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This paper is concerned with the Bayesian estimation of non-linear stochastic di�erential

equations when observations are discretely sampled. The estimation framework relies

on the introduction of latent auxiliary data to complete the missing di�usion between

each pair of measurements. Tuned Markov chain Monte Carlo (MCMC) methods based

on the Metropolis-Hastings algorithm, in conjunction with the Euler-Maruyama dis-

cretization scheme, are used to sample the posterior distribution of the latent data and

the model parameters. Techniques for computing the likelihood function, the marginal

likelihood and diagnostic measures (all based on the MCMC output) are developed.

Examples using simulated and real data are presented and discussed in detail.
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1 INTRODUCTION

1.1 Models

Consider an Itô stochastic process that satis�es a stochastic di�erential equation (SDE) of

the form

dy(t) = a fy(t); t; �g dt+ b fy(t); t; �g dW (t); (1.1)

where afy(t); t; �g and bfy(t); t; �g are the non-anticipative drift and volatility functions, respec-

tively, depending on y(t), time t, and an unknown parameter vector �, and dW (t) is the increment

of a standard Wiener process.1 SDEs are used extensively in economics: see, for example, the

overviews in Dixit (1993) and Merton (1990). Assume that the conditions under which the SDE

can be solved for a di�usion y(t) are satis�ed (see �ksendal (1995, p. 64)) and suppose that one

has measurements yt = y(�t) at times f�1; : : : ; �T g, where �y

t = �t+1 � �t � 0, for t � T . The aim

is to estimate � given the measurements Y = (y1; : : : ; yT )
0.

In the likelihood context, estimation of � is based on the likelihood function logL(y2; : : : ; yT jy1; �) =PT�1
t=1 log g(yt+1jyt; �), where g(yt+1jyt; �) are the Markovian transition densities. If a strong solu-

tion of the underlying SDE process is available, i.e., the stochastic di�erential equation,

y(t) = y(0) +

Z t

0

a fy(s); s; �g ds+
Z t

0

b fy(s); s; �g dW (s)

can be solved analytically in Itô form, for t 2 (0; T ], then g(yt+1jyt; �) is available in closed form and

likelihood inference is straightforward. The trouble, however, is that analytic solutions of SDEs are

rarely available. This has led to growing interest in methods for estimating SDEs on the basis of

discretely sampled measurements. Important developments include the indirect inference method

of Gourieroux, Monfort, and Renault (1993), the eÆcient method of moments estimator of Gallant

and Long (1997) and the non-parametric approaches of A��t-Sahalia (1996a) and Jiang and Knight

(1997). Discretely observed di�usions have also been �t by estimating functions, see Kessler and

S�rensen (1999), S�rensen (1997), Florens-Zmirnou (1989) and Hansen and Scheinkman (1995) and

by the likelihood based method of Pedersen (1995).

1The same methods developed here can be applied to situations where W (t) is a homogeneous L�evy process, that

is, a process with independent increments which is continuous in probability (see Barndor�-Nielsen, Jensen, and

S�rensen (1998)).
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In this paper we propose a new method for dealing with the estimation problem of stochastic

di�erential equations that is likelihood based, can handle non-stationarity and is not dependent

on �nding an appropriate auxiliary model. Our idea is simply to treat the values of the di�usion

between any two discrete measurements as missing data and then to apply tuned Markov chain

Monte Carlo (MCMC) methods to learn about the missing data and the parameters. We note

that Kim, Shephard, and Chib (1998) have suggested this style of approach in the special case of

a stochastic volatility model. This idea has independently also been discussed by Eraker (1998).2

Related ideas have been developed by Billio, Monfort, and Robert (1998) in their work applying

the Geyer (1999) simulated likelihood ratio method to di�usions and other econometric problems.

1.2 Augmentation for SDEs: Motivation

To begin with consider the Euler-Maruyama (or Euler) approximation of the SDE

yt+1 = yt + a(yt; t; �)�
y

t + b(yt; t; �)(Wt+1 �Wt) ; (1.2)

under which the transition density is

f(yt+1jyt; �) = �
n
yt+1jyt + a(yt; t; �)�

y

t ; b
2(yt; t; �)�

y

t

o
; (1.3)

where �(�jm; v) denotes the Gaussian density with mean m and variance v. Although this is the

simplest discrete time approximation of the SDE with respect to the strong convergence criterion

Kloeden and Platen (1992, Section 10.2) it is normally too coarse to approximate the true transition

density adequately.

In order to describe a modi�ed approach consider any two consecutive times (�t; �t+1), as in

Figure 1, and assume for notational simplicity that the time gap �
y

t = �y is independent of t. Let

f�t;1; :::; �t;Mg denote M auxiliary times between (�t; �t+1), assumed to be evenly spaced, with time

gap

� = �t;k+1 � �t;k =
�y

M + 1
2Our work di�ers from Eraker (1998) in two crucial respects: (i) we develop a tuned MCMC algorithm for carrying

out the calculations, rather than a single move method, and discuss the properties of our method in detail; and (ii)

we provide tools for comparing alternative models and conducting model diagnostics.
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.
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.

.

.

.

.

.

.

.

.

.

.

.

.

yt

y�t;1

y�t;2

y�t;3

y�t;M�1

y�t;M

yt+1

�t;0 �t;1 �t;2 �t;3 �t;M�1 �t;M �t;M+1

Figure 1: Discretization scheme is shown where the auxiliary points y�t are introduced between

observed values yt and yt+1.

for all t; k.3 At each auxiliary time, let y�t;j = y�(�t;j), j � M , denote the unobserved (or latent)

observation and let y�t = (y�t;1; : : : ; y
�

t;M ) denote the entire collection of latent observations at the

times f�t;1; :::; �t;Mg.

Then, an improved approximation of the true transition density g(yt+1jyt; �) is given by

fM(yt+1jyt; �) =

Z
f(yt+1jy�t;M ; �)

8<:
MY
j=2

f(y�t;jjy�t;j�1; �)

9=; f(y�t;1jyt; �)dy�t;M ; : : : ; dy�t;1

=

Z
f(yt+1jy�t ; �)f(y�t jyt; �)dy�t ; (1.4)

where

f(y�t;jjy�t;j�1; �) = �
�
y�t;jjy�t;j�1 + a(y�t;j�1; �t;j�1; �)�; b

2(y�t;j�1; �t;j�1; �)�
	

is the transition density using the Euler approximation. It can be shown that fM
a.s.! g, as M !1

(see Pedersen (1995, Theorem 3) and Kohatsu-Higa and Ogawa (1997)). The global error of the

approximation can be measured as E
��fM (yt+1jyt; �)� g(yt+1jyt; �)

�� by specializing a result of Talay
and Tubaro (1990) where it is shown that this expectation can be expanded in terms of powers of

3The choice of units for �yt has a bearing on the scale of � and implicitly scales the drift and volatility functions.

Because the initial choice of units is merely convenient labelling, chosen for ease of interpretation, the scaling is

arbitrary and not re
ected in the notation.
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1=M (see also Talay (1995) for a discussion), with the leading term being of order 1=M .4 A similar

type of result would hold for the convergence of the log of the densities which is proved in Bally

and Talay (1995) using the Malliavin calculus. The essence of this result is that the discretization

error is a function of M rather than solely a function of �y.5

To illustrate the advantages of introducing auxiliary variables, consider the Ornstein-Uhlenbeck

(OU) process. In terms of (1.1), a(yt; t; �) = �yt, b
2(yt; t; �) = �2 and � = (�; �2). The conditional

distribution of yt+1jyt; � under the Euler scheme is normal with a mean of �
y

Eyt and a variance of

�2�y, where �
y

E
= 1+ ��y. Under the strong solution, the distribution of yt+1jyt; � is also normal

with mean �
y

Syt and variance �2

2�
(�

2y
S � 1), where �

y

S = exp(��y). Suppose we condition each yt on

its neighboring points, yt�1 and yt+1. Then the distribution of the resulting bridge process under

the Euler scheme can be expressed as

ytjyt�1; yt+1; � � N

(
�
y

E

1 + �
2y
E

(yt�1 + yt+1);
�2�y

1 + �
2y
E

)
; (1.5)

whereas from the strong solution,

ytjyt�1; yt+1; � � N

"
�
y

S

1 + �
2y
S

(yt�1 + yt+1);
�2�y

f2�(1 � �
2y
S
)=(�

2y
S
� 1)g

#
: (1.6)

Similarly, if we consider a block of M latent points y�t = (y�t;1; : : : ; y
�

t;M ), then f(y�t jyt; yt+1; �) is

seen to be a Gaussian distribution with expected value

E(y�t jyt; yt+1; �) =
1

1 + �2 + : : : + �2M

0BBBBBB@
�
PM�1

i=0 �2iyt + �Myt+1

�2
PM�2

i=0 �2iyt + �M�1
P1

i=0 �
2iyt+1

...

�Myt + �
PM�1

i=0 �2iyt+1

1CCCCCCA (1.7)

where � is �S = exp(��) under the strong solution and �E = 1+�� under the Euler approximation.

Given the analytically tractable form of the conditional density for the OU process, we can therefore

draw the expected path of the process between two �xed points using the strong solution of the

process and illustrate the curvature bias in the paths for di�erent discretizations under the Euler

scheme. Figure 2 illustrates the curvature bias with M = 0; 3 and 8 latent points denoted as

4These results extend to situations where W is a more general L�evy process, and the same expansion can also be

established when g is only assumed to be measurable and bounded, see Protter and Talay (1997).
5The approach of Gallant and Tauchen (1996) also uses (1.4) as the data generating process, however, within a

method of moments approach based on a semi-parametric auxiliary model.
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0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

.1

.2

.3

.4

.5

.6

.7

.8

.9

1y(2)=

y(1)=0
(j/M) for j=0,...,M

M=0 M=3
M=8 true

Figure 2: E(y�1jy1; y2; �) is graphed for the OU process for di�erent values of M under the Euler

scheme. The number of latent points, M = 0; 3 and 8 are shown for the Euler approximation. The

strong solution is denoted by `true'. The value of � is taken to be -1 and �y = 2 in all computations,

with �xed points y1 = 0 and y2 = y1;M+1 = 1 and auxiliary variables y�1 = (y�1;1; : : : ; y
�

1;M ).

y�1 = (y�1;1; : : : ; y
�

1;M ). Note that the case M = 0 produces the linear interpolation between the

two �xed points, Y = (y1; y2)
0 (where y1 = 0 and y2 = y1;M+1 = 1), and completely misses the

curvature of the strong solution. Expected paths for non-zero values of M produce a downwards

bias, converging to the strong solution of the process, depicted by the second curve from the left. It

may be seen that even a small M improves the approximation considerably relative to the M = 0

case.

In addition, we compare, in Figure 3, the true OU log-likelihood for � given by
PT�1

t=1 log g(yt+1jyt; �)
and the approximate conditional likelihood

PT�1
t=1 log fM(yt+1jyt; �) where

g(yt+1jyt; �) = �

�
yt+1

���� exp(��y)yt;
�2

2�

n
exp(2��y)� 1

o�
and

fM(yt+1jyt; �) = �

264yt+1

�������
�
1 +

��y

M + 1

�M+1

yt; �
2

�
�y

M + 1

�8><>:
1�

�
1 + ��y

M+1

�2(M+1)

1�
�
1 + ��y

M+1

�2
9>=>;
375 ;

for data generated using �y = 4, T = 500, � = �0:5 and �2 = 0:01 (assumed known). The
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transition density fM (yt+1jyt; �) in this case is obtained analytically by integrating out y�t;M from

fM(yt+1; y
�

t;M jyt; �); see (1.4). The approximate likelihoods are computed for various values of

M . Although the di�erence between the approximate and the true likelihood is about ten on

the log scale, even for M = 500, it is interesting to note that the quantiles of the posterior of �

conditioned on �2 = 0:01 stabilize for M as small as ten, as shown in Figure 4.6 The quantiles in

Figure 4 are computed for values of M , ranging from 0 to 1000, but are graphed using a scale of

log10(M + 1) on the x-axis. It can be seen that the introduction of the auxiliary points provides

a better approximation of the likelihood function and, consequently, of the posterior distribution.

Further, we are now in a position to control the accuracy of that approximation by our choice

of M .7 The bene�t of using auxiliary variables will also be demonstrated when we analyze the

MCMC output from the estimation procedure (outlined in Section 2) applied to various models.

Table I gives the drift and volatility functions for four important processes, which will be considered

in the paper.

Table I: Drift a(y; �) and volatility b(y; �)2 speci�cations for the OU, the Quadratic drift process,

the CIR process, and the Hull-White model. For the CIR and Hull-White models, we work with

the transformation xt = log yt due to the restriction that yt > 0 for t = 1; : : : ; T . The parameters

�; �; 
 and � are all positive and constant, whereas � is negative and constant.

Process OU Quadratic Drift CIR (x = log y) Hull-White (x = log y)

a(y; �) �y �y2 �
exp(x)

� � � �2

2 exp(x)
�

exp(x)
� � � �2

2
expf2(
 � 1)xg

b(y; �)2 �2 �2 �2

exp(x)
�2 expf2(
 � 1)xg

The rest of the paper is organized as follows. In Section 2 we present a Markov chain Monte

Carlo simulation technique to sample the posterior distribution of the auxiliary variables and the

parameters. A method for sampling the latent data in blocks is proposed and evaluated in relation

to alternative simulation schemes. In Section 3 we discuss how posterior inferences can be con-

6The approximate posteriors are computed over a grid of values for � 2 [�0:8; 0]) and the prior is set to N(�2; 2).

The grid points are [�0:8;�0:6], with step size 0.005; [�0:599;�0:4] with step size 0.001; [�0:395;�0:001] with step

size 0.005.
7Additional results, comparing the di�erence between the approximate and true log-likelihoods and the average

mean square error for the parameters of the OU process, as simulation size varies, are reported in Elerian (1999).
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Figure 3: Left panel: approximate log-likelihoods for the OU process are graphed against � for

di�erent values of M . The number of latent points are M = 0; 3 and 8. The strong solution is

denoted by `true'. Right panel: The di�erence between the approximate log-likelihoods and the true

log-likelihood given by the strong solution. The number of auxiliary points are M = 10; 50; 100 and

500. Each approximation is evaluated for di�erent values of � 2 [�0:8; 0]. For the DGP, � = �0:5,
�2 = 0:01 and �y = 4.
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Figure 4: Quantile plots of the OU posterior for �, keeping �2 �xed at 0.01. The approximate

posterior is computed for di�erent values of M , ranging from 0 to 1000, but is graphed using a scale

of log10(M + 1) on the x-axis. Again the DGP has � = �0:5, �2 = 0:01 and �y = 4.

ducted based on the output of the Markov chain simulation procedure. Methods for computing the

likelihood function, the marginal likelihood and diagnostic measures are presented. The techniques

are illustrated �rst with simulated data in Section 4 and then in Section 5 with a real data example.

Some concluding remarks are made in Section 6.

2 MCMC-BASED ESTIMATIONOFNONLINEAR DIFFUSION-

S

2.1 Framework

To describe our inferential framework, consider the approximate joint density of the observed data

Y = (y2; :::; yT )

fM(Y jy1; �) =
T�1Y
t=1

fM (yt+1jyt; �);

where fM(yt+1jyt; �) is the transition density in (1.4). In general, the density fM(yt+1jyt; �) cannot
be computed exactly but, following the discussion of the previous section, an e�ective way of
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dealing with this diÆculty is to consider the joint posterior distribution of the parameters and the

augmented data Y � = (y�1 ; y
�

2; :::; y
�

T�1). Let �(�) denote the prior density of the parameters and

let

�M (�; Y �jY ) / f(Y �; Y jy1; �)�(�) ;

where

f(Y �; Y jy1; �) =
T�1Y
t=1

8<:
MY
j=0

f(y�t;j+1jy�t;j ; �)
9=; ;

is the complete data density with y�t;0 = yt and y
�

t;M+1 = yt+1, denote the posterior density of the

parameters and the latent data. This augmented posterior density does not require the computation

of the likelihood function fM(Y jy1; �). To analyze the posterior density we can utilize Markov chain

Monte Carlo (MCMC) simulation methods. These methods allow one to sample the augmented

posterior density by simulating a Markov chain
�
�j; Y �j

	
constructed to have �M (�; Y �jY ) as the

limiting invariant distribution, see, for example, Gilks, Richardson, and Spiegelhalter (1996) and

Chib (2000) for reviews of the literature. The trajectory of the Markov chain, after an initial tran-

sient or burn-in stage, provides a sequence of (correlated) draws from �M (�; Y �jY ). Furthermore,

the draws
�
�j
	
are automatically from the marginal distribution

�M (�jY ) =
Z
�M (�; Y �jY )dY �;

and can be used to conduct posterior inferences about �. For example, the sample mean and

the sample standard deviation of the sampled draws are estimates of the corresponding posterior

mean and posterior standard deviations; simulation consistency of these estimates is established

by ergodic laws of large numbers for Markov chains on continuous state spaces. This leads to full

likelihood-based inference for the model even though the likelihood is not evaluated.

The degree of data augmentation, M , which depends on the space between the observed points,

the non-linearity in the drift and volatility functions and the variance between the observed values,

in
uences two aspects of the analysis. First, an increase in M improves the approximation in

(1.4), implying that inferences based on �M (�jY ) will become less biased as M increases. Second,

an increase in M directly increases the dimension of the state space on which the simulation is

conducted. Under these circumstances, the sampling process must be more carefully designed to

ensure that the simulation output does not display excessive serial dependence. Although one can

10



increase the length of the simulation sample size, a more desirable strategy is to construct samplers

that produce good mixing even when M is large.

2.2 Overview of the MCMC method

Markov chain Monte Carlo sampling from �; Y �jY is achieved by sampling in turn the full condi-

tional distributions Y �jY; � and �jY; Y �. One iteration of the Markov chain is completed by revising

both Y � and � from these two distributions. A simple calculation (based on the Markov property

of the di�usion) shows that the �rst of these full conditional distributions can be expressed as

f(Y �jy1; Y; �) =
T�1Y
t=1

f(y�t jyt; yt+1; �) ;

due to the fact that the latent data y�t is conditionally independent of the remaining latent data,

given (yt; yt+1; �). Thus, our simulation procedure in general terms may be described as follows:

General sampling scheme

1. Initialize Y �; �.

2. Update y�t from y�t jyt; yt+1; �, for t = 1; 2; :::; T � 1.

3. Update � from �jY �; Y .

4. Record the value of � and then goto 2.

The most important stage of this procedure is the sampling of the distributions y�t jyt; yt+1; �

as these are likely to be high dimensional distributions of unknown form and have to be repeated

(T � 1) times for each sweep of the algorithm.

2.3 Simulation of the auxiliary variables from f(y�t jyt; yt+1; �)

Consider the question of sampling y�t 2 <M from the target density

f(y�t jyt; yt+1; �) /
MY
j=0

f(y�t;j+1jy�t;j; �)

/
MY
j=0

�
�
y�t;j+1jy�t;j + a(y�t;j; �t;j ; �)�; b

2(y�t;j; �t;j ; �)�
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where, in general, y�t;j appears non-linearly in both the drift and di�usion functions. A compu-

tationally e�ective approach for sampling y�t from this density can be developed by working in

sequence with contiguous subsets of y�t . Let y
�

t(k;m)
denote a block of length m (1 � m �M�k+1)

that starts at y�t;k and ends at y�t;k+m�1 :

y�t(k;m) =
�
y�t;k; y

�

t;k+1; : : : ; y
�

t;k+m�1

�
with density conditioned on (y�t;k�1; y

�

t;k+m; �) given by

f(y�t(k;m)jy�t;k�1; y
�

t;k+m; �) /
k+mY
j=k�1

�
�
y�t;j+1jy�t;j + a(y�t;j; �t;j ; �)�; b

2(y�t;j; �t;j ; �)�
	
; (2.8)

for k = 1;m� 1; 2m� 1; :::

The idea now is to sample each of the m dimensional vectors y�
t(k;m)

in sequence by the Metropolis-

Hastings algorithm.

The Metropolis-Hastings (M-H) algorithm (see for example, Chib and Greenberg (1995)) is a

general MCMC method for producing sample variates from a given multivariate density such as

the ones in (2.8). The method is de�ned by a user-speci�ed candidate generating density that is

used to supply a proposal value and a probability of move that is used to determine if the proposal

value should be taken as the next item of the chain. The probability of move is based on the ratio

of the target density (evaluated at the proposal value in the numerator and the current value in the

denominator) times the ratio of the proposal density (at the current value in the numerator and the

proposal value in the denominator). Speci�cally, let q(y�
t(k;m)

jy�
t;k�1; y

�

t;k+m; �) denote the proposal

density conditioned on (y�
t;k�1; y

�

t;k+m; �) and suppose that the current value of y�
t(k;m)

at the end

of the gth iteration of the Markov chain is y
�(g)

t(k;m)
.8 Then, the M-H step for y�

t(k;m)
is implemented

by �rst drawing a candidate value w � q(y�
t(k;m)

jy�
t;k�1; y

�

t;k+m; �), computing the probability

�
�
y�t(k;m); wjy�t;k�1; y

�

t;k+m; �
�
= min

8<:1; f(wjy
�

t;k�1; y
�

t;k+m; �)q
�
y
�(g)

t(k;m)
jy�t;k�1; y

�

t;k+m; �
�

f
�
y
�(g)

t(k;m)
jy�
t;k�1; y

�

t;k+m; �
�
q(wjy�

t;k�1; y
�

t;k+m; �)

9=; ;

and then setting y
�(g+1)

t(k;m)
= w with probability � and setting y

�(g+1)

t(k;m)
= y

�(g)

t(k;m)
with probability

(1��). Note that since the probability of moving is based only on ratios of densities one does not

need the normalizing constant of the target density.

8y�t;k�1 is the updated point obtained at >the g-th iteration, while y�t;k+m is set at the value obtained at the

(g � 1)-th iterate.
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In the implementation of this method it is vital that one uses a proposal density that allows

the chain to eÆciently traverse the support of the invariant distribution without staying in one

place for many iterations. A simple and general method of specifying such a proposal density is to

approximate the target density at the mode by a multivariate-normal or multivariate-t distribution

with location given by the mode of ln f(�jy�t;k�1; y
�

t;k+m; �), obtained by a few Newton-Raphson

steps, and dispersion given by the negative of the inverse Hessian evaluated at the mode. An

early example of this tactic is Chib and Greenberg (1994) while subsequent examples include Chib,

Greenberg, and Winkelmann (1998) and Shephard and Pitt (1997).

To develop the proposal density let

y�t(k;m) = (y�t;k; y
�

t;k+1; : : : ; y
�

t;k+m�1) = (w1; : : : ; wm) = w

denote the block of latent values with neigbours w0 = y�
t;k�1 and wm+1 = y�

t;k+m. Also write

aj = a(y�t;k+j) = a(wj+1)

gj = fb2(y�t;k+j)g�1 = fb2(wj+1)g�1

dj = y�t;k+j+1 � (y�t;k+j + aj�) = wj+2 � (wj+1 + aj�)

cj = 1 + a0j�;

for j = �1; 0; : : : ;m� 1 and let a0j and a
00

j denote the �rst and second derivatives of a(wj+1) with

respect to wj+1, and de�ne g0j and g
00

j similarly. Finally, let

u =
@ log f(wjw0; wm+1; �)

@w
= fujg for j = 1; : : : m

V = �@
2 log f(wjw0; wm+1; �)

@w@w0
= fVijg for i; j = 1; : : : ;m:

denote the gradient and negative hessian matrix, respectively, of the log target density. Because

the only terms in log f(wjw0; wm+1; �) involving wj+1 are

lj =
1

2
log
�gj�1

�

�
� gj�1

2�
[wj+1 � (wj + aj�1�)]2

lj+1 =
1

2
log
�gj
�

�
� gj

2�
[wj+2 � (wj+1 + aj�)]2;

we have that

uj =
@lj

@wj+1
+

@lj+1

@wj+1
= � 1

�

�
gj�2dj�2 � gj�1dj�1cj�1 +

1

2
g0j�1d

2
j�1 �

�g0j�1

2gj�1

�
;
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Vjj = � 1

�

"
gj�2 + gj�1c

2
j�1 � gj�1dj�1a

00

j�1�� 2g0j�1dj�1cj�1 +
1

2
g00j�1d

2
j�1 �

fgj�1g
00

j�1 � (g0j�1)
2g�

2g2j�1

#
;

and

Vij =

8<: Vji = � 1
�
(g0j�1dj�1 � gj�1cj�1) for i = j + 1

0 for i > j + 1

These equations are used to �nd the modal value of w and the inverse of V at the mode is used as

the dispersion matrix of the proposal density.

We now discuss the choice of m in the above method. First, the choice m = 1 which represents

single element updating of y�t is not recommended. Elerian, Chib and Shephard (1998) show that

this leads to poor mixing due to high correlation amongst (y�t;k; y
�

t;k�1; y
�

t;k+1). Second, the choice

m =M is not practical because it is diÆcult to sample a high dimensional y�t in one block. Thus,

values ofm that are di�erent from these two choices are preferable. Furthermore, it is not necessary

or desirable to �xm at the outset because that means that the blocks always join in the same place,

which can foster dependencies in the MCMC sweeps. In order to scramble this type of dependence

Shephard and Pitt (1997) found that the chain converged faster if m were selected randomly at

each updating stage. This leads to what may be called a random block size M-H algorithm. A

simple way of carrying this out is to draw m� 1 from a Poisson distribution with mean �, which

leads to an average block size of �+1. Alternatively, other distributions instead of the Poisson can

be used to select the block size, as discussed by Wong (1999) in the context of stochastic volatility

models.

To summarize, we advocate the following algorithm which is indexed by the tuning parameter

� � 1:

General sampling scheme with random block sizes

1. Initialize Y �; �.

2. Set k = 0.

3. Draw m � Po(�) + 1; set k = k +m. If k > M , set k =M .

4. Update y�
t(k;m)

jy�t;k�1; y
�

t;k+m; �.
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(a) If k < M goto 3.

(b) Else update � from �jY; Y � and then goto 2;
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Figure 5: Acceptance rates (a,b), ineÆciency factors (c,d, bandwidth BN = 100) and correlogram

(e,f) for average block sizes of � = 2 (a, c, e) and � = 10 (b, d, f), M = 25 and N = 10; 000, with

yt = 1, yt+1 = 2 and parameter values � = �0:005, �2 = 0:03, for the Quadratic drift process.

As an example of the value of random-block size sampling, we consider the Quadratic drift model

when we have an interval of M = 25 points between the observed values and we let the mean �

of the random block size be either two or ten. The iterations are run for N = 10; 000 sweeps with

yt = 1 and yt+1 = 2 �xed; the underlying true parameter values in the data generating process are

set to � = �0:005 and �2 = 0:03. The results, presented in Figure 5, show that the acceptance rates

in the M-H step decline slightly but that there is a marked improvement in ineÆciency factors.9

9The ineÆciency factor, or the autocorrelation time, of each posterior estimate (computed as a sample average

over the simulated values) is de�ned as the spectrum at zero, 1 + 2
P
1

j=1
�j , where f�jg denotes the autocorrelation

function of the simulated values. The ineÆciency factor is estimated as 1 + 2N

N�1

PBN
j=1

K
�

j

BN

�
�̂j , where �̂j is

an estimate of the autocorrelation at lag j and K(�) is the Parzen kernel, based on the �rst BN autocorrelations.

It is equal to the square of the numerical standard error divided by the variance of the posterior estimate under

(hypothetical) i.i.d. sampling from the posterior. Geweke (1989) de�nes the alternative measure of relative numerical

eÆciency which is the inverse of the ineÆciency factor.
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The ineÆciency factors decrease from thirty to six for the middle states indicating that the sampler

is only about six times as ineÆcient as a hypothetical sampler that produces i.i.d. draws. This is

con�rmed by the correlogram, which shows heavy persistence until lags of 60 when � = 2 against

a correlogram that dies out by 30 lags when � = 10.

2.4 Sampling of � from �(�jY; Y �
)

In order to complete one cycle of our MCMC sampler we have to sample the full conditional density

of �:

�(�jY; Y �) / �(�)f(Y; Y �jy1; �)

= �(�)

T�1Y
t=1

8<:
MY
j=0

f(y�t;j+1jy�t;j; �)
9=; ;

where f(y�t;jjy�t;j�1; �) is the normal density given above. Typically �(�jY; Y �) is only available up

to an unknown norming constant. In addition, the density is conditioned on both the observed

states Y and the simulated auxiliary states Y � which means that the prior distribution of � is

being revised using (T � 1) (M + 1) observations. For some models, the conditional posterior (for

a suitable choice of prior) can belong to a known family of distributions. As an example, suppose

that

y�t;jjy�t;j�1; � � N
�
y�t;j�1 + �y�t;j�1�; b

2
�
y�t;j�1

�
�
	
;

where the unknown parameter � indexes the linear drift and the non-linear di�usion is fully known.

Then, under a normal prior on �, N(��; �
2
�), the conditional posterior is �jY; Y � � N(�p; �

2
p) with

��2
p = ��2

�
+�

T�1X
t=1

M+1X
j=1

(y�t;j�1)
2

b2(y�t;j�1)
; and

�p = �2p

8<:
T�1X
t=1

M+1X
j=1

(y�t;j � y�t;j�1)y
�

t;j�1

b2(y�t;j�1)
+
��

�2
�

9=; :

The non-linearity in the volatility raises no signi�cant issues. For most problems, however, the

distribution �(�jY; Y �) is intractable and must be sampled by (say) the M-H algorithm. The

sampling of � is model-speci�c and in some instances it may be possible to update the entire �

vector at once using a proposal density q(�jY; Y �) that is matched to the conditional distribution

at the modal value. If single block updating results in high rejections then it may be necessary to

16



block � into subsets and then to employ the M-H algorithm in sequence to each block. Speci�c

examples of these strategies are provided below.

3 POSTERIOR INFERENCES

The techniques outlined so far do not provide an explicit form for the likelihood g(Y jy1; �), or our
approximation to it

fM (Y jy1; �) =
T�1Y
t=1

fM(yt+1jyt; �):

Although we manage to estimate the parameters of the model without computing fM(Y jy1; �), a
one-o� estimate of the likelihood function is required for comparing alternative stochastic di�eren-

tial equations using Bayes factors (which are ratios of model marginal likelihoods).

3.1 Likelihood evaluation

Pedersen (1995) suggested estimating fM(yt+1jyt; �) by averaging the density of the Euler approx-

imation

bfM(yt+1jyt; �) = 1

R

RX
j=1

f
�
yt+1jy�(j)t;Mt

; �
�
;

where y
�(j)

t;Mt
is drawn by iterating the discretized version, de�ned in (1.2), starting at y�t;0 = yt.

Results by Talay and Tubaro (1990) and Kohatsu-Higa and Ogawa (1997) concerning the error

induced by using the Euler scheme imply that the absolute value of the expected error, with

respect to g(yt+1jyt; �), involves terms of order smaller than or equal to the product of 1=M and

1=
p
R.

The Pedersen (1995) method can be embedded within a class of importance sampling estimators

of fM(yt+1jyt; �). For further discussion of importance sampling see Kloek and van Dijk (1978),

Ripley (1987, pp. 122-3) or Geweke (1989). If we let q(y�t jyt; yt+1; �) denote some importance

sampling density whose support is the same as that of f(yt+1; y
�
t jyt; �) then

fM(yt+1jyt; �) =
Z
f(yt+1; y

�
t jyt; �)

q(y�t jyt; yt+1; �)
q(y�t jyt; yt+1; �) dy

�

t :

The proposal made by Pedersen (1995) is to set

q(y�t jyt; yt+1; �) = f(y�t jyt; �);
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which is easy to sample from and has the signi�cant advantage that

f(yt+1; y
�
t jyt; �)

q(y�t jyt; yt+1; �)
= f

�
yt+1jy�(j)t;Mt

; �
�
:

This method is simple, but it does not exploit yt+1 in the design of the importance sampler.

A more eÆcient importance function can be developed according to the approach of Chib,

Greenberg, and Winkelmann (1998) and Shephard and Pitt (1997), which relies on a tailoring

procedure that is analogous to that discussed above in connection with the M-H proposal density.

Let �̂t be the mode of log f(yt+1; y
�
t jyt; �) as a function of y�t and let �̂t be the negative of the

inverse of the Hessian of log f(yt+1; y
�
t jyt; �) evaluated at �̂. Given �̂t and �̂t, let the importance

density be

q(y�t jyt; yt+1; �) = fT (y
�

t j�̂t; �̂t; �) ;

a multivariate-t density with mean �t, dispersion �t and � degrees of freedom. This choice leads

to the importance sampling density estimator of the form

efM (yt+1jyt; �) =
1

R

RX
j=1

f
�
yt+1; y

�(j)
t jyt; �

�
fT

�
y
�(j)
t j�̂t; �̂t; �

� ; (3.9)

y
�(j)
t � fT (y

�

t j�̂t; �̂t; �): (3.10)

The variance of ~fM , when it exists, can be estimated by the method provided in Geweke (1989).

Note that all M states are integrated out by importance sampling in one sweep. The empirical

performance of this method is discussed extensively by Elerian (1999).

3.2 Marginal likelihood

We now consider the question of comparing alternative, potentially non-nested, di�usion models

that have been �t to a given data set. A formal Bayesian approach for making this comparison

is through the marginal likelihood of each model, where the marginal likelihood is de�ned as the

integral of the likelihood function with respect to the prior density of the parameters. Ratios of

marginal likelihoods are called Bayes factors and these provide the evidence in the data in favor

of the numerator model, relative to the model in the denominator. Marginal likelihoods can also

be used to compute the posterior probability of each model in the collection. Besides providing

18



information on the relative worth of the various models, these posterior probabilities can be used to

�nd the model averaged Bayesian predictive densities, see Raftery, Madigan, and Volinsky (1994).

Chib (1995) has developed a general method for computing the marginal likelihood based on

the output produced from the MCMC simulation. Let � denote the parameters of a given di�usion

modelM, with likelihood function fM(Y jy1; �;M) and prior density �(�jM), where the likelihood

function is computed using the eÆcient method just outlined. Then, the Chib method exploits the

fact that the marginal likelihood of modelM can be written as

m(Y jM) =
fM(Y jy1; �;M)�(�jM)

�(�jY;M)
:

The key point is that this expression, which is a consequence of Bayes theorem, is an identity in

� and can therefore be evaluated at any appropriately selected point �� (say). If �� denotes a

high density point and �̂(��jY;M) the estimate of the posterior ordinate at ��, then the marginal

likelihood on the log scale is estimated as

logm(Y jM) = log fM (Y jy1; ��;M) + log �(��jM)� log �̂(��jY;M); (3.11)

where the �rst term is the value of the log likelihood function at ��, found using (3.9) and the

second term is the log of the prior density which is available directly. The third term is esti-

mated from the MCMC output by either kernel smoothing (if the dimension of � is small) or by

a marginal/conditional decomposition of the posterior ordinate followed by reduced MCMC runs

to generate the draws necessary to estimate each of the marginal/conditional ordinates (see Chib

(1995) for further details). It should be noted that an important feature of this approach is that it

requires only a single evaluation of the likelihood function.

3.3 Diagnostic checks on a �tted model

Another issue that we address is the �t of a given model by judging how well the predictions of the

model accord with the data. We carry this out via one-step-ahead prediction distribution functions.

Consider the conditional predictive distribution function

G(yt+1jyt; �) = Pr(Yt+1 � yt+1jYt = yt; �) :

We now show that this is uniform UID(0; 1) under the correctness of the model. Clearly ut+1 =
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G(yt+1jyt; �) lies in the interval (0; 1). Next,

Pr(ut+1 � ajyt; �) = Pr fG(yt+1jyt; �) � ajyt; �g

= Pr
�
yt+1 � G�1(a)jyt; �

	
= a;

which shows that ut+1 is uniform. Finally, since ut+1 does not depend on yt it is also an independent

sequence. This result, in a di�erent context, goes back at least to Rosenblatt (1952).

We approximate G(yt+1jyt; �) by

FM (yt+1jyt; �) =
Z

Pr(Yt+1 � yt+1jy�t;M ; �)fM(y�t jyt; �)dy�t ;

where Pr(Yt+1 � yt+1jy�t;M ; �) is easily computed due to the fact that Yt+1jy�t;M ; � is approximately

Gaussian. This integral can now be estimated by Monte Carlo by drawing y
�(j)
t � fM(y�t jyt; �) a

large number of times and forming the average:

ût+1 = bFM (yt+1jyt; �) = 1

R

RX
j=1

Pr
�
Yt+1 � yt+1jy�(j)t;M ; �

�
:

The direct Monte Carlo estimate can be improved by importance sampling as was suggested for the

estimation of the likelihood ordinate above. Again the results of Talay and Tubaro (1990) imply

that the error in estimating G(yt+1jyt; �) is again of an order smaller than or equal to the product of

1=M and 1=
p
R. Adequacy of the model is judged by the serial correlation in the fût+1g and by the

nature of the distributional shape of both the fût+1g and its re
ected version
�
2
��ût+1 � 1

2

��	, the
latter providing information on dispersion. These statistics are also used in, for example, Pedersen

(1994) and Smith (1985). The idea of focusing on 2 jût � 0:5j appears in Kim, Shephard, and Chib

(1998).10 As a by-product, we compute the standardized forecast errors (see Pedersen (1994)) as

yt+1 � bE(yt+1jyt; �)pcvar(yt+1jyt; �)
;

where bE(yt+1jyt; �) = 1
R

PR
j=1 Y

(j)
t+1 and cvar(yt+1jyt; �) = 1

R�1

PR
j=1fY (j)

t+1 � bE(yt+1jyt; �)g2. Proper-
ties of these statistics are harder to evaluate than for the ût+1, but provide a graphical aid to help

explain the inadequacies of the �tted model. Application of these methods is presented in Section

5.
10In practice we replace � by some estimator of the parameter | usually the posterior mean. This leads to another

layer of approximation. Alternatively, one could sequentially integrate out the e�ect of � and compute G(yt+1jyt).

Gerlach, Carter, and Kohn (1999) provide methods for doing this in certain time series models but in our context

such computations are quite burdensome.
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4 SIMULATED DATA EXAMPLE

4.1 CIR model

In this Section we apply the methods developed above to the CIR process

dy(t) = f�� �y(t)gdt+ �
p
y(t)dW (t):

Similar detailed calculations for the OU, Quadratic drift and Hull-White models are given in the

Appendix of Elerian, Chib, and Shephard (1998). With the transformation x(t) = log y(t) and

Itô's lemma, the model under the Euler approximation is given by

xt+1jxt; �; �; �2 � N

��
�

expxt
� � � �2

2 expxt

�
�+ xt;

�2

expxt
�

�
:

The data for our illustration is simulated from the above model with � = 0:5, � = 0:2 and

�2 = 0:05. We specify a design to represent typical weekly and daily �nancial data sets. Using an

initial value of y0 = 1, two sets of T = 500 observations are obtained using the strong solution,

(which has a non-central chi-squared distribution), using �y = 1 for daily series and �y = 5 for

weekly data. Here �y can be thought of as the time interval in the observed data and determines

the bias in the discretized time gap.

In order to simulate from �M (�; Y �jY; y1), we implement the M-H sampler for �M (Y �jY; y1; �) as
discussed in Section 2. We can exploit the special structure of the CIR model to eÆciently update

our samples from f(�jY �; Y ) by sampling from f(�; �jY �; Y; �2) and then from f(�2jY �; Y; �; �).

The implementation is discussed in the next two subsections.

4.2 Full conditional density of the drift parameters

Let  = (�; �)0 and suppose that  is given a bivariate normal prior distribution with mean 
0

and variance ��1
0 . Then a simple calculation shows that the full conditional density given the

observations and augmented data, z = (z1; : : : ; zn) = (y1; y
�

1;1; : : : ; y
�

1;M ; y2; : : : ; y
�

T�1;M ; yT ) is

 jz; �2 � N(V �1u; V �1)

where

u =

�
X 0v

�2
+ �0
0

�
; V =

�
X 0X�

�2
+ �0

�
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and

v =

26664
p
z1

�
log z2 +

�2�
2z1

� log z1

�
...

p
zn�1

�
log zn +

�2�
2zn�1

� log zn�1

�
37775 ; X =

0BBB@
z
�
1

2

1 �z
1

2

1

...
...

z
�
1

2

n�1 �z
1

2

n�1

1CCCA :

4.3 Full conditional density of the volatility

The posterior of the volatility coeÆcient is no longer conjugate when the log of the process is con-

sidered. We propose taking a �rst-order Taylor expansion of the non-conjugate part to upperbound

log f(�2jz; �; �), which we can denote by g(�2jz; �; �), (where f � Cg for 0 < C <1), and hence

obtain the posterior using an Accept/Reject technique (Ripley 1987, pp. 60-1). We generate a

candidate value, �̂2, from g(�2jz; �; �) and a uniform random number U on the interval 0 to 1. If

U � f(�2jz; �; �)=fCg(�2 jz; �; �)g, the value �2 = �̂2 is returned. If the value is rejected, another

candidate value is drawn and the algorithm is repeated.

Let �2 apriori follow the Inverse Gamma (p
2
; 1
2S0 p

) distribution, where S0 = c�, p and c are

constants (typically 10 and 0:001 respectively); the log-full conditional density is

log f(�2jz; �; �) = c0 � �1(log �
2)� �2�

�2 � S1�
2;

where �1 =
�
n+p
2

�
, �2 =

1
2�

(
Pn

t=2 zt�1d
2
t�1+S0 p�), S1 =

�
8

Pn
t=2 z

�1
t�1 and dt�1 = log zt�log zt�1�

��
zt�1

+ ��. Let � = log �2, then

log f(�jz; �; �) = log f(�2jz; �; �) + log

����@�2@�

����
= c0 � (�1 � 1)�� �2 exp(��) + p(�) ; (4.12)

where �2 > 0, and p(�) = S1 exp(�) is concave in �, that is p
00(�) = p0(�) = p(�) is negative for all

�, and p0(�) and p00(�) are the �rst and second derivatives of p(�) with respect to �. Then we can

sample from �jz; �; � by making suggestions

log g(�jz; �; �) = exp(�) � Inverse Gammaf�1 � p0(�̂)� 1; �2g; (4.13)

where �1 � p0(�̂) > 1, �2 > 0 and �̂ is an arbitrary �xed value of �. These proposed values are

accepted with probability expfp(�)� p(�̂)� p0(�̂)(�� �̂)g.
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Figure 6: Paths (a, d, g), correlograms (b, e, h) and histograms (c, f, i) for draws from �2jy, (true
value 0.05). Top graph uses discretization M = 0, middle graphs have M = 1 and bottom graphs

have M = 10, � = 3. N = 10; 000 with thin= 10 and �y = 1 in all simulations.

4.4 MCMC output analysis

We now apply our MCMC sampling procedure to the �rst simulated data set which corresponds to

the case �y = 1. The MCMC algorithm is run for N = 10; 000 cycles with �y = 1. In Figure 6 we

show the sample path, autocorrelation function and histogram based on the MCMC output of �2.

The output for � and � displays similar features. In the top graphs M = 0, in the middle graphs

M = 1 and in the bottom graphsM = 10. Figure 7 corresponds to the case �y = 5, where the bias

is more pronounced. These graphs demonstrate the clear advantage of using auxiliary variables in

the estimation procedure. Bias decreases quickly and the autocorrelation in the sampler is low.

Summaries of the MCMC output for the second data set, (which correspond to the case �y = 5),

are reported in Table II. The MCMC algorithm is now run with M = 0; 1; 10 (� = 3 ), 20 (� = 5)

and 30 (� = 9) for N = 10; 000 iterations. The ineÆciency factors are small for M < 20. When

M = 20, the MCMC sampler is approximately fourteen times less eÆcient than a hypothetical

algorithm that produces independent draws. The ineÆciency factor increases to twenty when
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Figure 7: Paths (a, d, g), correlograms (b, e, h) and histograms (c, f, i) for draws from �2jy, (true
value 0.05). Top graph uses discretization M = 0, middle graphs have M = 1 and bottom graphs

have M = 10, � = 3. N = 10; 000 with thin= 10 and �y = 5 in all simulations.

M = 30. The autocorrelation plots in Figure 6 reinforce this point, dying down more quickly for

smaller values of M . There is strong correlation between � and � (0.99) regardless of M , while

the correlation between �2 and �; � initially increases with M , 
uctuating around 0.75 and 0.8 for

higher values of M . Table III shows the results from a small simulation study for the parameters

of the CIR process. Ten data sets of length T = 500 and �y = 5 were generated using the strong

solution and the M-H algorithm was run with M = 0; 1; 10; 20 and 30 for N = 10; 000 iterations.

In general, N = 10; 000 iterations were used since the simulation ineÆciency for the largest M

hovered around 20. On the basis of the Monte Carlo results reported in Table III, we see that as

M increases there is a marked decrease in bias, though the di�erence in results for M = 10; 20

and M = 30 is negligible. Hence, the initial increase in M gives more precise estimates of the

parameters, but there are diminishing returns after certain values, (for example M > 20 ). The

MSE for �2 is smallest forM = 20.11 Additional simulation experiments, reported elsewhere, show

11To monitor the convergence of each parameter, we can additionally compute the Gelman-Rubin r statistic: see

Gelman and Rubin (1992) and Gelman, Carlin, Stern, and Rubin (1995, pp. 331-332). Suppose we denote one of the

parameters of � as � and run J parallel sequences of the M-H algorithm with overdispersed starting values. Each
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that an increase in the DGP drift parameter values, holding the volatility parameter constant, is

associated with an small increase in the bias, MSE and ineÆciency factors for all three parameters.

Interestingly, increasing the volatility parameter, while keeping the drift parameters �xed, has the

opposite e�ect. The computer time to run 100 iterations of the sampler, with T = 500 observations,

is 66.08 seconds for M = 3 (� = 1), 125.82 seconds for M = 10 (� = 3) and 245.58 seconds for

M = 30 (� = 5), using the matrix language Ox developed by Doornik (1996).

5 REAL DATA EXAMPLE

We now consider the analysis of a di�usion model of the type outlined in A��t-Sahalia (1996b)

and apply this (and related models) to the 7-day Eurodollar deposit spot rate (measured as the

mid-point of the bid-ask rates). The data, which consists of daily observations over the period 1st

of June, 1973 to 25th of February, 1995, has also been considered by A��t-Sahalia (1996b).12 The

model is speci�ed by the di�usion functions

a(y; �) = �0 + �1y + �2y
2 + �3y

�1

b2(y; �) = �0 + �1y + �2y
�3 ; (5.14)

sequence is run for N iterations, to obtain draws �ij , (i = 1; : : : ; N ; j = 1; : : : ; J). The between, B and inbetween, W ,

sequence variances can be computed as

B =
N

J � 1

JX
j=1

(��:j � ��::)
2
; where ��:j =

1

N

NX
i=1

�ij ; ��:: =
1

J

JX
j=1

��:j ;

W =
1

J

JX
j=1

s
2
j ; where s

2
j =

1

N

NX
i=1

(�ij � ��:j)
2
:

The estimate var(�jY ) is then given by a weighted average of B and W as

var
+
(�jY ) =

N � 1

N
W +

1

N
B;

which is in fact an overestimate of the variance of the marginal posterior density. The convergence can be assessed

through
p
R̂, where

p
R̂ =

r
v̂ar+(�jY )

W

N!1
! 1:

For the parameters (�; �; �2) of the CIR model in one of the experiments, the corresponding
p
R̂ statistic is given

by (1:0001; 1:0001; 1:0013). The M-H algorithm was run using M = 10 (� = 3), N = 5000 and a burn-in of 500

simulations.
12The data can be downloaded from http://www.princeton.edu/ yacine/research/.
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where � = (�0; �1; �3; �0; �1; �2; �3)
0 and

�0 � 0 (and �2 > 0 if �0 = 0 and 0 < �3 < 1; or �1 > 0 if �0 = 0 and �3 > 1)

�2 > 0 if either �3 > 1 or �1 = 0; and �1 > 0 if either 0 < �3 < 1 or �2 = 0

�2 � 0 and �1 < 0 if �2 = 0

�3 > 0 and 2�3 � �0 � 0; or �3 = 0; �0 > 0; �0 = 0; �3 > 1 and 2�0 � �1 > 0:

The �rst two sets of constraints are necessary for b2 to be positive, the third ensures that the drift is

mean reverting for large values of y, while the fourth ensures that the values are positive. Note that

instead of letting �3 be restricted to the region (0; 1) [ (1;1), we could let �3 2 (1;1), given the

characteristics of the data at hand (the sample data contains T = 5505 observations with a mean

of 0:083621 and variance of 0:0012893. The observations range from 0.029150 to 0.24333). The

other model speci�cations are outlined in Table IV. These alternative speci�catons are considered

because the above model is practically unidenti�ed for these data.

Our �rst set of results are for the Vasicek, CIR and AÆne CIR models, where we have �t the

model after taking logs and applying the Itô transformation. The results are given in Table V,

where we report the posterior means, Monte Carlo standard errors, ineÆciency factors and the

covariances and correlations of the parameters. The Highest Probability Density (HPD) regions are

also reported.13 The results are based on M = 10 ( � = 3) using N = 2000 MCMC iterations for

the Vasicek (shown) and CIR models and N = 5000 for the AÆne CIR model. For each of these

models, the output paths, correlograms and histograms of � = (�0; �1; �1)
0 are given in Figures 8,

9 and 10. We selected BN = 100 (400) in the Parzen computations of the Monte Carlo standard

errors for � (�). We set standard di�use normal priors on the alpha coeÆcients and di�use inverse

Gamma priors on �. In the AÆne CIR and general parametric model, however, �1 is given a di�use

normal prior.

It will be seen that for each model the correlogram of � dissipates quickly, though that of �1 in

the AÆne CIR model shows persistence up to lag 100. In all models, the posterior mean of �0 is

positive and that of �1 is negative. The results on �0 in the Vasicek model and those of �1 in the

CIR model are consistent with those in the AÆne CIR model. The Figures show that �0 is close

to zero and that the variance is mainly determined by �1y. The � and � parameters are close to

13The �% HPD region represents the shortest interval that contains �% of the points of highest posterior density,

for example, see Besag, Green, Higdon, and Mengersen (1995).
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Figure 8: Paths (a, d, g), correlograms (b, e, h) and histograms (c, f, i) for �0, �1 and �0 for the

Vasicek process �tting the Eurodollar short-rate. The algorithm was run with M = 10 and � = 3.
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Figure 9: Paths (a, d, g), correlograms (b, e, h) and histograms (c, f, i) for �0, �1 and �1 for the

CIR process �tting the Eurodollar short-rate. The algorithm was run with M = 10 and � = 3.
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being uncorrelated. One point to note is that the ineÆciency factors are low for �. For �, we are

up to twenty �ve times less eÆcient.
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Figure 10: Paths (a, d, g, j), correlograms (b, e, h, k) and histograms (c, f, i, l) for �0 �1, �0

and �1 for the AÆne CIR process �tting the Eurodollar short-rate. The algorithm was run with

M = 10 and � = 3.

In Figure 11 we plot the standardized forecast errors, de�ned in Section 3.3, for all models. A

plot of the autocorrelation functions is provided in Figure 12 with the corresponding QQ plots. The

residuals and their re
ected versions are computed using the one-step-ahead prediction distribution.

The standardized forecast errors show that the extremes in the data are not being picked up for

a large part of the data. This is further con�rmed by the correlograms which show remaining

structure not being accounted for. The lack of �t is also highlighted by the amount of activity

present, which occurs in concentrated clumps of observations; an indication that these Markov

models do not account for the volatility clustering present in the series.

We now turn our attention to the general parametric model given by equation 5.14. We �rst

show that �2 and �3 are diÆcult to identify separately from our data. In Figure 13 we show a plot

of �2y
�3 against a range of y values determined from the data. The function is plotted for �ve pairs

of values of (�2; �3) : (4:511� 10�4; 1:5), (6:9338 � 10�4; 1:7), (7:021� 10�4; 1:8), (1:312 � 10�3; 2)
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Figure 11: Standardized one-step-ahead forecast errors for the Vasicek, CIR, AÆne CIR and

general parametric models. We graph yt+1 � Ê(yt+1jyt; �)=
p
var(yt+1jyt; �), taking � = E(�jy).
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Figure 12: Top graphs: Autocorrelation functions of residuals, fûtg (left panel) and re
ected

residuals, f2jût � 0:5jg (right panel) for the Vasicek, CIR, AÆne CIR and general parametric

process. Bottom graphs: The corresponding QQ plots against observations.
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and (1:5177� 10�3; 2:1). These were obtained from the MCMC algorithm �xing a value of �3 and

evaluating the posterior mean of �2. In the bottom graph we plot the kernel density estimate of

the y data. We see that for the range of y values with mass (essentially values of y below 0.16),

the �ve di�erent pairs of (�2; �3) values produce virtually the same value of �2y
�3 . On the basis

of this analysis, see also Tauchen (1997), we estimate an alternative model in which the volatility

speci�cation is cubic, preserving the quadratic shape exhibited above

�0 + �1y + �2y
2 + �3y

3;

as suggested by Figure 13. Results are shown in Table VI. Similar diagnostics were obtained on

setting �3 = 0. Standardized forecast errors in Figure 11 show that the extremes in the data are

not being picked up, and the autocorrelation functions in Figure 12 con�rm that the models have

not provided a good �t to the data.
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.025 .05 .075 .1 .125 .15 .175 .2 .225 .25

5

10

15

Density

y

y

y

Figure 13: Top graph plots �2y
�3 against a range of values for y between the minimum and

maximum values observed from the data, for �ve pairs of values of (�2; �3). Bottom graph plots the

kernel estimate of the density using the interest data.

To complete the analysis we also compute the marginal likelihoods of these various models.

The required likelihood ordinate is computed by importance sampling, as discussed earlier, using

M = 10 latent values between every two data points and the posterior ordinate is found by the
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method of kernel smoothing. Both these quantities and the prior ordinate are evaluated at the

posterior mean of the parameters. The resulting log marginal likelihood estimates are shown in

Table VII. We infer that there is almost equal support in the data for the CIR and the AÆne CIR

models but that the general parametric model receives overwhelming support in relation to the

other three models. Nonetheless, volatility clustering in the residuals suggests that each of these

models should be elaborated to include a heavy tailed stochastic volatility component, perhaps

along the lines of Andersen and Lund (1997).

6 CONCLUDING REMARKS AND FURTHER TOPICS

In this paper we have provided a full Bayesian approach to the analysis of discretely observed

di�usions. Our approach is based around the introduction of auxiliary observations which are then

integrated out of the likelihood function by tuned Markov chain Monte Carlo simulation methods.

We have proposed eÆcient ways of summarizing the posterior distributions in these problems and

provided methods for �nding the model marginal likelihood (to compare alternative stochastic

di�erential equations) and for computing model �t measures, both based on the MCMC output.

This paper di�ers from much of the recent econometric literature on the estimation of di�usions.

In comparison with the EMM/indirect inference literature, no auxiliary model to sample the latent

data is required. This feature is likely to be particularly helpful in the analysis of multivariate

stochastic di�erential equation models where �nding good auxiliary models is known to be diÆcult.

Although we have used a prior in our analysis, the results are largely determined by information in

the likelihood function and not the prior given the sample sizes that are encountered in this area.

Another important characteristic of our approach is that it can be extended to deal with partial-

ly observed di�usions (i.e., di�usions containing an unobserved state variable such as a stochastic

volatility component), multivariate observations and non-stationary data. We have initiated fur-

ther work on these problems. Finally, the approach can be easily modi�ed to include the more

sophisticated Milstein approximation as the basis of the discretization scheme, see Elerian (1998).

Comparable results based on this modi�cation will be reported elsewhere.
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Table II: The posterior means, ineÆciency factors, (bandwidth BN = 100), covariances and cor-

relations are shown for the parameters of the CIR process. True values are � = 0:5, � = 0:2 and

�2 = 0:05. Data was obtained using T = 500, R = 100; 000 and �y = 5. The M-H algorithm was

run with M = 0; 1; 10 (� = 3), 20 (� = 5) and 30 (� = 9) for N = 10; 000 iterations.

Summary statistics for the parameters (CIR process)

Posterior mean IneÆciency Covariance & Correlation

M = 0

�jy 0.31760 0.77854 0.0054081 0.97279 -0.092305

�jy 0.12770 0.84724 0.00021815 9.2992e-005 -0.21829

�2jy 0.022571 1.1696 -1.2008e-005 -1.1775e-005 3.1291e-005

M = 1

�jy 0.40436 1.1150 0.0013566 0.98856 0.54185

�jy 0.16207 1.1429 0.00054035 0.00022024 0.53330

�2jy 0.031452 0.81728 4.8755e-005 1.9335e-005 5.9681e-006

M = 3

�jy 0.46317 1.2305 0.0026897 0.99218 0.68820

�jy 0.18467 1.2050 0.0010667 0.00042976 0.67840

�2jy 0.039716 1.0100 0.00012994 5.1199e-005 1.3253e-005

M = 5

�jy 0.48435 2.9272 0.0029436 0.99234 0.75960

�jy 0.19274 2.8637 0.0011658 0.00046890 0.75262

�2jy 0.043112 3.4651 0.00017067 6.7491e-005 1.7150e-005

M = 10

�jy 0.51020 3.2109 0.0031933 0.99134 0.75791

�jy 0.20257 3.2473 0.0012596 0.00050556 0.75184

�2jy 0.047446 3.7755 0.00020091 7.9299e-005 2.2005e-005

M = 20

�jy 0.51063 11.035 0.0037585 0.99268 0.80889

�jy 0.20264 11.189 0.0014996 0.00060718 0.80235

�2jy 0.048186 14.682 0.00026019 0.00010373 2.7529e-005

M = 30

�jy 0.50255 14.210 0.0033777 0.99158 0.78960

�jy 0.19932 14.063 0.0013367 0.00053798 0.78177

�2jy 0.047606 19.590 0.000222342 8.8281e-005 2.3704e-005
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Table III: The results from a small simulation study for the parameters of the CIR process are

shown. Ten sets of data with T = 500, R = 100; 000 and �y = 5 were generated, and the M-H

algorithm was run with M = 0; 1; 10; 20 and 30 for N = 10; 000 iterations.

Monte Carlo Results (CIR process)

Mean Bias s.d. Mean(s.e) MSE(�100)
� (0.5)

M = 0 0.310 -0.190 0.0161 0.0227 3.6190

M = 1 0.393 -0.107 0.0276 0.0359 1.2302

M = 3 0.449 -0.051 0.0375 0.0480 0.4032

M = 5 0.470 -0.031 0.0403 0.0515 0.2570

M = 10 0.496 -0.004 0.0461 0.0543 0.2136

M = 20 0.498 -0.0019 0.0451 0.0580 0.2035

M = 30 0.494 -0.0061 0.0445 0.0579 0.2021

� (0.2)

M = 0 0.127 -0.074 0.0069 0.0095 5.4814

M = 1 0.159 -0.041 0.0115 0.0146 0.1806

M = 3 0.181 -0.019 0.0154 0.0194 0.0605

M = 5 0.189 -0.011 0.0165 0.0208 0.0400

M = 10 0.199 -0.000 0.0188 0.0219 0.0355

M = 20 0.200 -0.000 0.0185 0.0236 0.0341

M = 30 0.198 -0.002 0.0182 0.0234 0.0337

� (0.05)

M = 0 0.023 -0.027 0.0008 0.0056 0.0738

M = 1 0.032 -0.018 0.0013 0.0025 0.0325

M = 3 0.040 -0.010 0.0022 0.0036 0.0097

M = 5 0.044 -0.006 0.0026 0.0042 0.0044

M = 10 0.048 -0.002 0.0033 0.0048 0.0013

M = 20 0.049 -0.001 0.0033 0.0052 0.0011

M = 30 0.049 -0.001 0.0034 0.0051 0.0013
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Table IV:Models to be considered for the short-rate process: Vasicek, CIR, AÆne CIR, A��t-Sahalia

(1996b) model, and general parametric model.

Model Drift function a(y; �) Volatility function b2(y; �)

Vasicek �0 + �1y �0

CIR �0 + �1y �1y

AÆne CIR �0 + �1y �0 + �1y

A��t-Sahalia (1996b) �0 + �1y + �2y
2 + �3

y
�0 + �1y + �2y

�3

General parametric model �0 + �1y + �2y
2 + �3

y
�0 + �1y + �2y

2 + �3y
3

Table V: The posterior means, HPD, Monte Carlo standard errors, ineÆciency factors (Ine�,

bandwidth BN = 100), covariances and correlations (in italics) are shown for the parameters using

the Eurodollar short-rate data applied to the Vasicek process. The M-H algorithm was run with

M = 10 (� = 3), for N = 2000 iterations.

Parameters of Vasicek applied to Eurodollar short-rate data

Mean HPD MCse Ine� Covariance & Correlation

M = 10

�0jy 0.000563 0.000271 0.000821 8.74e-08 1.2 1.98e-08 -0.917 0.065

�1jy -0.00673 -0.00972 -0.00377 8.85e-07 1.2 -1.97e-07 2.33e-06 -0.080

�0jy 1.66e-05 1.60e-05 1.71e-05 3.37e-09 22.4 2.73e-12 -3.67e-11 9.04e-14

Table VI: The posterior means, standard errors, HPD, ineÆciency factors (Ine�, bandwidth BN =

100), covariances and correlations (in italics) are shown for the parameters using the Eurodollar

short-rate data applied to the general parametric process. The M-H algorithm was run with M = 10

(� = 3), for N = 1500 iterations.

Mean MCse HPD Ine�

M = 10

�0jy -0.00441 1.25e-06 -0.00674 -0.00215 1.6

�1jy 0.0612 1.83e-05 0.0280 0.0924 1.7

�2jy -0.259 7.72e-05 -0.387 -0.118 1.7

�3jy 9.85e-05 2.53e-08 4.97e-05 0.000145 1.5

�0jy 4.71e-06 2.32e-09 4.40e-06 5.04e-06 21.2

�1jy 1.13e-06 6.32e-09 3.90e-07 1.95e-07 21.6

�2jy 2.25e-05 1.61e-07 6.62e-06 4.21e-05 24.1

�3jy 0.00106 5.21e-06 0.00997 0.0115 21.0
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Table VII: The log marginal likelihood computations are shown for x = log y. f(xj��) and �(��jx)
are computed using M = 10, burn-in=200 and N = 2000. Priors used are Inverse Gamman

��

(15��)2
+ 2; ��(�� � 1)

o
for � and Normal f�� + 4��; (15��)2g for �, (�1 uses normal speci�ca-

tion in general parametric model), where �� and �� are the respective posterior means and standard

deviations, based on a training sample data set. The numerical standard error of the marginal

likelihood (log scale) is denoted by (numerical se).

Model logm(xjM) Numerical se

Vasicek 8328.9 0.52857

CIR 9430.5 0.25093

AÆne CIR 9436.9 0.26587

General parametric model 9716.8 0.60919
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