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Abstract

This paper uses the development of multi-agent market models to
present a unified approach to the joint questions of how financial mar-
ket movements may be simulated, predicted, and hedged against.

We first present the results of agent-based market simulations in which
traders equipped with simple buy/sell strategies and limited information
compete in speculatory trading. We examine the effect of different market
clearing mechanisms and show that implementation of a simple Walrasian
auction leads to unstable market dynamics. We then show that a more
realistic out-of-equilibrium clearing process leads to dynamics that closely
resemble real financial movements, with fat-tailed price increments, clus-
tered volatility and high volume autocorrelation.

We then show that replacing the ‘synthetic’ price history used by these
simulations with data taken from real financial time-series leads to the re-
markable result that the agents can collectively learn to identify moments
in the market where profit is attainable. Hence on real financial data,
the system as a whole can perform better than random.

We then employ the risk-control formalism of Bouchaud and Sornette
in conjunction with agent based models to show that in general risk cannot
be eliminated from trading with these models. We also show that, in
the presence of transaction costs, the risk of option writing is greatly
increased. This risk, and the costs, can however be reduced through the
use of a delta-hedging strategy with modified, time-dependent volatility
structure.

Paper presented at APFA2 Conference, Liege (2000)

1 Introduction

Agent-based models of complex adaptive systems are attracting significant inter-
est across a broad range of disciplines [1]. An important application receiving
much attention within the physics community, is the study of fluctuations in
financial time-series [2]. Currently many different agent-based models exist in
the ‘econophysics’ literature, each with its own set of implicit assumptions and
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interesting properties [3] [4] [5] [6]. In general these models exhibit some of
the statistical properties that are reminiscent of those observed in real-world
financial markets: fat tailed distributions of returns, clustered volatility and so
on. These models, despite their differences draw on several of the same key
ideas; feedback, frustration, adaptability and evolution.

The Minority Game (MG) introduced by Challet and Zhang [7] offers pos-
sibly the simplest paradigm for a system containing these key features. Unlike
the sophisticated model of Lux [3] there is no external noise process simulating
information arrival. Nor is there any element of agents sharing local informa-
tion as in the model of Cont & Bouchaud [4]. The MG simply comprises an odd
number of agents N choosing repeatedly between the options of buying (1) and
selling (0) a quantity of a risky asset. The resource level of this asset is finite
and therefore the agents will compete to buy low and sell high. This gives the
game its ‘minority’ nature; an excess of buyers will force the price of the asset
up, consequently the minority of agents who have placed sell orders receive a
good price at the penalty of the majority who end up buying at an over-inflated
price. The MG agents act with inductive reasoning, using strategies that map
the series of recent (binary) asset price fluctuations to an investment decision
for the next time-step. In an attempt to learn from their past mistakes the
agents constantly update the ‘score’ of their strategies and use only the most
successful one to make their prediction.

The basic assumptions of this system are minimal but the resultant dynamics
show a richness and diversity that has been the focus of much recent study .
However, the MG as a realistic market model has many shortcomings:

• All agents trade at each time-step

• All agents trade equal quantities

• The system resource level is fixed

• Agent diversity is typically limited

Many of these as well as other interesting extensions (such as agents having
the ability to learn of their own market impact [5]) have been studied separately
and are discussed in [2]. This paper aims to jointly develop many of these
extensions to the basic MG in an attempt to build a minimal and yet realistic
market model.

The development and study of market models from a physicist’s standpoint
is motivated by the desire to learn what key interactions are responsible for
phenomena observed in the real-world system, the financial marketplace. How-
ever, the scope for using such market models is not simply limited to qualitative
phenomenological studies. The models may be extended or manipulated to
explore quantitatively the emergence of empirical scaling laws. Alternatively,
the approach to ‘critical’ self-organized, or stable states may be examined [13].
These are just a few of the uses which could be categorized as ‘theoretical’ study.
What then can these models be used for on a more ‘practical’ or perhaps com-
mercial level?
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Recently we have been working on the possibility of using these market
models in a similar way to the way in which a meteorologist may use a model
of atmospheric dynamics; i.e. condition the models with observed data and let
them run into the future to extract probabilistic forecasts. These forecasts
may then be used for not only speculative gain but also for more insightful risk
management and portfolio optimization. Section 2 of this text will expand on
the idea of using the MG as a market model, detailing the extensions needed,
Section 3 will then explore two different market-making mechanisms, assessing
the resultant dynamics, Section 4 will detail how these models may be used for
predictive purposes and Section 5 will focus on risk and portfolio optimization.

2 The MG as a market model

2.1 The Basic MG

As mentioned in the previous section, the MG formulation captures some of
the behavioral phenomena that are thought to be of importance in financial
markets; those of competition, frustration, adaptability and evolution. It is
also a ‘minimal‘ system of only few parameters:

N = Number of agents
mi = ‘Memory’ of agent i
si = Number of strategies held by agent i

The memory of an agent is the number of bits of the most recent past global
history that are used by a strategy in order to form a prediction. The agents
are assigned their si strategies at the start of the game and are not allowed to
replace them at any point. Each agent uses the historically most successful of
her strategies to form a prediction, the predictions of all agents are then pooled
and the global history is updated with the prediction of the minority group.

A single strategy maps each of the 2m possible ‘histories’ to a prediction.
Thus there are 22m different possible binary strategies. However, many of the
strategies in this space are largely similar to one another (i.e. are separated by a
small Hamming distance). It has been shown [14] that the principle features of
the MG are reproduced in a smaller Reduced Strategy Space of 2m+1 strategies
wherein any two strategies are separated by a Hamming distance of either 2m

or 2m−1 (i.e. are anti-correlated or un-correlated). If the number of strategies
in play i.e. N.s is greater than 2m+1 then the game is said to be in the crowded ’
phase, in contrast N.s� 2m+1 represents the dilute phase.

The properties of the crowded and dilute phases of the game are quite differ-
ent and could be thought of as representing different regimes of a market. In the
crowded phase there will at any one time be a large number of agents who are
using the same (best) strategy and so will flood into the market as large groups,
producing large swings in supply and demand and a consequently high volatility.
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If the memory of the agents is larger such as to render N.s ∼ 2m+1 then the
groups of agents using the same (best) strategy (crowds) will be smaller. There
will also be groups of agents who are forced to use the anti-correlated (worst)
strategy, these can be thought of as anti-crowds as they cancel the market ac-
tion of the crowds. This cancellation effect causes a reduction in the market
volatility. In the dilute phase it is very unlikely that any agents will hold the
same strategies and so the market behaves more randomly and can be modelled
well as a group of independent coin-tossers. A theory based on these crowding
effects reproduces quantitative results for the market volatility in the basic and
so called ‘thermal’ MG across the full range of parameters N ,m,s. For more de-
tails of this the reader is referred to [12],[15]. This ‘Crowd, Anticrowd Theory’
may also be put to use in the formulation of an entirely analytical set of dynam-
ical mapping equations that reproduce the MG [16]. These equations can be
analyzed in several interesting limiting cases to unveil the dynamics underlying
microscopic behavior in different regimes of the game. They may also be used
in the analysis of approaches to unstable behavior in these types of games (and
possibly the real market itself). Our preliminary studies have identified that
there can be at least two different ‘types’ of build-up to a large movement (or
‘crash’). Further work is currently underway to investigate the various ‘types’
of crash that can occur and their precursors.

2.2 The Grand-Canonical MG

In the basic MG agents must either buy or sell at every time-step. In a real
market however, traders are likely to wait on the sidelines until they are reason-
ably confident that they are able to make a profit with their next trade. They
will observe the market passively, mentally updating their various strategies,
until their confidence overcomes some threshold value - then they will jump in
and make a trade. We now demonstrate an extension to the basic MG which
attempts to incorporate this general behavioral pattern.

The primitive binary agents of the basic MG keep a tally of the virtual
score rS,i of each of their si strategies: +1 for a correct prediction and −1
for an incorrect prediction, and virtual in the sense that the strategy is scored
whether it is played or not. They may also keep a tally of their own personal
prediction success score ri. It is reasonable that each agent i has a finite time
horizon Ti over which these success scores are monitored; this is equivalent to
a ‘sunken losses’ approach. We now make the simplest possible generalization
which is to introduce a threshold value rmin in either r or rS below which an
agent would choose to not trade. In this case, the agent continues to update
her strategy scores rS but now adds a 0 to her personal score tally r. With this
extension, the number of agents actively trading at each time-step Nactive will
vary throughout the game. This feature is reminiscent of the Grand-Canonical-
Ensemble in statistical mechanics.

If an agent’s threshold to play lies at the lower end of the range −T ≤ rmin ≤
T then we would expect the agent to play a large proportion of the time as her
best strategy will have invariably scored higher than this threshold. Conversely,
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for high rmin, the agent will scarcely play at all. We would thus expect to
see a transition occur between these two regimes at intermediate values of the
threshold. Figure 1 shows the time-averaged number of active agents 〈Nactive〉
and the standard deviation of this quantity as a function of rmin for a uniform
population of N = 101 m = 2, s = 2 agents who record scores over T = 50 time-
steps. Here rmin, the threshold to play, is based on the agent’s strategy score
rS,i such that an agent only plays if max [{rS,i}] > rmin. A similar transition
effect is also seen if the threshold is based on prediction success score ri.

The behavior of 〈Nactive〉 can be reproduced to a coarse approximation by
assuming that the strategy scores rS,i undergo independent binomial random
walks:

rS ∼ 2Bin
[
T,

1
2

]
− T

This gives:

〈Nactive〉 ≈ N (1− P [rS < rmin]s)
σ2 [Nactive] ≈ N (1− P [rS < rmin]s)P [rS < rmin]s

This approximation captures the essence of the transition mentioned in the
paragraph above. However, the behavior of rS is in reality far from that of a
random walk. In the crowded regime rS is strongly mean-reverting and in the
dilute regime of the game it has a strong drift component, also the increments
in individual strategy scores can be highly correlated. The approximation
becomes better for T � 2m, where many of these effects become averaged out.

With intermediate values for rmin this modified MG produces very inter-
esting dynamics [17], for instance there can be moments of extreme illiquidity
followed by a rush to the market causing huge swings in supply and demand.
There are also noticeable ‘ranging’ and ‘break-out’ periods and other patterns
familiar to market traders [18].

We now extend this model to allow rmin to be dynamic. Here each agent
decides on her own threshold in a manner dependent on her current internal state
variables. This allows an enhanced element of evolution within the model and
more closely resembles behavioral models of markets wherein levels of confidence
are time-dependent. We choose to make rmin a function of the agent’s personal
success rate ri. Asserting that agents are rational and risk-averse implies that
rmin > 0 and that drmin,i

dri
≤ 0 i.e. never play a strategy that has lost more

times than won and take fewer risks if losing. Following basic utility theory we
therefore arrive at: rmin,i = max [0,− (ri − λ.σ [ri])] (where σ [ri] is the player’s
standard deviation of success and λ is their coefficient of risk-aversion). As
agents’ success rates vary in time, then so will their threshold values and we see
an overall evolution towards a diverse population as shown in Figure 2.

This version of the ‘Grand-Canonical’ MG forms the basic framework for
our development of a market model. The following subsection will outline
the further necessary extensions to the model that, when combined, form our
‘realistic’ market model.
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2.3 Agent diversity & wealth

It is a simple extension of the model developed above, to include agent het-
erogeneity in terms of wealth, investment size and investment strategy. As it
stands, each trade made by an agent is the exchange of one quanta of a riskless
asset for one quanta of a risky one, irrespective of the agent’s wealth or the price
of the asset. Also, agents always trade as ‘value’ investors, seeking to buy low
and sell high at each time-step. We now generalize this framework to introduce
a more realistic heterogeneity between investors.

We first allot each agent i a quantity of each asset, riskless Bi [0] and risky
Si [0]. When a trade is made, it is made at the market price of p [t]±δ [t] where
δ [t] corresponds to a spread raised by the marketmaker (the market-making
mechanism is the subject of the next section). We now re-assert the assumption
that investors are risk-averse and will thereforee trade amounts proportional to
their absolute wealth. We also assume that the amount they trade will be in
proportion to their confidence in the strategy they intend to use. It is helpful
at this stage to define a measure of this confidence ci.

ci [t] =
max [rS,i [t]]− rmin [t]

Ti

thus −2 < ci < 1 but the agent only plays if ci > 0. Buy operations are then
represented by:

Bi [t+ 1] = Bi [t]
(

1− ci [t]
p [t+ 1] + δ [t+ 1]

p [t] + δ [t]

)
Si [t+ 1] = Si [t] +

ci [t]Bi [t]
p [t] + δ [t]

and sell operations by:

Bi [t+ 1] = Bi [t] + ci [t]Si [t] (p [t + 1]− δ [t+ 1])
Si [t+ 1] = Si [t] (1− ci [t])

Wealthy agents make large transactions and thus will have a high market impact
(in a system where price movement size is an increasing function of order size,
c.f. Equation 1) whereas poor agents effectively form a background ‘noise’ of
small trades. Of course poor agents may grow rich or vice-versa. When
agents have lost all their assets, they can no longer trade; this represents the
bankruptcy of that agent. This situation happens extremely rarely in these
models and so we have not sought to implement a system for the re-generation
of new agents. Figure 3 shows the average distribution of agents’ wealth as
measured by B [t] + S [t] .p [t] (i.e. the probabilities are averaged over time).

As well as the diversity in agents’ trade size, there can also be a diversity in
investment strategy. Within the framework presented here, investment strate-
gies can fall into the two broad classes; value and trend. A value investor
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aims at each time-step to make a profit from buying low and selling high, a
trend investor on the other hand aims to buy an upward moving asset and
sell a downward mover. A population purely of value investors will have a
minority-game character, a population of trend investors will create a majority-
game of self-fulfilling prophecies. In general, the population of traders will be
a combination of these types and thus the character of the market (minority
or majority) is unclear. We are currently testing how the proportion of each
investor type alters the global dynamics and stability of the market.

3 The Market-Making Mechanism

3.1 Walrasian auction

The simplest type of market-making process is that of a walrasian auction. This
is a popular model in the economics community (and actually the system used
in the London Metals Exchange). In a walrasian auction investors take part in
a price setting process by submitting orders to buy or sell the risky asset based
on a theoretical price. The level of this theoretical price is changed until the
supply and demand for the asset exactly match and the market can be cleared,
then the process repeats.

We can use our market model to simulate a simplified version of this process
in the following way. First of all we assume that the supply and demand are
in equilibrium at each time-step. The resulting equilibrium price for the risky
asset then must be equal to the current demand-value of stocks sought divided
by the number of risky assets offered. This gives:

p[t+ 1] =

∑
i,Buyers

ci [t]Bi [t]∑
i,Sellers

ci [t]Si [t]

It is clear then that this process is unstable: if there are no buyers the price
falls to zero and if there are no sellers it will rise to infinity! Even though these
situations happen rarely in a run of the market model, the resulting dynam-
ics still show an inherent instability and the fluctuations are excessive as well
as exhibiting a strong anti-persistence. This situation arises because we are
asserting that the buy and sell pressures are in equilibrium at each time-step.
Of course this is far from the reality and we must extend the market-making
mechanism to accommodate the real out-of-equilibrium process.

3.2 Non-equilibrium market

If the supply of risky assets does not exactly match the demand at each time-
step then the market will either not clear, or the market-maker will take a
position in the asset himself in order to fill the orders. In reality it is most
likely that a combination of these scenarios occurs; the market maker will want
to fill as many orders as possible and take the spread but he will not allow
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himself to incur a large position. There are many ways in which this type of
behavior could be modelled, we limit ourselves here to looking at one particular
system.

Let us start by implementing the price setting rule of Bouchaud - Cont -
Farmer [4],[6] :

p [t + 1] = p [t] e
Buys[t]−Sells[t]

Liquidity (1)

where: Buys
Sells

[t] =
∑

i
Buyers
Sellers

Si [t+ 1]− Si [t], and liquidity is a constant set

by the market-maker. This rule prevents the market-maker being arbitraged
but leaves his inventory (BM [t] and SM [t]) as unbounded. Over many runs of
such a market simulation we would expect the market-maker’s mean inventory
to be zero. What we really require on the other hand is that his mean inventory
in a particular run be zero. We therefore propose the following extension to
Equation 1:

p [t+ 1] = p [t] e
Buys[t]−Sells[t]−SM [t]

Liquidity (2)

This implies that if the market-maker is accruing a net long position in
the risky asset, he’ll start lowering the price in order to attract buyers into the
market and vice-versa. This mechanism works remarkably well and we find
that SM [t] under this new rule is strongly mean-reverting as shown in Figure
4.

With Equation 2 however the market maker can be arbitraged by the agents;
the strategy buy, wait, sell or vice-versa will make money as long as enough
agents do it at the same time. The agents in these systems learn to exploit
this very quickly (an interesting result in itself) and the result is a negative
drift to the market-maker’s money BM [t]. There are several mechanisms that
the market-maker may exploit to overcome this; he can raise a spread or he
can reduce the liquidity. We employ the first of these mechanisms, updating
the spread proportionally to − 〈BM [t]〉

〈v[t]〉 where v [t] is the volume of transactions

defined as v [t] =
N∑
i=1

Si [t+ 1]− Si [t] . Here 〈BM [t]〉 and 〈v [t]〉 are taken over

a time-length TM which is kept large compared with {Ti} such as to average
over local extreme behavior such as momentary illiquidity. This mechanism for
raising a spread may not be highly efficient but it does maintain the market-
maker’s mean wealth close to the desired zero point by raising the spread if he
starts losing money. The 1/v [t] dependence stabilizes this process somewhat by
sharing the job of paying for the market-maker’s deficit over the current number
of market participants.

We now have a complete and arguably ‘realistic’ model and may begin to
investigate its properties. We are at present looking at how different statistical
properties of the model-market are dependent on its parameters. We seem to
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find however that some statistical features are in general present over very large
parameter ranges. These are the types of feature that are associated with ‘real’
markets: High excess kurtosis of returns with weak decay over time, volatility
clustering, high volume autocorrelation etc. as shown in Figure 5.

4 Prediction from market-models

The market-models introduced in Section 2 consist of a population of adaptive
agents who attempt to predict the future movement of an asset price. Recently,
we have been investigating the accuracy of these predictions when the synthetic
self-generated global history of asset movements is replaced with a real financial
time series.

The first step in this process is to generate binary information from the given
financial time-series. This can be done in many ways in order to investigate the
predictability of different aspects of the movement. We choose here to examine
the sign of movements and hence our information history h [t] becomes:

h [t] = H [preal [t]− preal [t− 1]]

where H [x] is the Heaviside function. If preal [t] = preal [t− 1] then we assign
h [t] a 0 or 1 randomly. Before we begin to look at how the agent-models perform
with this new information set, let us first examine some of its properties. The
agents examine chunks of the information set h of length m bits in order to
make a prediction. If we look at the occurrence rate of m+1 length bit-strings
we can therefore infer the success rate of strategies. For example Figure 6
shows the occurrence probability of 4-bit strings; i.e. 3 memory bits (m = 3)
and one prediction bit. The bit-strings are enumerated by their decimal value
e.g. 0011→ 3. We can infer that the strategy {10101010} (which is the m = 1,
{10} i.e. anti-persistent strategy) will have the highest success rate as 000 is
more often followed by a 1, 001 by a 0 etc.

As we decrease the sampling rate on our data-set so as to look at the signs of
price increments over longer periods, we find that the most successful strategy
becomes less well defined and tends to swap regularly. It is no longer the case
that a simple anti-persistent strategy is the best. Also as we increase the
memory m and look at longer bit-strings, we find that the ‘information content’
of the bit-string occurrence histograms gets ‘washed away’ in the mixing of
low m probabilities. This implies that the most dominant physical process
is a low m process. Figure 7 shows these two effects by examining the excess
standard deviation of the bit-string distributions i.e. σreal

Bitstring/σ
random
Bitstring where

σrandom
Bitstring =

√
L(2m+1−1)

2m+1 , where L is the length of the data-set.
In the agent simulations, h [t] plays the same role as before, with strategies

and agents being scored for prediction success in the same fashion as detailed
in Section 2. Of course now the feedback has been removed from the model, it
bears more resemblance to a system of genetic algorithms. The key important
difference though is the fact that this system of independent agents has a large
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built in frustration: the agents aren’t allowed to replace poorly performing
strategies. Although this at first appears to be a handicap, it can in fact be
a strength. In systems where there is not necessarily a ‘correct’ strategy to
employ, there is an advantage in having many currently non-optimal strategies
in play as this gives greater adaptability. We have compared the prediction
success of these types of model with those employing simple Bayesian update
of the probability of a given outcome for a given history and found the former
to be much more powerful. Figure 8 shows the time-series of the $/Yen FX-
rate between 1990-99, below this is a plot of the cumulative non-compounded
profit attained from using the agent model’s predictions to trade hourly. The
trading strategy employed is simply to put the original investment amount on
either the $ or the Yen side of the market and take it off again at the end
of the hour, banking the profit in a zero interest account. This is clearly
an unrealistic strategy as transaction costs would be penalizing, however it is
used in order to demonstrate simply that the agent-model performs better than
random (around 54% prediction success rate) 1. The two profit lines on Figure
8 represent two different uses of the independent predictions of the agents. The
lower line corresponds to the case where the investment is split equally between
all agents, the upper line is for the case where the agents’ predictions are pooled
together with a non-linear function. This demonstrates that the population
as a compound entity can perform much better than the sum of its individual
parts. This kind of phenomena has been termed ‘collective intelligence’ in the
past.

Arguably the most interesting phenomena of models such as the MG arise
from the strong feedback mechanism. In replacing the self-generated h [t] with
an external process we disable that feedback. The system is still however able
to function as a weak predictor. It appears that the prediction success rate
can be raised by invoking again a feedback within the system. It is probable
that this feedback forces a more efficient learning process to take place. These
effects are the subject of our current, ongoing studies.

We have hence demonstrated the success of the agent-based models in direct
prediction of the sign of the next price increment. However, we can also im-
plement the models in a different way by ‘training’ them on historical data of a
particular asset movement and then using the artificial market-making process
to run the models forward into the future. If this is done with an ensemble
of such models, each having a different initial allocation of strategies, we can
form a distribution of likely future asset price levels. Typically the resulting
distributions are fat tailed and can have considerable skewness quite in contrary
to more standard economic models. This information can not only be of use in
speculation but also in risk control and portfolio management.

1We have run these models with randomly generated information histories h [t] and were
able to reject the null hypothesis that the mean prediction success rate with real data was
random.
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5 Risk management

5.1 Implied future risk from agent-models

The control of risk in financial investment should be of equal importance to the
realization of profit. Most current theories of risk control rely on the implicit
assumption that future behavior of the market will be like its past behavior.
This assumption is continually being brought into question when banks and
investors seem to be ‘caught out’ by events that past distributions seemed to
imply were impossible. There thus may be room here for risk-control models
that rely more on possible emergent future behavior than on historic data.

Using agent-based models in the way mentioned at the close of Section 4
gives us distributions for likely future price levels based on what microscopically
might happen. This may be just the type of forward-casting model that could
be of use here. We must first however develop a framework within which we
can use the type of information that these models give us. Much of risk-control
concerns itself with the use of derivative instruments, we therefore follow this
direction but take pause to note that a similar methodology can be used for
analyzing any portfolio of assets.

Several years ago Bouchaud and Sornette developed a framework for ex-
amining and controlling the risk inherent in writing derivative contracts [19].
This formalism explicitly deals with future asset movements in a probabilistic,
path-dependent fashion i.e. does not rely on any random-walk model etc. This
makes the formalism ideal for combining with the forward-casting agent-models.

The formalism examines the variation in future wealth ∆WT from holding a
certain portfolio, for example short one euro-call contract of price C0 maturity
T and strike X and long φt [St] hedging assets in the underlying which is at
price St at time t:

∆WT = C0 −max [ST −X, 0] +
T∑
t=0

φt [St] (St+1 − St) . (3)

The variance of this wealth process (which is used as a measure of risk) is then
found analytically for a general underlying movement. For our models, this can
be done in a Monte-Carlo fashion using each member of the model ensemble to
generate a ∆WT . Doing this we could also look at other measures of risk such
as VAR etc. This process generates a more insightful measure of risk based on
likely future microscopic behavior.

The control of this risk is the next issue. Bouchaud and Sornette’s variance
of the wealth process can be minimized with respect to the hedging strategy
φt [St]. The full details are given in [20]; the result is a risk-minimizing ‘optimal
strategy’ given by:

φt [St] =
∫ ∞
X

(ST − St) 〈δSSt ,t→ST ,T 〉
〈δS2

t 〉
P [ST |St]dST (4)
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Using the forward-casting agent-models we obtain P [ST |St] (the probability of
the underlying moving from value St to ST ) by counting the number of mem-
bers of the (large) model ensemble that cast paths passing near both these two
values (price space S is discretized for this purpose). Similarly 〈δSSt ,t→ST ,T 〉 is
found as the mean increment at time t of paths passing near St and ST ,

〈
δS2

t

〉
is simply the mean squared increment at time t of all paths. The resulting re-
duction in risk when using this ‘optimal strategy’ with historical distributions is
well documented [20]; similar effects are obtained when using the agent-models’
future-cast distributions. The important difference to note is that the risk being
minimized is now the microscopically derived future risk rather than a measure
assuming the continuity of past behavior.

5.2 Transaction costs

We now digress slightly and examine the effect of transaction costs on the risk
control process discussed in the previous paragraphs. Bouchaud and Sornette’s
formalism is easily couched in discrete time, accounting for the fact that contin-
uous trading is un-physical due to transaction cost and brokerage inefficiencies.
However, transaction costs themselves have not explicitly been accounted for in
the wealth process, therefore their effect on risk-control cannot be gauged. We
address this point here by adding a term to equation 3 in order to include a
general transaction cost structure.

∆WT → ∆WT +
T∑
t=0

k1 + (k2 + k3St) |φt [St]− φt−1 [St−1]|

We now again proceed to find the variance of this wealth process as a gauge of
risk. We find that the approximation of |φt [St]− φt−1 [St−1]| ≈ ∂φt

∂St
|δSt| holds

reasonably well as the time dependence of φt [St] is weak. This allows us to
formulate an analytical correction term to Bouchaud and Sornette’s expression
for risk (full details will be presented elsewhere):

R→ R+
T∑
t=1


∫∞
−∞

〈
δS2

t

〉
(k2 + k3St)

2

×
(
∂φt
∂St

)2

P [St|S0] dSt

−
( ∫∞

−∞ 〈|δSt|〉 (k2 + k3St)
×∂φt
∂St

P [St|S0] dSt

)2

 (5)

+
∑
ti 6=tj

∞∫∫
−∞


〈|δSti|〉 〈|δStj|〉

× (k2 + k3Sti) (k2 + k3Stj)
×∂φti∂Sti

∂φtj
∂Stj

P [Sti|S0]
× (P [Stj |Sti]− P [Stj |S0])

 dStidStj

The first line of equation 5 represents the sum of independent transaction cost
variances whereas the second line represents the covariance between transaction
costs. The covariance terms become very large as we execute more transac-
tions. This non-local behavior leads to a divergence of the risk as we go toward
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continuous time as shown in Figure 9. Clearly if we are to minimize risk now
the answer is not to simply re-hedge more often.

The minimization of risk with respect to a choice of hedging strategy φt [St]
is now highly complex and in general path-dependent as might be expected from
equation 5. However, we may use pertubation theory to obtain approximate
solutions. We find that the risk and transaction costs are reduced greatly using
a volatility correction to equation 4 of the form:〈

δS2
t

〉
→ γ [t]

〈
δS2

t

〉
The form of γ [t] as a function of time is amusingly that of a smile, much like
the volatility correction in strike price to the Black-Scholes delta that is implied
by equation 4 itself. The origins of these two ‘volatility smiles’ are of course
very different. Using this correction, for portfolios where transaction costs are
likely to be high, we see a dramatic reduction in the risk and also in the absolute
transaction costs. Figure 10 demonstrates this for a particular option.

6 Conclusion

We have presented here a development from the basic minority game, to a full
market model. We have attempted to capture the behavioral aspects of market-
making and agent-participation in a thorough and yet simplistic fashion. From
this model we have then shown behavior reminiscent of ‘real’ financial asset
movements with fat-tailed distributions of returns, clustered volatility and high
volume autocorrelation.

We then moved on to show how these types of agent-based models perform
in a predictive capacity when we replace the self-generated synthetic asset-price
history with a real financial asset movement. We showed that as independent
entities, the agents were able to function in a manner similar to an inefficient
genetic algorithm and thus exploit the residual information present in the asset
movement’s sign. We then went on to show that when combined as a popula-
tion, the agents were able to perform as a much stronger predictor, suggesting
an element of collective-intelligence. We then outlined another manner in which
ensembles of these models can be used to forecast future asset-price levels in a
probabilistic manner.

Lastly, we showed how output from the agent-models could be used in a port-
folio management setting in order to measure and control risk. We went on to
demonstrate that the addition of transaction costs to Bouchaud and Sornette’s
formalism for risk management led to a greatly increased risk for high-frequency
trading. We then presented a volatility correction to the ‘optimal strategy’ that
could be used to reduce this excess risk and also reduce transaction costs.

Our aim is to develop a general understanding and framework for investi-
gating and exploiting financial markets based on microscopic models of agent
interactions. It is hoped that the work presented here represents positive and
significant steps toward this goal.
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Figure 1: Mean and standard deviation in the number of active agents
Nactive (game parameters N = 101, m = 2, s = 2, T = 50)

Figure 2: Distribution of threshold values rmin after 6000 time-steps (game
parameters N = 151, m = 3, s = 2, T = 50, λ = 0.07)

Figure 3: Time averaged PDF of agent’s wealth as measured by B [t] +
S [t] p [t] (Game parameters N = 151, m = 3, s = 2, T = 50, λ = 0.07).
Original allocation of wealth; B [0] = 1000$, S [0] = 100, p [0] = 10$.

Figure 4: Market-maker’s stock SM [t] over 6000 turns (Total stock in mar-
ket 15100)

Figure 5: Price & Volume Statistics for a single run of the market simu-
lation (parameters Nvalue = 101, Ntrend = 50, m = 3, s = 2, T = 20,
λ = 0.07)

Figure 6: Occurence probability of 4-bit strings in the price-sign history
h [t] generated from 10 years of hourly $/Yen FX-rate data

Figure 7: σreal
Bitstring/σ

random
Bitstring as a function of price increment length for

m = 2, 5, 8 (dataset $/Yen FX-rate between 1990-99)

Figure 8: $/Yen FX-rate 1990-99 (top) and cumulative non-compounded
profit from using agent predictions both independently and collectively
(bottom)

Figure 9: Standard deviation of the wealth process (risk) as a function
of trading time (length of time between trades). 30-day at-the-money
european option vol=7.37p/day.

Figure 10: Simulated distribution of wealth for portfolio short one 30-day
euro-call, at the money, vol=7.37p/day and long φt [St] of the underlying
with transaction costs at k3 = 5%. φt [St] according to Black-Scholes
Delta (top) and with modified volatility as described in the text (bottom).
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