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Abstract

This paper develops a subordinated stochastic process model for the

asset price, where the directing process is identi�ed as information. Mo-

tivated by recent empirical and theoretical work, we make use of the

under-used market statistic of transaction count as a suitable proxy for

the information 
ow. An option pricing formula is derived, and compar-

isons with stochastic volatility models are drawn. Both the asset price and

the number of trades are used in parameter estimation. The underlying

process is found to be fast mean reverting, and this is exploited to per-

form an asymptotic expansion. The implied volatility skew is then used

to calibrate the model.

1 Introduction

Derivative pricing depends crucially on the assumptions made concerning the

distributional properties of the asset price. Without some model of the underly-

ing price process, it is impossible to price a derivative. There are many variations

on the lognormality assumption in the Black{Scholes model of option pricing,

including statistical approaches [9] and a vast literature based essentially on the

properties of Brownian motion.

It has been well documented in the empirical literature that although stock

returns are normally distributed on a timescale of a month or greater, they

exhibit signi�cant departures from normality when shorter horizons are con-

sidered [48]. The assumption that daily returns are normally distributed suf-

fers many shortcomings, with the empirical distribution exhibiting fat tails

and skewness [19, 43]. A number of alternatives have been proposed that at-

tempt to describe the probability density of the asset returns more accurately,

of which popular approaches include: hyperbolic distribution [16]; Student's

t-distribution [6]; L�evy stable non-Gaussian model [43, 51]; truncated L�evy


ight [44]; multi-fractal processes [42].
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The discrete-time modelling of volatility has also been particularly popular

in the econometrics literature [4, 8]. Volatility is not found to be constant, but

to vary over time and exhibit positive serial correlation, i.e. volatility clustering.

The most successful models have been the family of autoregressive conditional

heteroskedastic (ARCH) models [17], and its extension into GARCH [7] and

more recently EGARCH [46]. In their most general form, ARCH models make

the conditional variance at time t a function of exogenous and lagged endogenous

variables, time, parameters, and past prediction errors.

An alternative to pure empirical study is to consider the process of price

evolution itself. Indeed, one of the dominant themes in the academic literature

since the 1960's has been the concept of an eÆcient market, which, loosely,

states that security prices fully re
ect all available information [20, 21]. Thus

the price of a security can be thought of as adjusting rapidly to incorporate

new information [33], and will depend on the behaviour of the information that

in
uences �nancial markets. The concept of information 
ow is easy to grasp,

but diÆcult to quantify. It is widely believed, however, that measures of market

activity such as trading volume are related to the information 
ow, and may be

suitable proxies for this unobservable process.

Trading volume can be decomposed into two components: the number of

trades, and the size of trades, frequently referred to as just `volume'. There

is little question that the number of trades is intimately connected with the

fundamental mechanism of trading which compounds the new information into

prices, and is indicative of such an information 
ow. Much empirical research

has focused on the simultaneous link between price and volume; for a summary

of current literature see [37, 25]. This research has found a strong positive

correlation between volume and the absolute price change, supporting the old

Wall Street adage that \it takes volume to move prices". Asymmetric patterns

have been found by some researchers, suggesting that volume is larger when

prices move up than when they move down. The observation of volume is also

a popular tool for the technical trader [28]. Furthermore, ARCH e�ects have

been shown to vanish when volume is also included as an explanatory variable

in the conditional variance equation [39]. This implies that ARCH e�ects re
ect

time-dependence in the process generating information 
ow to the market.

The relationship between the number of trades and volatility has also re-

cently been investigated [35, 29]. In regressions of volatility on both volume

and the number of transactions, the volatility-volume relation is rendered sta-

tistically insigni�cant. That is, it is the occurrence of transactions per se, and

not their size, that generates volatility. Indeed, the lack of trading itself has

been shown to reduce volatility during the lunch break of the Tokyo Stock Ex-

change [32]. This supports the contention that volatility is driven by the iden-

tical factors that generate trades, i.e. information. It has been suggested [18, 5]

that volume itself may re
ect the extent of market disagreement on the infor-

mation received.

From a market microstructure perspective, price movements are caused pri-

marily through the arrival of information. The dynamics by which this informa-

tion is incorporated into the current price is addressed in the market microstruc-
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ture literature, where many models of price formation have been proposed; for

an overview of this topic see O'Hara [47]. Theoretical analyses suggest that

trading volumes in �nancial markets may be determined by: liquidity e�ects;

information 
ows; asymmetric information (or di�erences in opinion); and the

quality of information. Trade size has no role in some market models, e.g. in

the Kyle model [38] volume is not a factor in the price adjustment process, but

has increasingly been used as a measure of the information content of �nancial

and macroeconomic events [1, 36, 52].

We conclude that the concept of information is an important factor in deter-

mining changes in stock value, and both the number and size of trades, especially

the former, are closely related to it.

In this paper we posit that the speed of evolution of the asset price process

is determined by the information 
ow, with calendar time playing a secondary

role. It is further assumed that the current information 
ow can be indirectly

observed through the number of trades. This is compatible with the popular

notion of the number of transactions being a guide to the pace of market activity.

On less eventful days trading is slow and prices evolve slowly, whereas prices

evolve faster with heavier trading when more information arrives [13]. In this

framework, the stock price is a good candidate to be described by a subordinated

stochastic process model.

Empirical evidence has shown that subordinated processes represent well

the price changes of stocks and futures. As early as 1973, Clark [14] applied

subordinated processes to cotton futures data. In Clark's model the daily price

change is the sum of a random number of intra-day price changes. The events

that are important to the pricing of a security occur at a random, not uniform,

rate through time. The variance of the daily price change is thus a random

variable with a mean proportional to the mean number of daily transactions.

Clark argues that the trading volume is positively correlated with the number

of intra-day transactions, and so the trading volume is positively correlated

with the variability of the price change. More recently, Geman [26, 27] has

found that the asset price follows a geometric Brownian motion with respect

to a \timescale" (stochastic variable) de�ned by the number of transactions.

This work supports the view that volatility is stochastic in real (calendar) time

because of random information arrivals, but that it may be modelled as being

stationary in information time.

In x2 we introduce subordinated stochastic processes and de�ne a model for

the asset price, directed by an information process that is proxied by the number

of transactions. The rate of information 
ow is proposed to follow a mean-

reverting process in x2.4, and comparisons with a stochastic volatility model

are subsequently made. Both the price and number of transactions are used to

estimate the necessary model parameters, and the information 
ow is found to

exhibit fast mean-reversion. An option pricing equation is derived in x3 and a

numerical solution is then sought using both �nite-di�erence and �nite-element

methods. Finally, in x3.4 an asymptotic expansion of the pricing equation is

performed, which utilises the information contained within the implied volatility

curve to calibrate the model.
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2 Market model

The total price change of an asset in any �xed calendar time interval, such

as a day, re
ects the accumulation of a random number of arrivals of many

small bits of information, proxied by the number of trades. On days with many

trades, there are usually larger than average price changes, indicating rapid price

evolution. This can be noticed by observing market data, see e.g. Figure 1.

07/01/98 10/01/98 01/01/99 04/01/99 07/01/99

Price              
No. of Trades / Day

Figure 1: A price and transaction count chart for Dixons (Source: Primark

DataStream). On days where a large number of transactions are realised, there

is typically an increase in realised stock volatility.

2.1 Subordinated stochastic processes

Discrete stochastic processes are indexed by a discrete variable, usually time,

in a straightforward manner: X(0); X(1); : : : ; X(t); : : : ; here X(t) is the value

that a particular realization of the stochastic process assumes at time t. Instead

of indexing by the integers 0; 1; 2; : : : the process could be indexed by a set of

numbers �1; �2; : : : which are themselves a realisation of a stochastic process

with positive increments. That is, if �(t) is a positive and increasing stochastic

process, a new process X(�(t)) may be formed. The resulting process X(�(t))

is said to be subordinated to X(t), called the parent process, and is directed by

�(t), called the directing process or the subordinator [22]. If the increments of the

directing process �(t) are not independent, this technique is known as a general

stochastic time change. The process �(t) is often referred to as a \stochastic

clock".

Formulating our model in a subordinated process framework, the total num-

ber of information arrivals, denoted by n(t), is assumed to drive the market,

i.e. n(t) represents the directing process of the market. The timescale regulated

by n(t) is hereafter referred to as information time, and is distinct from cal-
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endar time t. Both the asset price S and the cumulative number of trades N

are dependent on the number of information arrivals, and are regarded as the

observable parent processes. We utilise the observation by Geman [27, 26] that

a stationary, lognormal distribution for S can be achieved through a stochastic

time change, where the directing process is found to be well approximated by

the number of trades (up to a constant).

2.2 Information arrivals process: general considerations

The total number of information arrivals n(t) is assumed to be large, yet display

a signi�cant daily variation. It must be a positive, increasing function of time,

and hence dn � 0. We work in continuous time and assume that there is a

positive rate, or intensity, of information arrivals I(t). Hence n(t) is de�ned as

dn = I(t) dt: (1)

We propose to model I(t) by the stochastic process

dI = p(I; t) dt+ q(I; t) dX
(2)
t ; (2)

where p and q are as yet unspeci�ed functions of I and t, which must, however,

be such that I(t) � 0, and dX
(2)
t is the increment of Brownian motion in

calendar time, i.e. [dX
(2)
t ]2 = dt. (The pricing of options in information time

has also been considered by Chang et al. [11, 12], under the assumption that

dn is a Poisson process.) The directing process n(t) is related to the number of

transactions and its estimation is discussed in x2.4.1.

2.3 Asset price models

A stochastic time change is made from calendar time to information time to

achieve a stationary, lognormal model of the asset price S in the informational

timescale. Alternatively, this may be regarded as a change in the frame of refer-

ence or as time deformation, since the relevant timescale promoting normality

of returns is no longer calendar time but information time. Hence the subordi-

nated process S can be described by the usual lognormal random walk in this

timescale:

dS = �nS dn+ �nS dX
(1)

n(t)
(3)

where �n and �n are constants representing the drift and volatility of the asset

return per information event respectively. The increment of Brownian motion

dX
(1)

n(t)
evolves in the informational timescale, i.e.

h
dX

(1)

n(t)

i2
= dn(t) = I(t) dt

from (1), and is distinct from, but may be correlated with, dX(2).
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The return in a time interval �t at time t, R�t(t), can be expressed as

R�t(t) j �n � N(�n�n; �
2
n�n); (4)

where �n = n(t+�t)�n(t), indicating the conditional normality of this process.
The variance, conditional on the value of �n, is

Var[R�t j �n] = �2n�n:

However, the number of information arrivals �n in a time period �t is not con-

stant, but is a stochastic variable. Thus R�t exhibits conditional heteroskedas-

ticity, that is the conditional variance of R�t is not constant. Furthermore, if

�n were assumed to be serially correlated in a discrete setting, the variance of

R�t would be an ARCH process.

The unconditional centred moments of R are given by:

E[R�t] = �r = E
h
E[R�tj�n]

i
= �nE[�n];

Var[R�t] = �2r = �2nE[�n] + �2nVar[�n];

m3[R�t] = �3nm3[�n] + 3�n�
2
nVar[�n];

m4[R�t] = �4nm4[�n] + 6�2n�
2
n (m3[�n] + E[�n]Var[�n])

+3�4n

�
Var[�n] + (E[�n])

2
�
;

where m3 and m4 represent the third and fourth centred moments respectively.

The unconditional distribution of R is kurtotic and skewed compared to the

normal distribution, because it is an average of di�use (large �n) and compact

(small �n) conditional densities. This can be seen by rewriting (4) as

R�t =

Z
�n

N(�n�n; �
2
n�n)p(�n)d(�n);

where p(�n) represents the probability distribution of �n. This indicates that

the unconditional distribution of the returns process is a mix of normal distribu-

tions, but is not itself normally distributed. The mixture of normal distributions

hypothesis1 (MDH), in which the asset return and trading volume are driven by

the same underlying information 
ow or mixing variable, is a well-known repre-

sentation of asset returns and has often been cited in the �nancial literature to

1In the mixture of distributions hypothesis a varying number of events occur each day

that are relevant to the pricing of an asset. Let Æit denote the ith intra-day equilibrium price

increment on day t. This implies that the daily price increment, �t, is given by

�t =

ntX

i=1

Æit where Æit �i:i:d: D(0; �2)

where D represents a symmetric distribution, and the variation in the mixing variable nt, the

number of events on day t, may be random, deterministic, and/or seasonal. In this setup it is

clear that �t is drawn from a mixture of distributions, where the variance of each distribution

depends on nt. Furthermore, the volume of trades is also assumed to be related to the mixing

variable nt.
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model the observed leptokurtosis in returns. Empirical tests are generally sup-

portive of the model [30, 31], but a subsequent study was less encouraging [40].

Using equation (1), we can rewrite (3) as

dS = �nSI(t) dt+ �nS
p
I(t) dX

(1)
t ; (5)

where dX
(1)
t is the realisation of dX(1) in calendar time. It can be seen that

the rate of information arrivals I(t) drives the volatility of stock returns in

calendar time. Thus price variability in our model depends on the 
ow of

information into the market, both in the drift and volatility terms. Volatility

is often associated with the amount of information arriving into the market,

and this model proposes that stochastic volatility is directly linked to the rate

of information 
ow I(t). Empirical studies have found a strong link between

the rate of information arrivals and observed short run volatility [24, 34, 50].

Ross [50] notes that in an arbitrage-free economy, the volatility of prices is

directly related to the rate of 
ow of information to the market. Moreover, the

I dependence of the drift in our model implies that an increase in volatility will

result in an increase in the expected return. This is compatible with risk-averse

agents who will demand compensation in the form of an increase in expected

return for holding a risky asset, measured by the variance of such return.

2.4 The rate of information arrivals: a speci�c model

The process representing the rate of information arrivals I(t) must take only

positive values. Moreover, news arrivals are often positively autocorrelated.

When an unanticipated news item occurs on a given day, more detailed dis-

closures tend to follow rapidly over the next few hours or days, and di�erent

interpretations of the circumstances leading to the event are formed. This tends

to keep the story in the headlines for some time, suggesting that the information

arrivals process should exhibit a positive autocorrelation, albeit over short time

periods. Furthermore, it is reasonable to assume that the rate of information

arrivals has a long-run equilibrium value, and the process is mean-reverting.

On average, the amount of information released concerning an established com-

pany should not exhibit signi�cant trending behaviour. Over a reasonable time

period, a company (or an index or currency) may be either in or out of \the

news", but the average frequency of such events does not tend to change sig-

ni�cantly without a major change in the structure of the �rm concerned. For

a high growth company a trending information 
ow might be appropriate, but

this will not be considered further in this paper.

With these considerations in mind, we model I by the mean-reverting ran-

dom walk

dI = �(�I � I) dt+ �I1=2 dX
(2)
t ; (6)

where � represents the rate of mean reversion and �I is the long-run mean-

level of I. This is of the same form as the Cox, Ingersoll and Ross model of

the interest rate [15]; this mean reverting process has also been used to model
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volatility directly [3]. Although this is just one possible distributional form it

ful�ls all the criteria stated above. It is not hard to generalise this approach (as

in [23]) by de�ning I to be an explicit function of some stochastic process Y :

I = f(Y ) where dY = P (Y; t) dt+Q(Y; t) dX
(2)
t :

This framework allows a speci�c underlying process Y to be used, and then I

to be some function of this process.

A recent study of the distribution of stock return volatility itself [2] indicated

that the unconditional distribution of the log standard deviation for a number

of individual stocks in the Dow Jones Industrial Average all appeared approxi-

mately Gaussian. Since
p
I(t) is related to the standard deviation of the asset

in calendar time, see (5), this implies

d

h
log
�p

I(t)
� i

= �(�I � log
p
I(t)) dt+ � dX

(2)
t

which has the invariant distribution N(�I ; �
2=2�), giving

dI = 2�I(�I + �2 � log
p
I) dt+ 2�I dX

(2)
t

as a possible alternative for the evolution of I.

Returning to the model (6), the origin is non-attainable provided 2��I=�
2 �

1 [53]. The behaviour of I has the following properties: negative values are

precluded; should I reach zero, it can subsequently become positive; the variance

of I increases as I increases; there is a steady-state distribution for I. The

probability density function for I at time t, conditional on its value at the

current time s is given by [15]:

p(I(t); t; I(s); s) = c(s; t)e�u(s;t)�v(t)

�
v(t)

u(s; t)

�q=2

Iq[2(u(s; t)v(t))
1=2];

where

c(s; t) =
2�

�2(1� e��(t�s))
; u(s; t) = cI(s)e��(t�s);

v(t) = cI(t); q =
2��I

�2
� 1;

and Iq is a modi�ed Bessel function of the �rst kind of order q.

The expected value and variance of I at time t, conditional on its value

I0 = I(0), can be calculated from the di�erential form of I in (6):

E[I(t)jI0] = I0e
��t + �I(1� e��t):

The variance of I at time t, conditional on its initial value, is

Var[I(t)jI0] =
�2

2�

�
�I(1� e��t)2 + 2I0(e

��t � e�2�t)
�
;
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from which the stationary variance is

Var[I] = �2I =
�I�

2

2�
: (7)

Finally, the conditional autocovariance can be derived. For t > s > 0,

Cov[I(t); I(s)jI0] = E[I(t)I(s)jI0]� E[I(t)jI0]E[I(s)jI0]
= e��(t�s)Var[I(s)jI0];

and unconditionally

Cov[I(t); I(s)] = �2Ie
��jt�sj: (8)

The exponential rate of decorrelation of I(t) is proportional to �, and so 1=�

can be thought of as a typical correlation time. Increasing � and keeping Var(I)

�xed changes the degree of persistence of the mean reverting process I, without

a�ecting the magnitude of the 
uctuations. A large value of � will lead to

burstiness, or clustering, in the driving process I. The common observation of

volatility clustering in asset returns, that is, the tendency of large stock price

changes to be followed by large stock price changes, but of unpredictable sign,

can be modelled by fast mean-reversion of I and will be considered further in

x3.4.
The invariant distribution p1(I) satis�es the steady-state forward Kolmogorov

equation

1

2

d2

dI2
[�2Ip1(I)]� d

dI
[�(�I � I)p1(I)] = 0; (9)

from which we �nd that p1(I) is the gamma distribution �(!; �), with ! =

2�=�2 and � = 2�I�=�
2. A positive skew and excess kurtosis are predicted:

Skew[I] =
2p
!�I

and Kurt[I] = 3 +
6�I

!
: (10)

2.4.1 Parameter estimation

The information intensity I(t) is a hidden process and is not directly observable.

However the directing process n(t) can be well approximated by the cumulative

number of transactions N(t). By treating S&P500 returns as a subordinated

process, Geman [26] calculated the moments of a directing process necessary

to achieve normality of these returns in the informational timescale through a

numerical optimisation. Remarkably, the values of this directing process greater

than one were perfectly matched by the moments of the number of transactions.

Thus the number of transactions in a given time interval, �N , up to a constant,

is assumed to be equal to the change in value of the directing process, �n. In

this manner, the current information 
ow I(t) can be estimated from the number

of transactions,

I(t) � �n

�t
=

�N

�t
� const: (11)
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where const is a recentring parameter which can be thought to represent a

background rate of trades independent of new information concerning the price,

i.e. driven by liquidity rather than informational considerations.

Moments of the directing process greater than one are thus identical to the

moments of the number of transactions. Hence the variance of the number of

trades �N is identical to the variance of �n,

Var[�N ] = Var[�n] =
2�2I
�2

�
��t+ e���t � 1

�
:

where �t represents the frequency of the available data. By studying how the

variance of �N changes with �t, a value of � can be obtained. Subsequently,

a value of �I can be calculated from the variance at a �xed �t. The error in

estimating the variance is proportional to the reciprocal of the number of data

points, and using the highest frequency data available, in this case daily, will

give the best estimate of �I .

An estimate of the value of I during the sampling interval �t can be obtained

from the transaction data using (11). In order to de�ne all the parameters

detailing the process for I(t), it is necessary to consider the next highest moment

and calculate the skew of the transaction distribution. From (10) and (11),

Skew[�N ] = Skew[�n] � Skew[I] = 2�I=�I ;

enabling �I and subsequently the value of I applicable for each discrete time-

step to be determined.

An additional estimate of the rate of mean reversion � can be obtained by

considering the autocovariance of I, or equivalently �N . From (8) and (11),

Cov[�N(t+ j�t);�N(t)] � �t2Cov[I(t+ j�t); I(t)]

= �t2�2Ie
��j�t

where j is an integer. Thus � can be determined by regressing the log of the

lagged covariances of the number of transactions against the time lag j�t, the

gradient of which gives an additional estimate of �. A comparison of the two

separate estimates of � can give an approximate error indication involved in

this estimation process.

The remaining parameters �n and �n can be estimated from the asset price

data and expressed in terms of �r and �r, the annualised drift and volatility of

the asset return. The moments of the returns process were stated in x2.3, and
can be written as

�n = �r=�I ;

�2n =
�2r

�I
� 2�2r�

2
I

�I�2
(�� 1 + e��): (12)

It was found that since � was large, see Table 1, the second term on the right-

hand side of (12) was negligible. An excellent approximation for the volatility

per information event is �n � �r=
p
�I which will subsequently be used.
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The parameter estimation technique was undertaken on a number of FTSE-

250 stocks using daily price and transaction count data. Fits of the variance and

covariance were successful on many of the `old economy' stocks, where there was

typically no strong trending element in the number of transactions and relatively

few days with exceptional trading behaviour, see e.g. Fig. 2. With these stocks,

there was good agreement between the values of � calculated from the scaling

of the variance with �t and the autocovariance, di�ering by typically 10% or

less.
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Figure 2: Estimation of parameters of I(t) from transaction count data for

Thames Water (Source: Primark Datastream). (a) Estimation of � using lagged

covariance data. (b) Scaling of variance with �t. The solid lines represent the

�tted function. (c) Extracted I(t) over estimation window.

On recent market entrants, e.g. high-tech, the process of parameter estima-

tion was less successful. These stocks exhibit a strong increasing trend in the

number of transactions, which is not accounted for by the mean-reverting choice

of I. These stocks typically have days with an exceptional number of trades,

sometimes over ten times the normal average. This has a signi�cant impact

on the value of the skew measured, from which �I is calculated. Correspond-
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Stock � �I=�I �r
Thames Water 55 0.5 0.19

British Airways 60 0.7 0.3

Bass 100 0.8 0.22

Pilkington 80 0.6 0.42

Baltimore Technologies 140 1.4 2.3

Oxford GlycoSciences 200 1.0 2.9

Morse Holdings 100 1.0 1.3

Table 1: Sample values (annualised units).

ingly, parameter stability is then reduced, with a strong dependence on which

of these abnormal days are included in the sample period. There is generally

poor agreement between the two estimates of � and a worse than expected �t

of the variance of the number of transactions versus the time interval. For a

summary of calculated parameters for a number of stocks, see Table 1.

3 Derivative pricing

3.1 The pricing equation

The rate of information arrivals is not a traded asset. Unlike the Black{Scholes

case it is no longer suÆcient to hedge solely with the underlying asset, but nev-

ertheless arbitrage assumptions force the prices of di�erent derivative products

to be mathematically consistent. Because we have two sources of randomness,

we set up a portfolio containing one option, with value denoted by V (S; I; t), a

quantity �� of the asset and a quantity ��1 of a separate liquid option with

value V1(S; I; t) in a manner exactly analogous to stochastic volatility models.

The option price can then be expressed as a solution of the parabolic partial

di�erential equation

@V

@t
+

1

2
�2nS

2I
@2V

@S2
+

1

2
q2
@2V

@I2
+ ��nSq

p
I
@2V

@S@I

+ rS
@V

@S
+ (p� �q)

@V

@I
� rV = 0:

(13)

Here �(S; I; t) is the market price of (information arrival intensity) risk, which

is determined by the agents in the market and depends on their aggregate risk

aversion, as well as liquidity considerations and other factors.

The pricing equation (13) can be re-expressed in terms of the parameters

calculated in x2.4, namely:

p = �(�I � I); q = �I1=2 = �I

s
2�I

�I
; �n � �rp

�I
;
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giving

@V

@t
+

�2rS
2I

2�I

@2V

@S2
+

��2II

�I

@2V

@I2
+ ��r�I

p
2�S

I

�I

@2V

@S@I

+ rS
@V

@S
+

 
�(�I � I)� ��I

s
2�I

�I

!
@V

@I
� rV = 0:

(14)

This equation must be solved with appropriate payo� and boundary conditions.

3.2 Relation to stochastic volatility models

Clearly, the observed volatility depends on the rate of information arrivals I.

When a large amount of information is arriving in the market place, I is above

average, our stochastic clock runs faster and the observed asset volatility in-

creases. Hence it is natural to interpret our model as a stochastic volatility

model (SVM). The pricing PDE (13) can be compared with the result for a

general SVM, where it is assumed that the volatility of the asset S can be de-

�ned to be an explicit function of some stochastic process Y , i.e. � = f(Y ).

Equating the driving process Y with the mean reverting process I, then (13)

can be interpreted as a SVM with f(Y ) = �n
p
Y .

In general, SVMs [23, 41] have many bene�ts over the standard Black{

Scholes model. Many SVMs give more realistic probability density functions

for the asset, e.g. fat tails. The skew of the distribution can be incorporated

by correlating the two Brownian motions. It can be proved that for any uncor-

related SVM, the implied volatility is convex with a minimum at the forward

price of the stock [49]. Thus uncorrelated SVMs imply a volatility smile.

3.3 Numerical solution

In general, equation (14) has no analytical solution, and hence a numerical

solution must be sought. Both �nite-di�erence and �nite element methods are

considered.

Throughout this section we consider the solution appropriate for a stan-

dard vanilla call option, with strike K. However, the techniques can be easily

extended to any vanilla derivative. Suitable boundary conditions in the S di-

mension are: S ! 0, V ! 0 and as S ! 1, @2V=@S2 ! 0. Alternatively,

knowledge of the asymptotic value for the call as S ! 1 can be used, i.e. as

S !1, V = S �Ke�r(T�t) (plus exponentially small terms). Since the payo�

is a linear function of S, an appropriate boundary condition for large I is to let

@2V=@I2 = 0. A boundary condition for small I is less clear, but since there is a

positive lower bound to I, it is assumed that @V=@I = 0. It was found that the

�nal solution is insensitive to the exact boundary condition in this direction.

The �nal term left to specify is the market price of risk �(S; I; t), which

allows the model to be calibrated against observed market prices. Information

concerning the market price of risk can be obtained by �tting the model to

existing prices on the market, but this is a computationally intensive task. To

13



demonstrate the solution of this model, an arbitrary choice will be made in which

the market price of risk is assumed to be of the form �(S; I; t) = constant �
p
I.

This is convenient because it is non-trivial, but has been speci�ed purely to

demonstrate the solution technique.

3.3.1 Finite-di�erence methods

The Black-Scholes equation and its generalisations are ideal candidates for a

�nite-di�erence solution since they are typically linear and contain dominant

di�usive terms that lead to smooth solutions. For a practical guide to the

application of �nite-di�erence schemes in option pricing, see [53, 54].

A sample graph of the implied volatility surface for the case of � = 0 is

included as Figure 3, obtained from an ADI solution. However, in the most

general case a correlation is present and hence the two-factor equation must be

solved with a mixed derivative term present. This can be accommodated in an

explicit scheme or an ADI framework [45]; the e�ect of changing the correlation

is demonstrated in Figure 4.
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Figure 3: Implied volatility surface: K = 10, T = 0:5, � = 60, �I=�I = 0:7 and

� = 0.

3.3.2 Finite element method

Prices were also obtained via a Galerkin �nite-element approach implemented

through the �nite-element generic PDE package Fast
o. The mesh is concen-

trated near the strike K and stretched out near the boundaries, which promotes
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Figure 4: The e�ect of changing the correlation: K = 10, T = 0:5, � = 60 and

�I=�I = 0:7.

high accuracy in the region of the strike. Natural boundary conditions are im-

posed in the I direction, but the �nal solution was not found to be sensitive to

the exact form of these due to the coarse meshing in the region of the bound-

aries. The results obtained can be compared with the �nite-di�erence methods

described in the previous section, see Table 2.

S = 9:5 S = 10:0 S = 10:5

ADI scheme 0.4490 0.7510 1.1269

Fast
o 0.4491 0.7509 1.1265

Table 2: Comparison of numerical results for a European call with K = 10,

T = 0:5, � = 60, �I=�I = 0:8 and � = 0.

3.4 Asymptotics

The asymptotic analysis follows the approach adopted by Fouque, Papanicolaou

and Sircar [23]. The main advantages are a reduction in the number of param-

eters required, and the ability to utilise the information contained within the

implied volatility curve for calibration purposes.

The rate of mean-reversion of the process I(t) was estimated from historical

data for a number of di�erent stocks in x2.4.1. From Table 1 it can be concluded

that I(t) does exhibit fast mean reversion, and we now de�ne the dimensionless

small quantity � = 1=�, where � is in annualised units and the number 1 has

inferred dimensions of years. The stochastic representation of I(t), de�ned in
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(6), can now be rewritten as

dI =
1

�
(�I � I) dt+ �I

s
2I

��I
dXt;

where �I is the long-run volatility de�ned in (7). We now express (14) as�
1

�
L0 +

1p
�
L1 + L2

�
V = 0;

where

L0 =
�2II

�I

@2

@I2
+ (�I � I)

@

@I
;

L1 = ��r�I

r
2

�I
SI

@2

@S@I
� ��I

s
2I

�I

@

@I
;

L2 =
@

@t
+

�2rS
2I

2�I

@2

@S2
+ rS

@

@S
� r;

and the solution for V is expanded in powers of
p
� :

V (S; I; t) � V0(S; I; t) +
p
�V1(S; I; t) + �V2(S; I; t) + � � �

We then perform the standard procedure in which at each order the solution

contains an undetermined function which is found by a solvability condition at

the next order in the expansion. The zero order term V0(S; t) is the solution of

the Black-Scholes equation with a constant volatility of �r, and the corrected

price can be expressed as

V = V0 �
p
�(T � t)

�
A2S

2 @
2V0

@S2
+A3S

3 @
3V0

@S3

�
+O(�); (15)

where

A2 =
p
2�I�

2
r

�
��r

D
g0(I)I=�I

E
� 1

2

D
�g0(I)

p
I=�I

E�
;

A3 =
1p
2
��3r�I

D
g0(I)I=�I

E
;

and where g(I) is the solution of L0g(I) = I=�I � 1; here angled brackets

represent an expectation with respect to p1(I), as de�ned in (9). An explicit

dependence on I enters only in the O(�) term.
A key point is the universality of this formula. Any fast mean-reverting

stochastic volatility model will lead to a �rst-order correction of this form. The

A2 term is a volatility level correction, and depends on the market price of risk,

whereas the A3 term depends entirely on the correlation coeÆcient � and the

third derivative of the Black-Scholes option price with respect to S.
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3.4.1 Implied volatilities

The implied volatility � can be approximated by a linear function of the logged

forward moneyness:

� � �r +
p
�

�
a+ b

logM

(T � t)

�
+O(�);

where

a =
3A3 � 2A2

2�r
and b =

A3

�3r
:

The coeÆcients a and b can be estimated by OLS regression using the implied

volatility skew. The values of the parameters A2 and A3 can subsequently be

calculated:

A2 = �r

�
3

2
b�2r � a

�
and A3 = b�3r :

For example, using market data for Glaxo Wellcome call options, expiry Oct 99,

values of
p
�A2 = 1:9�10�3 and p�A3 = �1:5�10�2 were obtained, con�rming

these quantities are small.

These coeÆcients can be used to directly price an option using (15), with

no need to estimate the market price of risk. This is superior to regarding

implied volatilities as the market's rational expectations of future volatility,

since statistical evidence shows little or no correlation between implied volatility

and subsequent realised volatility [10].

4 Concluding remarks

In this paper we have described a model for the asset price where time is sub-

ordinated to a underlying stochastic process representing the number of trades.

The model is consistent with normality of returns in this new timescale, with

the leptokurtosis of the asset price, observed in calendar time, being due to vari-

ations in the directing process. We show that stock volatility is directly related

to this underlying process, thereby predicting the observed positive correlation

between volatility and the number of transactions. An option pricing formula

was subsequently derived, and interpreted within the framework of a stochastic

volatility model. The underlying process was found to be fast mean{reverting,

and this was exploited to perform an asymptotic expansion of the pricing for-

mula. Using this technique there is no need to specify a market price of risk, and

the implied volatility skew can be used to calibrate the model. The proposed

model for the information 
ow was not found to be applicable to all stocks, and

this is a suitable area of further research.
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