
We have already noted the expression for W−1(x) in (25). Thus, defining c1 < c2 < ... as the
arrival times of a Poisson process with intensity νλt and N(1) as the corresponding number of
events up until time 1, then

e−λt
∫ λt

0
esdz(s) L= e−λ∆

∞∑
i=1

W−1(ai/λt)eλtri (32)

= −α−1e−λt
∞∑
i=1

1]0,ν[(ai/λt) log(ai/νλt)e
λtri

= α−1e−λt
∞∑
i=1

1]0,1[(ci) log(c
−1
i )e

λtri

= α−1e−λt
N(1)∑
i=1

log(c−1
i )e

λtri .

To illustrate these results we simulate a regularly spaced OU gamma process σ2(n∆) using
the above representation for the parameter values ∆ = 1, ν = 3, λ = 0.01 and α = 8.5. The

10



results are presented in Figure 1. There we graph both z(λn∆) and σ2(n∆) against time using
only a small range of values of n, which shows the jumps in the process. Of course the z(λn∆)
process is a non-decreasing, integrated process, while the σ2(n∆) is stationary. For the larger
series we see the jumps look less extreme and instead our eyes tend to focus on the large up
movements in the OU process followed by slower declines. The final picture is the corresponding
empirical autocorrelation function of the σ2(n∆) process. Finally, it is worth noting that the
simulation is very fast for OU gamma processes. Over many different parameter values we were
able to produce processes of length of half a million in around 5 seconds on a modern PC using
the Ox programming language of Doornik (1998).

3 Superposition

Although we have focused on the simplest OU volatility process, our model and technique extend
to where volatility follows a weighted sum of independent Ornstein-Uhlenbeck processes with
different persistence rates. That is

σ2(t) =
m∑
j=1

w+
j σ

2
j (t), where

m∑
j=1

w+
j = 1,

with
dσ2
j (t) = −λjσ2

j (t)dt+ dzj(λjt),

where the {zj(t)} are independent (not necessarily identically distributed) BDLPs. In such a
case we would have a process for the price of the type

dx∗(t) =
{
µ+ βσ2(t)

}
dt+ σ(t)dw(t) +

m∑
j=1

ρjdz̄j(λjt),

where z̄j(t) = zj(t)− E {zj(t)}, allowing the leverage effect to be different for the various com-
ponents of volatility.

By the adding together of independent OU processes with different persistence rates we ob-
tain more general correlation patterns in the volatility structure. This implies an autocorrelation
function which is a weighted sum of exponentials

r(u) = w1 exp (−λ1 |u|) + ...+ wm exp (−λm |u|) , (33)

where the wi are positive and sum to 1. Hence some of the components of the volatility may
represent short term variation in the process while others represent long term movements. Alter-
native discrete time empirical models of this are discussed by Engle and Lee (1999), Dacorogna,
Muller, Olsen, and Pictet (1998) and Barndorff-Nielsen (1998b).

By choosing the weights and damping factors in (33) appropriately and letting m → ∞ it is
possible to construct tractable volatility models with long range or quasi long range dependence.
In particular, Barndorff-Nielsen (2000) shows there exists a limiting model for which

r(u) = (1 + λ |u|)−2(1−H)

with λ > 0 and H ∈ (12 , 1) being the long memory parameter
7. Similar types of arguments

have previously been used for real valued time series models by, for example, Granger (1980)
and Cox (1991). Ding and Granger (1996) have studied long memory in volatility using the

7Barndorff-Nielsen (2000) constructed this, and more general models, not by a limiting procedure but in terms
of the theory of independently scattered measures and Lévy random fields.
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addition of short memory processes while Andersen and Bollerslev (1997a) have used the theory
of heterogeneous information arrivals to motivate a long memory volatility model. Finally,
Comte and Renault (1998) constructed a long-range dependent SV model by writing the log of
the instantaneous volatility as fractional Brownian motion.

It is possible to extend this to multifractal behaviour where

r(u) =
m∑
i=1

wi(1 + λi|u|)−2(1−Hi), Hi ∈
(
1
2
, 1
)
, λi > 0,

and where the wi are positive and sum to one. These types of continuous time models imply
that discrete returns have long memory features.

4 Aggregation results

4.1 Behaviour of x∗(t), the log price

In this section we will study the behaviour of integrals, or aggregations, of the instantaneous
returns dx∗(t). There will be two points of focus. First, in this subsection we will look at the
log-price itself x∗(t), recalling that x∗(0) is defined to be zero. The second focus, developed
in the next subsection, will be on characterising the dependence structure of the returns {yn},
defined in (5) as the change in x∗(t) over non-overlapping intervals of length ∆.

First we will state some general results for the non-leverage SV models given in (6) with
arbitrary stationary volatility processes, then we will go on to produce a complete description
of the behaviour of x∗(t) in the OU volatility case allowing ρ 
= 0. In general we have that if we
write (when they exist) ξ, ω2 and r, respectively, as the mean, variance and the autocorrelation
function of the process σ2(t) then

E
{
σ2∗(t)

}
= ξt, Var{σ2∗(t)} = 2ω2r∗∗(t),

where8

r∗(t) =
∫ t

0
r(u)du and r∗∗(t) =

∫ t
0
r∗(u)du. (34)

A consequence of the above result is that

E {x∗(t)} = (µ+ βξ) t and Var{x∗(t)} = tξ + 2β2ω2r∗∗(t),

while, when µ = β = 0,
Var{x∗(t)2} = 6ω2r∗∗(t) + 2ξ2t2.

Further we have that if σ2(u) is ergodic then, as t → ∞,

t−1σ2∗(t) = t−1

∫ t
0
σ2(u)du a.s.→ ξ,

implying, for the SV model, that t−1/2
{
x∗(t)− µt− βσ2∗(t)

}
is asymptotically normal with

mean 0 and variance ξ (i.e. the log returns tend to normality for long lags — a similar result
is known within the ARCH class since Diebold (1988, pp. 12-16)). This follows from the
subordination interpretation of the SV models discussed in Section 6.1. The convergence of
t−1/2

{
x∗(t)− µt− βσ2∗(t)

}
to normality will, however, be slow in the case where the process

σ2(t) exhibits long range dependence.
8We use r∗∗(t) to denote the double integral over the autocorrelation function.
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As x∗(t) is the sum of a continuous local martingale (see section 6) and a continuous bounded
variation process, its quadratic variation is σ2∗(t), i.e. we have

[x∗](t) =p− lim
r→∞

∑
{x∗(tri+1)− x∗(tri )}2 = σ2∗(t) (35)

for any sequence of partitions tr0 = 0 < tr1 < ... < trmr
= t with supi{tri+1 − tri } → 0 for

r → ∞. The quadratic variation estimation of integrated volatility has recently been highlighted,
following the initial draft of this paper and the concurrent independent work of Andersen and
Bollerslev (1998a), by Andersen, Bollerslev, Diebold, and Labys (2000) in foreign exchange
markets.

When we assume that σ2(t) is an OU process then we can strengthen some of these results
to give a complete description of the leveraged x∗(t) process (8) via its cumulant generating
functional. The formula is in terms of the cumulant function k for the BDLP of σ2(t). Note,
however, that it can easily be recast in terms of the cumulant function ḱ for σ2(t), cf. formulae
(11) and (12). Let f denote an ‘arbitrary’ function then the log of the characteristic function of
f • x∗, which we interpret as the stochastic integral ∫∞0 f(s)dx∗(s) (Protter (1992)), is

C
{
ζ ‡
∫ ∞

0
f • x∗

}
= λ

∫ ∞

0
{k(Je−λs) + k(H(s))}ds+ iζ(µ− λρξ)

∫ ∞

0
f(s)ds (36)

where
J =
∫ ∞

0
{1
2
ζ2f2(u)− iζβf(u)}e−λudu (37)

and
H(s) =

∫ ∞

0
{1
2
ζ2f2(s+ u)− iζβf(s+ u)}e−λudu− iζρf(s) (38)

The derivation of this result is given in Barndorff-Nielsen and Shephard (2000). It is important to
understand the full scope of this expression. It gives a calculus for computing all the cumulants
for any weighted sum of the path of the log-price. In other words this is a full description of the
whole process.

Expressions for the cumulant functions of the finite dimensional distributions of the x∗

process are directly obtainable from (36) by suitable choice of f . As an illustration, we consider
the cumulant function for x∗(t) for an arbitrary value of t. For notational simplicity we suppose
that µ = β = ρ = 0; extension to the general case causes no substantial difficulty. Letting
f = 1[0,t] we find, after a bit of algebra,

C{ζ ‡ x∗(t)} = λ

∫ ∞

0
k

{
1
2
ζ2λ−1(1− e−λt)e−λs

}
ds

+λ
∫ t

0
k

{
1
2
ζ2λ−1(1− e−λs)

}
ds.

Note that from this formula the cumulants of x∗(t) are explicitly expressible in terms of the
cumulants of z(1) or, alternatively, of σ2(t).

Example 3 Suppose σ2(t) ∼ IG(δ, γ), as in (21), then ḱ(θ) = δγ
{
1− (1 + 2θ/γ2)1/2

}
and so,

by formula (12),

k (θ) =
δθ

γ
(1 + 2θ/γ2)−1/2 =

∞∑
m=1

κm (−1)m−1 θ
m

m!
,

where

κm = m (δ/γ)
(
2/γ2
)m−1

(
1/2
m− 1

)
.

Hence, for instance, the variance of x∗(t) is seen to be κm(t) = (δ/γ) t, as could, of course, also
have been found by simple direct calculation.
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4.2 Dependence of returns

In this subsection we derive the moments of discrete time returns implied by a general continuous
time SV model. In particular when µ and β are zero then, using the definitions given in (34),

Cov{σ2
n, σ

2
n+s} = ω2♦r∗∗(∆s), (39)

cor{y2
n, y

2
n+s} =

♦r∗∗(∆s)
6r∗∗(∆) + 2∆2(ξ/ω)2

(40)

= q−1∆−2♦r∗∗(∆s), (41)

where
♦r∗∗(s) = r∗∗(s+∆)− 2r∗∗(s) + r∗∗(s−∆), (42)

and
q = 6∆−2r∗∗(∆) + 2(ξ/ω)2. (43)

Example 4 If σ2(t) ∼ OU with its variance existing then r(u) = exp(−λ|u|), which means that
r∗∗(s) = λ−2

{
e−λ|s| − 1 + λs

}
and

♦r∗∗(∆s) = λ−2(1− e−λ∆)2e−λ∆(s−1), s > 0.

This implies

cor{σ2
n, σ

2
n+s} = de−λ∆(s−1), cor{y2

n, y
2
n+s} = ce−λ∆(s−1), s > 0 (44)

where

1 ≥ d =
(1− e−λ∆)2

2 {e−λ∆ − 1 + λ∆} (45)

≥ c =
(1− e−λ∆)2

6 {e−λ∆ − 1 + λ∆}+ 2(λ∆)2(ξ/ω)2 ≥ 0.

Note that (44) implies that σ2
n and y2

n follow constrained ARMA(1,1) processes with common
autoregressive parameters and with the moving average root being stronger for σ2

n than for the
y2
n. The ARMA structure implies that yn is weak GARCH(1,1) in the sense of Drost and Nijman
(1993) and as emphasised in the work of Meddahi and Renault (1996). Andersen and Bollerslev
(1997b, p. 137) have fitted GARCH(1,1) models to (seasonally adjusted) equity and exchange
rate returns measured at a variety of values of ∆ and found that the above aggregation results
broadly describe the fit of the various GARCH models. These simple analytic results generalise to
the situation where we add together a weighted sum of uncorrelated Ornstein-Uhlenbeck processes,
as was suggested in the previous section on superpositions and long memory models. Finally, as
∆→ 0 so d → 1 and so σ2

n behaves like a first order autoregression.

More abstractly, Sørensen (1999) and Genon-Catalot, Jeantheau, and Larédo (2000) have
independently noted that when µ = β = 0 then the return sequence {yn} is α-mixing if the
instantaneous volatility σ2(t) is α-mixing and further that the mixing coefficients for returns are
less than or equal to the mixing coefficients for the instantaneous volatility process.

4.3 Leverage case

In the leverage case (8) the calculations are inevitably more specialised. When σ2(t) ∼ OU we
are able to produce very concrete results. In particular

E{ynyn+s} = 0,
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Cov
(
yn, y

2
n+s

)
= E{yny2

n+s} = ρκ2(1− e−λ∆)2 exp {−λ∆(s− 1)}

Cov(y2
n, y

2
n+s) =

(
κ2

2λ2 + ρ2µ3

)
(1− e−λ∆)2 exp {−λ∆(s− 1)} .

The effect of the leverage term is to allow Cov
(
yny

2
n+s

)
to be negative if ρ < 0. However, in

addition both Cov
(
yny

2
n+s

)
and Cov(y2

n, y
2
n+s) damp down exponentially with the lag length

s. We should note that exactly the same dynamic structure was found by Sentana (1995) in
his work on the discrete time quadratic ARCH model (QARCH). Hence we can think of the
QARCH model as a kind of discrete time representation of our continuous time leverage model,
generalising the unleveraged result associated with the work of Drost and Nijman (1993) and
Drost and Werker (1996).

5 Estimating and testing models

5.1 Olsen high frequency exchange rate data

In this paper we will study five minute9 return series (recorded using Greenwich Mean Time)
for the DM/$ exchange rate from 1/12/86 to 30/11/96 constructed from the Olsen and Asso-
ciates database using the semi-cleaning procedures carefully documented in Andersen, Bollerslev,
Diebold, and Labys (2000). It should be noted that the series is defined using an average of
bid and ask quotations. As a result they do not represent returns on transactions, however the
evidence of transaction data (which is not generally available in this quantity) of Goodhart, Ito,
and Payne (1996) and Danielsson and Payne (1999) suggests the properties of transaction and
quote data, at this frequency, closely match.

0 5 10 15 20 25

.1

.2

Seasonality: estimate standard deviation over 10 years
Mon Mid
Fri Sun

-5 -2.5 0 2.5 5

-5

0
Density (over 125,000) of 5 minute standardised returns

Figure 2: Left: Estimated intra-day pattern of volatility (standard deviations) for each day (in
particular Monday, average over Tuesday through Thursday, Friday and Sunday) over 5 minute
periods using 10 years of data. X-axis denotes hours. Right: marginal log-density of returns
over 5 minute period — data split into series of length 125,000. Dotted line is corresponding
fitted normal log-density.

The semi-cleaning procedure of Andersen, Bollerslev, Diebold, and Labys (2000) does not
remove some heavy intra-day effects in the volatility of the series nor does it take into account
the known timing of macroeconomic announcements which influence the volatility in the market.

9It is difficult to go below 5 minute returns without suffering from problems of discreteness which we will briefly
discuss in Section 6. Recent econometric papers on this topic include Russell and Engle (1998) and Rydberg and
Shephard (1998).
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We will not deal with the latter problem as adjusting for announcements is a challenging and
important task in its own right and so we judge this beyond the scope of this paper (see Andersen
and Bollerslev (1998b)). We have imposed some adjustments ourselves on the intra-day effects.
These included taking out all data from 10.30pm Friday until Sunday 11pm each week, as well as
bank holidays. In addition we have estimated a strong intra-day volatility effect (see Guillaume,
Dacorogna, Dave, Muller, Olsen, and Pictet (1997) for a discussion of this) by running a cubic
spline (with 40 degrees of freedom) on the variance of each five minute period in active day. After
some initial analysis we have set the intra-day effect to be the same for Tuesdays, Wednesdays
and Thursdays. Further, we have allowed the 5 minute return after the opening of the New York
stock exchange to have its own free level as its variance is much higher than the rest of the data.
The resulting smoothed estimate of the intra-day seasonal component is given in Figure 2. The
most interesting features of this graph is the high volatility of the series on Monday mornings,
Friday afternoons and the high level of volatility which generally occurs when the New York
market is open.

After full adjustments are taken into account, we are left with a single unbroken time series
made up of 684,867 five minute observations. For each observation we standardise it by dividing
through by its intra-day effect in an attempt to achieve a homogeneous series. We then study
the marginal distribution of the resulting standardised series. Figure 2 gives the log of the
histogram of returns where we split the returns into four sections of 125,000 observations (that
is each section is just over two years of adjusted five minute returns). To calibrate the graphs we
have drawn the corresponding normal density. The graph indicates that returns are consistently
much heavier tailed than is suggested by the normal distribution.

An interesting feature of the log-histograms is that the tails look almost linear10, suggesting
we need models for marginal returns over short intervals of the form

const. |y|ρ± exp(−σ± |y|)
for some ρ+, ρ− ∈ R and σ+, σ− ≥ 0. One class of densities which has this property are the
normal inverse Gaussians.

5.2 Estimating marginal distribution

Although the basic dataset we use takes ∆ as representing five minutes, we can think about
returns at other frequencies. In Figure 3 we show the log-histograms of the fully adjusted returns
for a variety of values of ∆. As expected from our discussion in Section 4.1 on aggregation, as
∆ lengthens the marginal log-densities seemingly become more accurately approximated by
quadratics, that is normal densities. The Figure also shows the fitted log-densities of normal
inverse Gaussian and Student t type, where the parameters of the fit are chosen by maximising
the corresponding likelihood assuming the returns are i.i.d.. We thus interpret these fits as of
quasi-likelihood type.

Table 1 records the quasi-likelihood fits for each of the models11, once again showing that
the normal distribution is dominated by the other candidates. Further for small values of ∆ the
normal inverse Gaussian out-performs the Student t even though it is clear that the Student t
has heavier tails. For larger values of ∆ the fits are basically identical. The convergence towards
normality as ∆ increases is also shown in the Table where we compute the average Kullback-
Liebler distance (per observation) between the normal density and the other two candidates we
study here.

10Granger and Ding (1995) model |yn| as having a marginal distribution which is exponential.
11Here, for simplicity of exposition, we have only fitted symmetric distributions as exchange rate returns (unlike

equity returns) are known to be approximately symmetric. Further µ is taken to be zero, although in theory we
should allow it to depend upon the difference in interest rates between the two countries. However, in practice
the drift in neglible is this case.
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Figure 3: Log-densities of returns at different levels of temporal aggregation. Plotted are his-
tograms, estimated (by quasi-ML) NIG and Student’s t distributions. Top left: 5 minute returns.
Top right: 70 minute returns. Bottom left: 7 hours. Bottom right: 27 hours. Top graphs his-
tograms computed using 128 bins, bottom graphs have only 32.

5.3 Estimating dependence structure

We now turn our attention to the time dependence structure in high frequency fully adjusted
returns. The correlogram of the series itself shows little activity, but the squares are another
matter. We again decided to split our long series into the four shorter series of length 125,000
and have drawn in Figure 4 the average correlogram which results. Note the x-axis of the
correlogram is marked out in days, not in 5 minute periods. The left hand graph focuses on the
short term dynamics and shows a fast initial decay which then levels out. The middle graph,
which averages the correlograms within each day (the raw correlogram is very noisy), looks at
longer term dependence and shows a slow decay with memory lasting many days.

The right hand side graph of Figure 4 is more unusual. Each day has 288 observations of 5
minute adjusted returns. We have computed the empirical variation within each day

s2
n,288 =

288∑
j=1

y2
288(n−1)+j

which we know, from equation (35), should be a good estimator of the integrated volatility over
a day {

σ2∗(288n∆)− σ2∗ [{288 (n− 1) + 1}∆]} = σ2
n,288.

As a result we call s2
n,288 the QV estimator. Having computed the daily

{
s2
n,288

}
series we

have drawn in Figure 4 the average (over our four series) correlogram (starting at lag 3 to
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Model Measure of fit ∆
(distance from normal) 1 16 81 256

Student t Quasi-log-Likelihood -880240 -111090 -29215. -10884.
KL distance 34.22 2.048 0.2482 0.03944
degrees of freedom 2.954 2.926 3.366 5.154

NIG Quasi-log-likelihood -879800 -111060 -29198. -10886.
KL distance 34.38 2.059 0.2549 0.03889
γ, δ 0.709, 0.679 0.193, 2.52 0.0971, 6.65 0.0799, 17.0

Normal Quasi-log-likelihood -971860 -116570 -29880. -10990.

Table 1: Fit of the marginal distributions of returns yn using zero meaned, symmetric distri-
butions. We use the scaled Student t, normal inverse Gaussian (parameters γ and δ) and the
normal distribution with unknown variance. ∆ = 1 is chosen to represent five minutes. Re-
ported is the maxima of the quasi-likelihood functions. KL (Kullback-Liebler) distance is the
average difference (per data point) between the log-likelihood function and the log-likelihood for
the normal. We use it to measure the departure from normality of the returns.

be compatible with above analysis)12. Our theoretical results suggest that the autocorrelation
function of the

{
σ2
n,288

}
should be proportional to that for the averaged correlogram for the

{
y2
n

}
process given in the middle picture. This seems to be very roughly confirmed here. However, we
can see that the dependence amongst the empirical variance is much stronger than amongst just
the noisy plain squared returns. This is not a surprise, nor does it indicate that the QV estimator
brings any additional statistical information beyond what is available from the autocorrelation
function of the high frequency squared returns.

1 2

.1

.2

Short lags: average Acf

0 25 50 75

0

.005

.01

Long lags: average Acf

0 25 50 75

0

.2

Average Acf of QV estimator

Figure 4: Averaged of 5 correlograms each with 125,000 returns. Labels for the lags of correlogram
are written using days, not 5 minute periods. Left: first 750 lags, to show short term dynamics.
Middle: next 15000 lags to focus on long term pattern. Right: equivalent quadratic variation
estimator based on squared 5 minute returns measured over a day.

The empirical results suggest that we will not be able to build satisfactory volatility models
from the direct use of OU processes, for these have exponential decays in their autocorrelation
functions. The left hand graph of Figure 4 has a heavy initial decay which then falls less steeply

12Quadratic variation type estimators of the integrated volatility process
{
σ2

n

}
, have been used before us in An-

dersen, Bollerslev, Diebold, and Labys (2000). They study the empirical correlograms and marginal distributions
of the resulting statistics. However, in their paper they use unadjusted data.
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at longer lags. This immediately points us towards the use of the superposition of a number of
OU processes for the continuous time volatility.

In this section we will assume the instantaneous volatility process
{
σ2(t)

}
is made up by the

addition ofm independent stationary processes
{
σ2
j (t)
}
. For ease of exposition we will assume13

σ2(t) =
m∑
j=1

σ2
j (t), σ2

j (t) ∼ IG(δwj , γ), where
m∑
j=1

wj = 1 and {wj ≥ 0} .

Then σ2(t) ∼ IG(δ, γ), and so E(σ2(t)) = ζ = δ/γ and Var(σ2(t)) = ω2 = δ/γ3. The corre-
sponding integrated volatility is

σ2
n =

m∑
j=1

σ2
jn, where σ2

jn =
∫ n∆

(n−1)∆
σ2
j (t)dt. (46)

An implication is that Var(yn) = ∆ξ. Further, for s > 0,

Cov(y2
n, y

2
n+s) = Cov

(
σ2
n, σ

2
n+s

)
(47)

=
m∑
j=1

wjCov
(
σ2
jn, σ

2
jn+s

)
= ω2

m∑
j=1

wj♦r∗∗j (∆s)

= ω2
m∑
j=1

wjλ
−2
j {1− exp (−λj∆)}2 exp {−λj∆(s− 1)} .
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Figure 5: Fitted and raw autocovariance functions for the single series of 684,000 observations.
The x-axis is marked in days not 5 minute periods. The graphed fit uses a superposition of four
independent OU processes. Left hand graph draws the average autocovariance in the day, rather
than graphing all the 5 minute correlations.

In order to estimate the parameters of the model we used a fitting procedure which employed
a non-linear least squares comparison of the empirical autocovariance function {cs}, based on

13The inverse Gaussian assumptions will play no formal role in this analysis as it will be based only on the
second order properties of the model.
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the single time series of length 684,000 observations, with the parameterised one given in (47).
In particular the criterion we minimised was

Ss =
3×288∑
s=1

{
cs − Cov(y2

n, y
2
n+s)
}2

+288
123∑
s=3

{
1
288

288∑
k=1

c288s+k − 1
288

288∑
k=1

Cov(y2
n, y

2
n+288s+k)

}2

.

The second term in this expression is slightly non-standard for we are working with the average
autocovariances over each day of lags. The raw data is given in Figure 5, together with the
corresponding fit using m = 4. The broad picture is a fast initial decay, together with a small
amount of correlation at longer lags.

m wj exp(λj∆) ω2 Ss

1 1.00 0.99988 0.303 430.7
2 0.212 0.788 0.99995 0.99982 0.335 346.1
3 0.017 0.064 0.919 0.99995 0.99982 0.9064 4.13 336.9
4 0.008 0.030 0.061 0.901 0.99995 0.99982 0.9931 0.711 8.75 334.8

Table 2: Fit of the autocovariance function using a variety of superpositions of OU processes.
The fit is based on the single series of around 684,000 observations. The number of processes is
denoted by m. The weights are denoted by wj, while the memory of the components is exp(λj∆).
The variance of the volatility is written as ω and appears in Cov(y2

n, y
2
n+s). Finally, S denotes

sum of squares given above.

Table 2 shows the fitted parameters for the analysis. It shows the effect of the changing
value of m. For small values of m longer term dependencies are focused on, while for larger
values of m the longer term dynamics are clarified while the short term dynamics are picked
up. The most interesting feature of the table is that a very large percentage of the volatility
changing in the process is basically unpredictable. Hence we can think that this is merely a
heavy tailed component of the exchange rate movements. However, around ten percent of the
volatility movements are largely predictable. It is these effects which are more important when
we measure returns at longer time horizons.

5.4 Tradition inference approaches

5.4.1 Background

In this subsection we will discuss likelihood and various moment based estimators of the param-
eters indexing the SV models. In addition we will outline several approaches to estimating the
current level of volatility in the series given a sequence of returns.

5.4.2 Likelihood

In principle we would like to use likelihood methods to estimate a fully parametric version of
the model. To be concrete we will work with the IG(δ, γ)-OU process with no leverage. Then
the likelihood function for θ = (µ, β, δ, γ, λ)

f(y; θ) =
∫

f(y1, ..., yT |σ2
1, ..., σ

2
T ;µ, β)f(σ

2
1, ..., σ

2
T ; δ, γ, λ)dσ

2
1, ...,dσ

2
T

=
∫ { T∏

n=1

f(yn|σ2
n;µ, β)

}
f(σ2

1, ..., σ
2
T ; δ, γ, λ)dσ

2
1, ...,dσ

2
T .
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is, unfortunately, not directly computable (see, for example, Kim, Shephard, and Chib (1998)
and West and Harrison (1997)). We can simulate from f(σ2

1, ..., σ
2
T ; δ, γ, λ), by first recalling

that

σ2
n = σ2∗(n∆)− σ2∗ {(n− 1)∆} where σ2∗(t) = λ−1{z(λt)− σ2(t) + σ2(0)}, (48)
= λ−1

〈{
z(λn∆)− σ2(n∆)

}− [z {λ (n− 1)∆} − σ2 {(n− 1)∆}]〉
while noting that{

σ2(n∆)
z(λn∆)

}
=
(

e−λ∆σ2 {(n− 1)∆}
z {λ (n− 1)∆}

)
+ ηn, ηn

L=

(
e−λ∆

∫ ∆
0 eλtdz(λt)∫ ∆

0 dz(λt)

)
. (49)

Here the {ηn} are i.i.d. and can be simulated using (31) or by other methods.

Example 5 Suppose the σ2(t) is an OU process with Γ(ν, α) marginals. Then the result in (32)
applies and we have

ηn
L= α−1

{
e−λ∆

∑N(1)
i=1 log(c−1

i )e
λ∆ri∑N(1)

i=1 log(c−1
i )

}
, ri

i.i.d.∼ U(0, 1),

and defining c1 < c2 < ... as the arrival times of a Poisson process with intensity νλ∆ and N(1)
as the corresponding number of events up until time 1.

In general we do not know the explicit form of f(σ2
1, ..., σ

2
T ; δ, γ, λ), and so we cannot hope to

solve for f(y; θ) analytically or use an importance sampler to estimate the likelihood function.
However, estimating the likelihood function without using an importance sampler is likely to be
hopelessly inaccurate. Hence, with currently available techniques, direct likelihood methods are
not feasible in our case.

Although the likelihood function is not directly available it may be possible that we could
carry out Bayesian inference based on Markov chain Monte Carlo (MCMC) methods (Gilks,
Richardson, and Spiegelhalter (1996)) to draw samples from θ|y if we place a prior on θ. This
method has proved effective for log-normal SV models (see Jacquier, Polson, and Rossi (1994)
and Kim, Shephard, and Chib (1998)) using the idea of data augmentation designing a MCMC
for sampling from θ, σ2|y, where σ2 =

(
σ2

1, ..., σ
2
T

)
. A generic scheme for carrying this out is

given below:

1. Initialize σ2 and θ.

2. Update σ2 from σ2|θ, y , using a Metropolis-Hastings algorithm (one element at a time
(e.g. Carlin, Polson, and Stoffer (1992)) or using a blocking strategy (e.g. Shephard and
Pitt (1997))).

3. Perform a Metropolis update on θ|y, σ2.

4. Goto 2.

Cycling through 2 to 3 is a complete sweep of this sampler. The MCMC sampler will require
us to perform many thousands of sweeps to generate samples from θ, σ2|y. Wong (1999) has
shown that even in cases where it is possible to produce quite good samplers for drawing from
step 2 of this procedure, in effect sampling from σ2|y, θ, the overall performance of the sampler
is extraordinarily poor. This is because knowing σ2

1, ..., σ
2
T basically determines λ in a simple
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OU model — that is when we know the volatility we are over-conditioning14. Hence the sampler
is completely unable to move speedily through the sample space. This is not the case in a log-
normal SV model (see Kim, Shephard, and Chib (1998)). This very unfortunate effect seems
inevitable for this type of parameterisation.

The above problems can potentially be removed if we reparameterise the MCMC problem
to work more directly in terms of the components of the shock terms {ηn}. Recall they have an
infinite series representation (31) which can be used to simulate from them. Each draw in these
infinite series are based on the sequences, independent over n, {ain} and {rin}. Here the r′ins
are independent copies of a uniform random variable r on [0, 1] and a1n < ... < ain < ... are the
arrival times of a Poisson process with intensity 1. Suppose we truncate the sequence after K
random variables for each value of n and write a(n) = (a1n, ..., aKn)

′ and r(n) = (r1n, ..., rKn)
′,

and a = (a(1), ..., a(T )) and r =
(
r(1), ..., r(T )

)
. Then we could perform MCMC based inference

based upon sampling from

f(θ, a, r, σ2(0)|y) ∝ f(y|θ, a, r, σ2(0))f(σ2(0)|δ, γ)f(a, r).

This is straightforward for

f(y|θ, a, r, σ2(0)) =
T∏
n=1

f(yn|σ2
n),

as θ, a, r, σ2(0) determine
{
σ2
n

}
. In principle this would only be an approximation (due to the

truncation of the infinite series representation), as it would be based upon K variables, however
if K was chosen as a large number then it is likely to perform well.

So far we have not implemented the above strategy as it is computationally burdensome.

5.4.3 Best linear predictors

In order to simplify the exposition suppose that β = ρ = 0 (which may be reasonable for
exchange rate data)15. Then we note that yn|σ2

n ∼ N(µ∆, σ2
n) and so(

yn
y2
n

)
=
(

µ∆
µ2∆2 + σ2

n

)
+ un, (50)

Var(u1n) = E
(
σ2
n

)
= ξ∆

Cov(u1n, u2n) = 2µ∆E
(
σ2
n

)
= 2µ∆2ξ.

Var(u2n) = 4µ2∆2E
(
σ2
n

)
+ 2E

(
σ4
n

)
= 4µ2∆3ξ + 2

{
2ω2r∗∗(∆) + ξ2∆2

}
,

where un is a vector Martingale difference sequence. Further
(
σ2
n, zn
)
is a linear process which

is driven by the i.i.d. noise {ηn}. It is easy to see that

E(ηn) = ξ

(
1− e−λ∆

λ∆

)
, Var (ηn) = 2ω

2

{
1
2

(
1− e−2λ∆

) (
1− e−λ∆

)(
1− e−λ∆

)
λ∆

}
.

14The easiest way of thinking about this is to work with a discrete time version of this type of model where

σ2
n = e−λσ2

n−1 + ηn,

where ηn > 0 and is i.i.d.. Then
e−λ ≤ min

n
σ2

n/σ2
n−1.

This suggests the likelihood function will have a mode very close to e−λ. Indeed it can be shown that the maximum
likelihood estimator of λ is superconsistent for this type of problem (see Nielsen and Shephard (1999) and the
references contained within).

15The extension to the leverage case would write yn = µ∆+ zn + u1n and y2
n = µ2∆2 + σ2

n + E(z
2
n) + un.
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These results imply that a linear state space representation of the
(
yn, y

2
n

)
(with uncorrelated

{un} and {ηn})16 is(
yn
y2
n

)
=
(

µ∆
µ2∆2

)
+
(
0 0
λ−1 0

)
αn + un, with

αn+1 =
[ {z(λ (n+ 1)∆)− z (λn∆)}+ σ2 (n∆)− σ2 {(n+ 1)∆}
σ2 {(n+ 1)∆}

]
=
{
0
(
1− e−λ∆

)
0 e−λ∆

}
αn +

(
η2n − η1n

η1n

)
.

which allows us to use the Kalman filter (see, for example, Harvey (1989)) to provide a best
linear (based on yn and y2

n) predictor of σ
2
n and the associated mean square error. Let us

write these quantities as sn|n−1 and pn|n−1, then it is straightforward in the case that µ = 0 to
demonstrate that if s1|0 ≥ 0 then sn|n−1 is always non-negative and, in steady state, takes the
form of a GARCH(1,1) recursion in the squares of the data. We should note that these estimates
of volatility are really semi-parametric, in the sense that they do not rely on any distributional
assumptions about the volatility process only on ξ, ω2, µ and λ17.

A simple way of estimating the parameters of this model is to use a (Gaussian) quasi-
likelihood based around the output from the Kalman filter (e.g. Harvey (1989)). The asymptotic
theory associated with the maximum quasi-likelihood estimator is worked out in Dunsmuir
(1979). It will be asymptotically equivalent to an estimator defined via the Whittle likelihood.

The above arguments also generalise to where we sum m independent OU processes (46).
Suppose E(σ2

j (t)) = wjξ and Var(σ2
j (t)) = wjω

2. Then we have
(
σ2
jn, zjn

)
are independent over

j and are again linear processes driven by noise
{
ηjn
}
. In this setup

E(ηjn) = wjξ

(
1− e−λj∆

λj∆

)
, Var

(
ηjn
)
= 2wjω2

{
1
2

(
1− e−2λj∆

) (
1− e−λj∆

)(
1− e−λj∆

)
λj∆

}
.

The resulting representation has 2m state variables. Further, the only change in the measure-
ment equation is that

E
(
σ4
n

)
=
{
E
(
σ2
n

)}2 +Var (σ2
n

)
= 2ω2

m∑
j=1

wjr
∗∗
j (∆) + ξ2∆2.

5.4.4 Particle filter

The Kalman filter’s estimate of σ2
n is the best linear estimator sn|n−1 but it is not necessarily

the efficient E(σ2
n|Fn−1), where Fn−1 denotes the information available at time (n− 1)∆. In

this part of the paper we show this quantity can be recursively computed using a particle filter
(see Pitt and Shephard (1999a) and Doucet, de Freitas, and Gordon (2000) for a book-length
review of this material) and, further, we will indicate that the linear and efficient estimators are
close to one another.

16As σ2
n has an ARMA(1,1) representation the minimial dimension of the state space form is two. However, it

is possible to remove z(λ (n+ 1)∆)− z (λn∆) from the transition equation and have a single state variable. This
would result in correlated measurement and transition noise.

17For related ideas, in the context of discrete time log-normal SV models, see Harvey, Ruiz, and Shephard
(1994) and Harvey and Shephard (1996) where a linear state space form is constructed for log y2

n. Estimates
based on this representation are known to be inefficient (Jacquier, Polson, and Rossi (1994)) principally due to
the variance caused by inliers (small values of y2

n). This particular problem does not necessarily carry over to our
current treatment.
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A particle filter is a method for approximately, recursively sampling from the filtering dis-
tribution of σ2

n|Fn for n = 1, ..., T . It has the following basic structure
Basic particle filter (Gordon, Salmond, and Smith (1993))

1. Assume a sample σ2(1)(n∆), ..., σ2(M)(n∆) from σ2
n, σ

2(n∆)|Fn. Set n = 0.
2. For each

{
σ2(m)(n∆)

}
generate K offspring{
σ

2(m,k)
n+1 , σ2(m,k)((n+ 1)∆)

}
, k = 1, ...,K,

using (48) and (49). Compute

logw∗
m,k = −1

2
log σ2(m,k)

n+1 − y2
n+1

2σ2(m,k)
n+1

, k = 1, ...,K.

3. Calculate normalised weights wm,k ∝ w∗
m,k which sums to one over m and k.

4. Resample, with unequal weights, amongst the
{
σ2(m,k)((n+ 1)∆), wm,k

}
to produce a

new sample σ2(1)((n+ 1)∆), ..., σ2(M)((n+ 1)∆). This sample is approximately from
σ2
n+1|Fn+1

5. Goto 2.

As M gets large so the particle filter becomes more accurate, with the samples truly coming
from the required filtering densities. In practice values of M of around 1,000 to 10,000 are
effective, while we typically take K as 3. Figure 6 gives an example where we simulate from an
OU process for

{
σ2(t)

}
and then use both the Kalman filter and a particle filter to estimate the

unobserved integrated volatility
{
σ2
n

}
process. The top of the Figure shows that both procedures

give rough estimates of the true integrated volatility with the major feature being that the two
estimates are close together. Extensive work on this aspect suggests that the particle filter is
only very marginally more efficient than the best linear estimator.

The bottom of Figure 6 graphs the particle filters estimate of Var(σ2
n|Fn) against E(σ2

n|Fn).
The graph shows that the variance increases with the level of volatility, which is not surprising
given the process that generates the integrated volatility but is not reflected in the corresponding
calculations based on the Kalman filter.

5.4.5 Estimating equations

Earlier we derived general expressions for the second order moments of the return sequence
{yn}. In a recent paper Sørensen (1999) has studied how to use these moments to construct
optimal estimating equations for OU based SV models. These results, together with more
general frameworks presented in Sørensen (1999) and Genon-Catalot, Jeantheau, and Laredo
(1998), provide powerful methods for estimating these types of models. However, we are yet to
study their effectiveness in practice.

5.4.6 Indirect inference

Equations (48) and (49) can be used to simulate a return sequence {yn} without any form of
discretisation error. However, it is now clear that this is insufficient for us to conduct straightfor-
ward likelihood based inference, even when we are prepared to use MCMC or particle filter based
methods. This situation is not unfamiliar in econometrics where a new form of inference method,
now generally called indirect inference, has been developed by Smith (1993) to deal with such
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Figure 6: OU process with Γ(ν, α) marginals. Throughout, ∆ = 1, ν = 3, α = 8.5, ∆ =
0.01. Top: against time we plot the true σ2

n, the best linear estimator and the particle filter’s
estimator of E(σ2

n|Fn−1). Bottom: against E(σ2
n|Fn−1) we plot Var(σ2

n|Fn−1) where both terms
are estimated using the particle filter. To do this we take T = 2, 300.

situations (see Gourieroux, Monfort, and Renault (1993) and Gallant and Tauchen (1996) for
clear expositions). The basis of this approach is to use an incorrect “auxiliary model”, such as a
GARCH(1, 1) model, as an approximation to the process and then correct for the approximation
by simulation.

To establish notation write y as the data, θ as the parameters indexing the SV model, ŷS(θ)
as a simulation of length S from the SV model based upon the parameter θ and ψ to be the
parameters of the GARCH(1, 1) model. Then indirect inference for θ follows the approach.

Indirect inference: auxiliary model is GARCH

1. Find the MLE of ψ
ψ̂ = argψmax logLGARCH(ψ; y),

as if the data had been produced by the GARCH model.

2. Find θ̂ such that
ψ̂ = argψmax logLGARCH(ψ; ŷ

S(θ̂)).

That is change the simulated data until its GARCH version of the MLE is the same as
that which results from the data.

We call θ̂ the indirect estimator of θ and typically base it on very large values of S (many
times the sample size T ). It is typically consistent and asymptotically normal (e.g. Gourieroux
and Monfort (1996)). Of course it is also inefficient.
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6 Further issues

6.1 Subordination

The modelling of financial processes by subordination of Brownian motion goes back to the
paper by Clark (1973). Recent work on this topic includes the variance gamma model of Madan
and Seneta (1990) (which is particularly notable as it uses a Lévy process as its subordinator)
and that of Ghysels and Jasiak (1994), Conley, Hansen, Luttmer, and Scheinkman (1997) and
Ané and Geman (2000). Subordination of Brownian motion is taken here in a general sense.
It means a time transformation by a positive monotonically increasing stochastic process τ(t)
that tends to infinity for t tending to infinity and is independent of the Brownian motion b. The
resulting process is b {τ(t)}.

Now consider models of the type

x∗(t) =
∫ t

0
σ(s)dw(s), (51)

where the processes σ and w are independent, w being a Brownian motion and σ being positive
and predictable and such that σ2∗(t) → ∞ for t → ∞. It turns out that, in essence, there is
equivalence between the model formulation by (51) and the model formulation by subordination
with an independent subordinator σ2∗.

To see this, note first that the process x∗ is a continuous local martingale whose quadratic
characteristic satisfies [x∗](t) = σ2∗(t). As is well known, the Dubins-Schwarz theorem (see, for
instance, Rogers and Williams (1996, p. 64)) tells us that, if we define processes γ and b by

γ(t) = inf{u : [x∗](u) > t} and b(t) = x∗(γ(t))

then b is a Brownian motion and

{x∗(t)}t≥0
L= {b([x∗](t))}t≥0 (52)

To establish the equivalence it remains to prove that the processes b and σ2∗ are independent.
But this is equivalent to showing that

E [exp {i(f • [x∗] + g • b)}] = E{exp (if • [x∗])}E{exp (ig • b)}. (53)

But this is straightforward to show using iterative expectations by first conditioning on σ.

6.2 Pricing

6.2.1 Non-arbitrage

In this subsection we will show that our leveraged SV model does not allow arbitrage18. We
study the process in parts

x∗(t) = x∗0(t) + βσ2∗(t) + ρz̄(λt) (54)

where z̄(t) = z(t)− tξ, and

x∗0(t) =
∫ t

0
σ(s)dw(s) with σ2(t) = e−λt

∫ t
−∞

eλsdz(s).

18In the case of no leverage, ρ = 0, non-arbitrage follows essentially from Lipster and Shiryayev (1977, Ch.
6) and is well known. The arguments given below combines their technique with the Esscher transformation
technique well known for Lévy process models.
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Once again we assume w and z are independent, while we write {Ft}t≥0 to represent the filtration
generated by the pair of processes (w, z). Further, in establishing non-arbitrage only finite time
horizons will be considered, i.e. we restrict t to the interval [0, T ] for some, arbitrary, T > 0.

We have to verify the existence of an equivalent martingale measure under which the process
exp{x∗(t)} is a local martingale. Let P be the original probability measure governing the
behaviour of w and z over the time interval [0, T ], let φ = β + 1

2 , and let θ
′ be the solution to

the equation
κ(ρ+ θ′)− κ(θ′) = ξρ (55)

existence of the solution being assumed. Now, define the process d(t) by d(t) = exp{u∗(t)} with

u∗(t) = −φx∗0(t)−
1
2
φ2σ2∗(t) + θ′z̄(λt)− λtκ̄(θ′) (56)

and where κ̄(θ) = κ(θ) − ξθ is the cumulant function corresponding to the Lévy process z̄, i.e.
the cumulant function of z̄(1). Note that equation (55) may be reexpressed as

κ̄(ρ+ θ′) = κ̄(θ′) (57)

Furthermore, let P ′ be the measure given by dP ′ = d(T )dP .

Proposition 6.1 Under the above setup we have

(i) the process d(t) is a mean 1 martingale, and hence P ′ is a probability measure

(ii) the price process exp{x∗(t)} is a martingale under P ′.

✷

The proof of this result is given in the Appendix.
Example Suppose z(1) ∼ IG(δ, γ). Then

κ(ρ+ θ)− κ(θ) = δγ[{1− 2θ/γ2}1/2 − {1− 2(ρ+ θ)/γ2}1/2]
= 2(δ/γ)ρ[{1− 2θ/γ2}1/2 + {1− 2(ρ+ θ)/γ2}1/2]−1

= 2ξρ[{1− 2θ/γ2}1/2 + {1− 2(ρ+ θ)/γ2}1/2]−1

Seeking a solution to (55) is therefore equivalent to solving

{1− 2θ/γ2}1/2 + {1− 2(ρ+ θ)/γ2}1/2 = 2 (58)

Suppose ρ ≤ 0, which is the econometrically relevant case. Then, as θ increases from −∞ to
its upper bound γ2/2 the left hand side of (58) decreases monotonically from ∞ to |ρ|√2/γ.
Consequently, (58) is solvable if and only if |ρ| ≤ √

2γ (which in practice is not a very binding
constraint).
✷

6.2.2 Derivatives

The fact that our SV model is arbitrage-free means there exists at least one equivalent martingale
measure (EMM) with which we can compute derivative prices. An important question is which
one to use? Recently Nicolato and Venardos (2000) and Nicolato (1999) have tackled this
problem for our model when σ2(t) ∼ IG in the special case of ρ = 0. They have shown that
a particularly convenient option price formula results if we choose to price the derivative with
the EMMs, written Q, which is closest to the physical measure, written P , in a relative entropy
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sense
∫
log (dQ/dP ) dQ. This way of selecting from a set of EMM was advocated in Föllmer

and Schweizer (1991) using an elegant hedging argument. In particular if we write

C {K,x∗(n∆), n∆+∆}

for the price at time n∆ of a European call option on x∗(t), with initial value x∗(n∆), strike
price K and expiration date n∆+∆ we have that

C {K,x∗(n∆), n∆+∆} = EQ {x∗(n∆+∆)−K}+

=
∫
R+

BS

{
K,x∗(n∆),

1
∆
σ2
n+1, n∆+∆

}
dP

{
1
∆
σ2
n+1|σ2(n∆)

}
where BS

{
K,x∗(n∆), 1

∆σ
2
n+1, n∆+∆

}
denotes the Black-Scholes price of the option with ini-

tial value x∗(n∆), strike price K and constant volatility 1
∆σ

2
n+1. This is particularly straightfor-

ward for the law of the volatility process is the same under the physical measure and the EMM.
This result extends to more general cases as long as the volatility process is independent of the
Brownian motion; in particular, it holds under superposition of OU processes.

In practice we can unbiasedly estimate C {·} simply by simulation for we can quickly draw
many samples from σ2

n+1|σ2(n∆) using the series representations developed in Section 2 of this
paper. Feasible alternatives to this approach include using either saddlepoint approximations
or Fourier inversion methods based on the characteristic function, under Q, of

x∗(n∆+∆)|x∗(n∆), σ2(n∆).

Here we will derive the cumulant generating function, while Scott (1997) and Carr and Madan
(1998) discuss the computations involved in moving to option prices from this type of function.

The required function is, for the canonical case of n = 1 and writing r to denote the riskless
interest rate19,

K
{
ζ ‡ x∗(∆)|x∗(0), σ2(0)

}
= log EQ

[
exp {ζx∗(∆)} |x∗(0), σ2(0)

]
= {x∗(0) + r∆} ζ +K

{(
ζβ +

1
2
ζ2

)
‡ σ2

∆|σ2(0)
}
.

Hence the only unsolved problem is to compute the cumulant generating function of σ2
∆|σ2(0).

Recall

σ2
∆ = λ−1

{
z(λ∆)− σ2(∆) + σ2(0)

}
=
∫ ∆

0
ε(∆− s;λ)dz(λs) + ε(∆;λ)σ2(0), where ε(t;λ) = λ−1(1− e−λt).

Consequently it is sufficient to work with

K
{
θ ‡ σ2

∆|σ2(0)
}

= log E
(
e−θσ

2
∆ |σ2(0)

)
= −θε(∆;λ)σ2(0) + K{θ ‡ λ−1

∫ λ∆
0

(1− e−λ∆+u)dz(u)}

= −θε(∆;λ)σ2(0) +
∫ λ∆

0
K{θλ−1(1− e−λ∆+u) ‡ z(1)}du

19This is a slight abuse of notation for we have previously assumed x∗(0) = 0, which is not our intention here.
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= −θε(∆;λ)σ2(0) + λ

∫ ∆

0
K{θε(∆− s;λ) ‡ z(1)}ds

= −θε(∆;λ)σ2(0) + λ

∫ ∆

0
K{θε(s;λ) ‡ z(1)}ds

= −θε(∆;λ)σ2(0) + λ

∫ ∆

0
k(θε(s;λ))ds

= −θε(∆;λ)σ2(0) +
∫ 1−e−λ∆

0
(1− u)−1k(λ−1θu)du.

Example 6 Suppose z(1) ∼ IG(δ, γ), implying k(θ) = δγ − δγ(1 + 2γ−2θ)1/2. Then∫ 1−e−λ∆

0
(1− u)−1k(λ−1θu)du = δγ

∫ 1−e−λ∆

0

1− (1 + κu)1/2

1− u
du

= δγ {λ∆− I(κ,∆)} ,
where κ = 2γ−2λ−1θ and

I(κ,∆) =
∫ 1−e−λ∆

0

(1 + κu)1/2

1− u
du

= λ∆
√
1 + κ + 2

{[
1− b(κ) +

√
1 + κ log

{√1 + κ + b(κ)}
{√1 + κ + 1}

]}
.

Here b(κ) =
√
1 + κ − κe−λ∆.

The result that we have the analytic cumulant generating function, underQ, of x∗(∆)|x∗(0), σ2(0)
seems important for we can now regard the option pricing problem as being analytically solved
for this class of models. In the financial economics literature the only equivalent result for SV
models has been found by Heston (1993) and Duffie, Pan, and Singleton (2000) (see also Stein
and Stein (1991)) working with a square root process

dσ2(t) = −λ{σ2(t)− ζ
}
dt+ δσ(t)db(t).

6.3 Trade-by-trade dynamics

Recently vast datasets recording the price, times and volumes of actual market transactions have
become routinely available to researchers. It is interesting to try to link empirically plausible
models of these trade-by-trade pricing dynamics with our SV models. To enable us to present
general results we will adopt the Rydberg and Shephard (2000) framework for tick-by-tick data.
We model the number of trades N(t) up to time t as a Cox process (which is sometimes called
a doubly stochastic point process) with random intensity δ(t) = δσ2(t) > 0. In general we write
τ i as the time of the i− th event and so τN(t) is the time of the last recorded event when we are
standing at calender time t.

Then a stylised version of the Rydberg-Shephard framework writes the current log-price as

x∗δ(t) = µτN(t) + βσ2∗ {τN(t)

}
+

1√
δ

N(t)∑
k=1

yk, (59)

where for sake of simplicity the {yi} are assumed independent standard normal and σ2∗(t) =∫ t
0 σ

2(u)du. We assume the Cox process and the {yi} are all completely independent. This
model models prices as being discontinuous in time, jumping with the arrivals from the Cox
process. Then we have the following result.
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Theorem 6.1 For the price process (59), if the {yi} are assumed independent standard normal,
σ2∗(t) =

∫ t
0 σ

2(u)du and N(t) is a Cox process with random intensity δ(t) = δσ2(t) > 0, then

lim
δ↑∞

x∗λ(·) L→ x∗(·),

where x∗(t) is given in (6).
Proof: Given in the Appendix.

This means that the tick-by-tick model will converge to a stochastic volatility model as
the amount of trading gets large and the average tick size becomes small. We should note
that the requirement that the {yi} are independent standard normal can be relaxed to allow
general sequences of {yi} which exhibit a central limit theorem for the sample average. This
is particularly useful for in practice the {yi} live on a discrete set and have quite complicated
dependence structures which are not easy to model (see Rydberg and Shephard (2000) and
Rydberg and Shephard (1998)).

6.4 Vector OU processes

6.4.1 Construction of the process

So far our discussion has dealt with univariate processes. In this subsection we discuss extending
this to the case of a vector of OU processes with dependence between the series. We introduce
the q−dimensional volatility process

σ2(t) =
(
σ2

1(t), ..., σ
2
q(t)
)

via the BDLPs z(t) = (z1(t), ..., zq(t))

as follows. The multivariate form of (14) is

k(θ) = log E [exp {− 〈θ, z(1)〉}] = −
∫
Rq

+

(
1− e−〈θ,x〉

)
W (dx), (60)

where θ = (θ1, ..., θq), x = (x1, ..., xq), R+ = (0,∞) and 〈θ, x〉 = ∑qi=1 θixi, and W is a Lévy
measure on Rq+, i.e. a measure satisfying∫

Rq
+

min {1, 〈|x|〉}W (dx) < ∞,

where |x| is the Euclidean norm. Now let z = (z1, ..., zq) be a q−dimensional Lévy process with
log E [exp {− 〈θ, z(1)〉}] as in (60). Suppose for simplicity, that W has a density w with respect
to Lebesgue measure, and let wi(xi) be the i− th marginal of w, i.e.

wi(xi) =
∫
Rq−1

+

w(x)dx1...dxi−1dxi+1...dxq.

Imposing the condition ∫ ∞

1
log (xi)wi(xi)dxi < ∞

we may then, on account of Lemma 2.1, define the stationary process σ2
i (t) by

σ2
i (t) =

∫ 0

−∞
esdzi(λit+ s).

Note that
log E [exp {−θizi(1)}] = −

∫ ∞

0+

(
1− e−θixi

)
wi(xi)dxi.

The full specification of σ2 =
(
σ2

1, ..., σ
2
q

)
then rests on the choice of w, which we may aim

to reflect the dependencies amongst the volatility processes σ2
1(t), ..., σ

2
q(t).

This approach is presently under development. Here we just present a simple example.
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Example 7 Let q = 2 and let w, defined in polar coordinates (r, a), be

w̃(r, a) = g(r; δ, γ)b(a;φ)

where g(r; δ, γ) is the Lévy density of the BDLP for the OU-IG(δ, γ) process and

b(a;φ) = B(φ, φ)−1

{
2
π
a

(
1− 2

π
a

)}φ−1

,

φ being a positive parameter. In the limit for φ ↓ 0 we obtain that z1(s) and z2(s) are independent
BDLP/IG-OU processes, while for φ ↑ ∞ the processes z1(s) and z2(s) tend to one and the same
BDLP/IG-OU process. Thus φ serves as a dependence parameter.

6.4.2 Series representations

Series representations of multivariate Lévy processes are available from the work of Rosinski
(1990) and Rosinski (1999). Here we restrict discussion to presenting a result from the simplest
type of setting. A fuller account is given in Barndorff-Nielsen and Shephard (2001).

Consider a q−dimensional BDLP process z with density w(x) as in the subsection directly
above and let w̃(r, a) (a = (a1, ..., aq−1)) be the representation of w in polar coordinates. We
assume, for simplicity (and as in Example 7), that w̃ factors as w̃(r, a) = g(r)b(a) where g is a
one-dimensional Lévy density on R+ and b is a probability density. Now let

G−1(s) = inf
{
r > 0 : G+(r) ≤ s

}
, where G+(r) =

∫ ∞

r
g(ρ)dρ.

Proposition 6.1 Let aj , j = 1, 2, ... be the arrival times of a Poisson process with rate 1 and
let uj , j = 1, 2, ... be an i.i.d. sequence of unit vectors independent of {aj}, such that the law of
uj is that determined by the probability density b. Furthermore, for s ∈ [0, 1] let

z̃(s) =
∞∑
j=1

1[0,s](rj)G
−1(aj)uj (61)

where {rj}j∈N is an i.i.d. sequence of random variables uniformly distributed on [0, 1] and
independent of the sequences {aj}j∈N and {uj}j∈N. Then the series (61) converges a.s. and

{z(s) : 0 ≤ t ≤ 1} L= {z̃(s) : 0 ≤ t ≤ 1} (62)

✷

Furthermore we have
Proposition 6.2 If fi, i = 1, ..., d, are positive and integrable functions on [0, 1] then∫ 1

0
fi(s)dzi(s)

L=
∞∑
j=1

G−1(aj)uijfi(rj) (63)

for i = 1, ..., d and the uij i.i.d. with law determined by b.
✷

6.5 Multivariate SV models

6.5.1 Model structure

A simple q-dimensional version of the SV model for log-prices sets x∗(t) =
{
x∗1(t), ..., x∗q(t)

}
with
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dx∗(t) = {µ+ βΣ(t)} dt+Σ(t)1/2dw(t),

where Σ(t) is a time varying stochastic covariance matrix and β is a vector of risk premiums.
Corresponding to this model structure is the integrated covariance

Σ∗(t) =
∫ t

0
Σ(u)du.

Then defining yn = x∗(n∆)− x∗ {(n− 1)∆} we have that

yn|Σ∗
n ∼ N(µ∆+ βΣ∗

n,Σ
∗
n),

where Σ∗
n = Σ

∗(n∆)− Σ∗ {(n− 1)∆}.
We can estimate Σ∗(t) using quadratic variation for x∗(t) is a continuous q−dimensional

local martingale plus a process which is continuous with bounded variation and so

[x∗](t) =p− lim
r→∞

∑
{x∗(tri+1)− x∗(tri )}{x∗(tri+1)− x∗(tri )}′ = Σ∗(t) (64)

for any sequence of partitions tr0 = 0 < tr1 < ... < trmr
= t with supi{tri+1 − tri } → 0 for r → ∞.

6.5.2 Factor models

An important problem is to specify a model for Σ∗(t). One approach is to do this indirectly via
a factor structure

Σ(u) = diag(
{
σ2

1(u), ..., σ
2
q(u)
}
) + σ2

q+1(u)φφ
′.

Here φ =
(
β1, ..., βq

)
are unknown parameters and the σ1, σ2, ..., σq+1 are mutually indepen-

dent OU processes which are square integrable and stationary. It has common, but differently
scaled, stochastic volatility model and individual stochastic volatility models for each series. It
generalizes straightforwardly to allow for two or more factors. This style of model is in keeping
with the latent factor models of Diebold and Nerlove (1989), King, Sentana, and Wadhwani
(1994), Pitt and Shephard (1999b) and Chib, Nardari, and Shephard (1999). Its motivation
is that in financial assets it is often the case that returns move together, with a few common
driving mechanisms. The common factors allow us to pick this up in a straightforward and
parsimonious way. This model could be generalised by allowing the volatilities to be dependent
using the multivariate OU type processes introduced in the previous subsection.

Finally, we should note that generating economically useful models via direct subordination
arguments seems difficult even when we have vector OU processes. Let b(t) be a vector of
independent Brownian motions, then a multivariate, rotated, subordinated model would be
βb
(
σ2(t)

)
, for some matrix β and σ2(t) a vector of dependent OU processes. However, such

a model has a time invariant correlation matrix of returns, which is unsatisfactory from an
economic viewpoint (e.g. asset allocation theory depends on correlations).

7 Conclusion

Non-Gaussian processes driven by Lévy processes are both mathematically tractable and have
important applications. It is possible to build compelling SV models using OU processes to
represent volatility. Log returns from these types of models have many of the properties of
familiar discrete time GARCH models. These SV models are empirically reasonable as well as
having many appealing features from a theoretical finance perspective. In particular our class
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of models does not allow arbitrage and gives very simple expressions for standard option pricing
problems under stochastic volatility.

Although the treatment of OU processes we have presented in this paper is extensive, there
are a number of unresolved issues. A principal difficulty is that exact likelihood inference for SV
models in continuous time but with discrete observations seems difficult. We hope that others
may be able to solve this problem.

The generalisation to the multivariate case is at its infant stage and much work has to be
carried out in order to make this a very flexible framework.

More generally, we believe that Lévy driven processes have great potential for applications
to fields other than finance and econometrics, for instance to turbulence studies. It can also
be further developed to a general toolbox for time series analysis. In this connection, we note
that while in the present paper we have concentrated on integrated processes x∗, one can also
introduce very tractable stationary processes x driven by Lévy processes and having continuous
sample paths, a simple and appealing possibility being the stationary solutions to stochastic
differential equations of the form

dx(t) =
{
µ+ βσ2(t)− λx(t)

}
dt+ σ(t)dw(t) (65)

with σ2(t) an OU process as in (2). See Barndorff-Nielsen and Shephard (2001) for a discussion
of some of the work on this topic and its use in interest rate theory. Another alternative is to
produce a positive stationary process by driving (65) not by Brownian motion but by another
independent Lévy process with positive increments.
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9 Appendix

9.1 Background

This Appendix collects various proofs and results not given in the main text of the paper. It will
be convenient to use the following notation for the cumulant function of an arbitrary random
variable x

C(ζ ‡ x) = log E
(
eiζx
)
, while writing K {θ ‡ x} = log E

(
e−θx
)
,

in cases where x is positive. Similar notation applies for vector variates.
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9.2 GIG Lévy density

Proof of Theorem 2.2 Let z ∼ GIG(ν, δ, γ). From Halgreen (1979) we have that if ν ≤ 0
then

K̄{θ ‡ z} = −δ2

∫ ∞

γ2/2
gν{2δ2(y − γ2/2)} log(1 + θ/y)dy

Differentiating both sides of this equation with respect to θ and transforming the integral by
setting ξ = y − γ2/2 we obtain

∂K̄{θ ‡ z}
∂θ

= −δ2

∫ ∞

0
gν{2δ2ξ}(γ2/2 + θ + ξ)−1dξ

= −δ2

∫ ∞

0
gν{2δ2ξ}

∫ ∞

0
exp
{−(γ2/2 + θ + ξ)x

}
dxdξ

= −
∫ ∞

0
e−θxxu(x)dx

and this shows that

u(x) = δ2x−1

∫ ∞

0
e−xξgν{2δ2ξ}dξ exp (−γ2x/2

)
is the Lévy density of z. In this connection see also Pitman and Yor (1981, p. 346) where a
relation with Bessel processes is established.

For ν > 0 the expression for u follows from the convolution formula

GIG(ν, δ, γ) = GIG(−ν, δ, γ) ∗ Γ(ν, γ2/2)

where Γ(ν, φ) is the gamma distribution with probability density

φν

Γ(ν)
xν−1e−φx

and corresponding Lévy density νx−1e−φx.
✷

9.3 Non-arbitrage

Proof of Proposition 6.1 (i) For 0 ≤ s ≤ t ≤ T we find

EP {d(t)|Fs} = EP {EP {d(t)|z,Fs}Fs}
= e−λtκ́(θ

′)EP

{
exp
{
θ′z̄(λt)− 1

2
φ2σ2∗(t)

}
EP {exp {−φx∗0(t)} |σ,Fs}|Fs

}
and here

EP
{
e−φx

∗
0(t)|σ,Fs

}
= exp

[
−φx∗0(s) +

1
2
φ2{σ2∗(t)− σ2∗(s)}

]
so that

EP {d(t)|Fs} = d(s) exp
{−λ(t− s)κ̄(θ′)

}
EP {exp

{
θ′{z̄(λt)− z̄(λs)}} |Fs} = d(s)

Thus d(t) is a martingale and taking s = 0 we have that EP {d(t)} = 1 = EP ′{1}.
(ii) Note first that

β − 1
2
φ2 + (1− φ)2 = 0 (66)
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By the martingale property of d(t) we have, for arbitrary Ft measurable random variables yt,

EP ′{yt|Fs} = EP {ytd(T )/d(s)|Fs} = EP {ytd(t)/d(s)|Fs} (67)

Hence

EP ′ [exp{x∗(t)}|Fs] = EP [exp{x∗(t)}d(t)/d(s)|Fs]
= exp{x∗(s)− λ(t− s)κ̄(θ′)}EP

{
exp
{
(ρ+ θ′){z̄(λt)− z̄(λs)}} J |Fs}

where
J = e{β−

1
2
φ2}{σ2∗(t)−σ2∗(s)}EP {e(1−φ)(x∗0(t)−x∗0(s))|σ,Fs}

However, by (66),
J = e{β−

1
2
φ2+(1−φ)2}{σ2∗(t)−σ2∗(s)} = 1

so that, in view of condition (57),

EP ′{exp{x∗(t)}|Fs} = exp{x∗(s)− λ(t− s)κ̄(θ′)}EP
[
exp
{
(ρ+ θ′){z̄(λt)− z̄(λs)}} |Fs]

= exp
[
x∗(s)− λ(t− s)

{
κ̄(ρ+ θ′)− κ̄(θ′)

}]
= exp{x∗(s)}

✷

9.4 Trade-by-trade dynamics

Lemma 9.2 Let N(t) be a Cox process with random intensity δ(t) = δσ2(t) > 0. We write
τ i as the time of the i− th event and so τN(t) is the time of the last recorded event when we are
standing at calender time t. Then for δ → ∞ we have that τN(t)

p→ t.
Proof: It suffices to show that for every ε > 0 we have that

Pr (no event in [t− ε, t])→ 0 as δ → ∞.

Now, via conditioning on the intensity process we find, for every δ1 > 0,

Pr (no event in [t− ε, t]) = E {Pr (no event in [t− ε, t] |δ(.))}
= E

[
exp
{
−
∫ t
t−ε

δ(s)ds
}]

= E
[
exp
{
−δ
∫ t
t−ε

σ2(s)ds
}]

= E
[
exp
{−δ {σ2∗(t)− σ2∗(t− ε)

}}]
= E

[
1{σ2∗(t)−σ2∗(t−ε)>δ1} exp

{−δ {σ2∗(t)− σ2∗(t− ε)
}}]

+E
[
1{σ2∗(t)−σ2∗(t−ε)≤δ1} exp

{−δ {σ2∗(t)− σ2∗(t− ε)
}}]

≤ Pr
{
σ2∗(t)− σ2∗(t− ε) ≤ δ1

}
+ e−δ1δ

Consequently

lim
λ↑∞

supPr (no event in [t− ε, t]) ≤ Pr
{
σ2∗(t)− σ2∗(t− ε) ≤ δ1

}
and since this holds for all δ1 > 0 the conclusion of the Lemma follows.
✷
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Proof of Theorem 6.1 It is helpful to rewrite the process as

x∗δ(t) = −µ{t− τN(t)

}
+ β
[
σ2∗(t)− σ2∗ {τN(t)

}]
+ βσ2∗ (t) + µt+

1√
δ

N(t)∑
k=1

yk.

We obtain from Lemma 9.2 and the continuity of σ2∗(t) that the limiting behaviour in the
distribution of x∗δ(t), as δ → ∞, is the same as that of

x∗δ(t) = µt+ βσ2∗ (t) +
1√
δ

N(t)∑
k=1

yk.

Further, for the characteristic function of x∗δ(t) we find that

E [exp {iξx∗δ(t)}] = exp (iξtµ) E

exp{iξβσ2∗(t)
}
Eexp

iξ 1√δ
N(t)∑
k=1

yk

 |δ(·)


= exp (iξtµ) E

[
exp
{
iξβσ2∗(t)

}
Eexp

{
iξ

√
N(t)
δ

yN(t)

}
|δ(·)
]
,

where yN(t) =
√

1
n (y1 + ...+ yn). Trivially, conditionally on δ(·) we have that N(t)/δ a.s.→ σ2∗(t)

as δ → ∞ and yN(t) ∼ N(0, 1) exactly. Thus

lim
δ↑∞

E [exp {iξx∗δ(t)}] = lim
δ↑∞

E [exp {iξx∗δ(t)}]
= lim

δ↑∞
exp (iξtµ) E

[
exp
{
iξ
(
βσ2∗(t) + σ∗(t)u

)}]
,

where u ∼ N(0, 1) and is independent of σ2∗(t). That is, the limiting distribution of x∗δ(t)
is the same as the law of x∗(t). This argument is easily extended to convergence of all finite
dimensional distributions of x∗δ(t), i.e. x

∗
δ(·)

L→ x∗(·).
✷
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Raible, S. (1998). Lévy processes in finance: Theory, numerics and empirical facts. PhD
Thesis. Mathematics Faculty, Freiburg University.

Rogers, L. C. G. and D. Williams (1994). Diffusions, Markov Processes and Martingales.
Volume 1, Foundations. Chichester: Wiley.

Rogers, L. C. G. and D. Williams (1996). Diffusions, Markov Processes and Martingales.
Volume 2, Ito Calculus. Chichester: Wiley.

Rosinski, J. (1990). On series representations of infinitely divisible random vectors. Annals of
Probability 18, 405–430.

Rosinski, J. (1991). On a class of infinitely divisible processes represented as mixtures of
Gaussian processes. In S. Cambanis, G. Samorodnitsky, and M. S. Taqqu (Eds.), Stable
Processes and Related Topics, pp. 27–41. Basel: Birkhäuser.
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