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Abstract. This paper develops a subordinated stochastic process model for asset

prices, where the directing process is identi�ed as information. Motivated by recent

empirical and theoretical work, we make use of the under-used market statistic of

transaction count as a suitable proxy for the information ow. An option pricing

formula is derived, and comparisons with stochastic volatility models are drawn.

1 Introduction

Derivative pricing depends crucially on the assumptions made concerning

the distributional properties of the asset price. Without some model of the

underlying price process, it is impossible to price a derivative. The standard

model of asset prices for derivative pricing is

dS

S
= � dt+ � dX

in which � and � are constants. The model works well, but the predictions do

not agree completely with market prices. There are many variations on the

lognormality assumption, but it is likely that there is no universal remedy.

Popular approaches include: other random walks, e.g. constant elasticity of

variance [1]; local volatility surfaces [13]; stochastic volatility models [6,10];

other stochastic processes, e.g. the hyperbolic distribution [4] or truncated

L�evy [11]; and more general statistical approaches [2].

There is also a vast literature on market microstructure; for an overview

see [12]. However, it is not easy to make the link with more global (longer

time-scale) problems such as derivative pricing. Many models of price for-

mation have been proposed, with the key element that price movements are

primarily due to the arrival of information in the form of buy/sell orders.

In this paper we formulate a model based on the old Wall Street adage

that \it takes volume to move prices". The idea is to use some measure of

trading volume as a proxy for the information events, and relate price changes

to such information events rather than simply the passage of calendar time.

This is supported by recent empirical evidence by Geman [7,8], who found

that the asset price follows a geometric Brownian motion with respect to

a \timescale" (stochastic variable) de�ned by the number of transactions.

In this framework the stock price is a good candidate to be described by a

subordinated stochastic process model, which we will introduce in the next

section.



2 Sam Howison and David Lamper

2 Subordinated stochastic processes

Discrete stochastic processes are indexed by a discrete variable, usually time,

in a straightforward manner: X(0); X(1); : : : ; X(t); : : :; here X(t) is the value

that a particular realization of the stochastic process assumes at time t.

Instead of indexing by the integers 0; 1; 2; : : : the process could be indexed by

a set of numbers �1; �2; : : : where these numbers are themselves a realisation

of a stochastic process with positive increments. That is, if �(t) is a positive

and increasing stochastic process, a new process X(�(t)) may be formed. The

resulting nonstationary process X(�(t)) is said to be subordinated to X(t),

called the parent process, and is directed by �(t), called the directing process

or the subordinator [5]. If the increments of the directing process �(t) are not

independent, this technique is known as a general stochastic time change.

The process �(t) is often referred to as a \stochastic clock".

Many problems can be formulated in terms of subordinated processes.

Take, for example, the expected remaining lifetime of a hard drive, denoted

by X, which may be considered a stochastic function of time, i.e. X(t), with

a negative drift subject to the condition it is always positive. However, the

expected lifetime of a hard drive in a server environment is clearly di�erent

from a desktop, and the lifetime process may alternatively be considered a

stochastic function of the total amount of data transferred by the drive, i.e.

X(n), where n itself is a stochastic function of time. In situations where the

drive is accessed continuously, the process describing the remaining lifetime

of the drive will evolve quickly. Conversely, when the drive is little used,

X evolves slowly with time. Formulating this example in the subordinated

process framework, the expected remaining lifetime of the drive is the parent

process; the amount of data transferred is the directing process.

Formulating our model in a subordinated process framework, the total

number of information arrivals, denoted by n(t), is assumed to drive the

market, i.e. n(t) represents the directing process of the market. The timescale

regulated by n(t) is hereafter referred to as information time, and is distinct

from calendar time t. Both the asset price S and the cumulative number

of trades N are dependent on the number of information arrivals, and are

regarded as the observable parent processes. We utilise the observation by

Geman [8,7] that a stationary, lognormal distribution for S can be achieved

through a stochastic time change, where the directing process is found to

be well approximated by the number of trades (up to a constant). This is

compatible with the popular notion of the number of transactions being a

guide to the pace of market activity.

3 Market model

The total price change of an asset in any �xed calendar time interval, such

as a day, reects the accumulation of a random number of arrivals of many
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small bits of information, proxied by the number of trades. On less eventful

days trading is slow and prices evolve slowly, whereas prices evolve faster

with heavier trading when more information arrives. Empirical evidence has

shown that subordinated processes represent well the price changes of stocks

and futures. As early as 1973, Clark [3] applied subordinated processes to

cotton futures data.

3.1 Information arrivals process

The total number of information arrivals n(t) is assumed to be large, yet

display a signi�cant daily variation. It must be a positive, increasing function

of time, and hence dn � 0. We assume that there is a positive rate, or

intensity, of information arrivals I(t). Hence n(t) is de�ned as the solution of

dn = I(t) dt: (1)

We propose to model I(t) by the stochastic process

dI = p(I; t) dt+ q(I; t) dX
(2)
t ;

where p and q are as yet unspeci�ed functions of I and t, which must, however,

be such that I(t) � 0, and dX
(2)
t is the increment of Brownian motion in

calendar time, i.e. [dX
(2)
t ]2 = dt.

The directing process n(t) is well approximated by the cumulative number

of transactions N(t). The number of transactions in a given time interval,

�N , subject to the addition of a constant, is assumed to be equal to the

change in value of the directing process, �n. Thus moments of the directing

process greater than 1 are directly matched by the moments of the number

of transactions.

3.2 Asset price models

A stochastic time change is made from calendar time to information time to

achieve a stationary, lognormal model of the asset price S in the informational

timescale. Alternatively, this may be regarded as a change in the frame of

reference or as time deformation, since the relevant time scale promoting

normality of returns is no longer calendar time but information time. Hence

the subordinated process S can be described by the usual lognormal random

walk in this timescale:

dS = �nS dn+ �nS dX
(1)

n(t)
; (2)

where �n and �n are constants representing the drift and volatility of the

asset return per information event respectively. The increment of Brownian

motion dX
(1)

n(t)
evolves in the informational timescale, i.e.

h
dX

(1)

n(t)

i2
= dn(t) = I(t) dt
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from (1), and is distinct from, but may be correlated with, dX(2).

The return in a time interval �t at time t, R�t(t), can be expressed as

R�t(t) j �n � N(�n�n; �
2
n�n);

where �n = n(t + �t) � n(t), indicating the conditional normality of this

process. The variance, conditional on the value of �n, is

Var[R�t j �n] = �2
n�n:

However, the number of information arrivals �n in a time period �t is not

constant, but is a stochastic variable. Thus R�t exhibits conditional het-

eroskedasticity, that is the conditional variance of R�t is not constant. Fur-

thermore, if �n were assumed to be serially correlated in a discrete setting,

the variance of R�t would be an ARCH process.

Using equation (1), we can rewrite (2) as

dS = �nSI(t) dt+ �nS
p
I(t) dX

(1)
t ;

where dX
(1)
t is the realisation of dX(1) in calendar time. It can be seen that

the rate of information arrivals I(t) drives the volatility of stock returns in

calendar time. Thus price variability in our model depends on the ow of

information into the market, both in the drift and volatility terms. Volatility

is often associated with the amount of information arriving into the market,

and this model proposes that stochastic volatility is directly linked to the

rate of information ow I(t).

We now propose a speci�c model for the information ow, modelling I(t)

by the mean reverting random walk

dI = �(�I � I) dt+ �I1=2 dX
(2)
t ;

where � represents the rate of mean reversion and �I is the long-run mean-

level of I. The information intensity I(t) is a hidden process and is not di-

rectly observable. However, in this model the moments greater than one of

the directing process n(t) are identical to the moments of the number of

transactions. This observation can be utilised to obtain information about

the underlying process I(t). The rate of mean reversion � can be obtained by

considering how the variance of the number of transactions �N scales with

time, or looking at the autocovariance. A comparison of the two separate es-

timates of � gives an approximate error indication. Fits of the variance and

covariance were successful on many of the `old economy' stocks, where there

was typically no strong trending element in the number of transactions and

relatively few days with exceptional trading behaviour, see e.g. Fig. 1. The

remaining parameters can be estimated from the price series.
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Fig. 1. Estimation of parameters of I(t) from transaction count data for Thames

Water (Source: Primark Datastream). (a) Estimation of � using lagged covariance

data. (b) Scaling of variance with �t. (c) Extracted I(t) over estimation window

4 Concluding remarks and applications to derivative

pricing

The rate of information arrivals is not a traded asset. Unlike the Black{

Scholes case it is no longer suÆcient to hedge solely with the underlying asset,

but nevertheless arbitrage assumptions force the prices of di�erent derivative

products to be mathematically consistent. Because we have two sources of

randomness, we set up a portfolio containing one option, with value denoted

by V (S; I; t), a quantity �� of the asset and a quantity ��1 of a separate

liquid option with value V1(S; I; t) in a manner exactly analogous to stochastic

volatility models [6]. The option price can then be expressed as a solution of

the parabolic partial di�erential equation

@V

@t
+

1

2
�2
nS

2I
@2V

@S2
+

1

2
q2
@2V

@I2
+ ��nSq

p
I
@2V

@S@I

+rS
@V

@S
+ (p� �q)

@V

@I
� rV = 0:
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Here �(S; I; t) is the market price of (information arrival intensity) risk.

Clearly, the observed volatility depends on the rate of information arrivals I.

When a large amount of information is arriving in the market place, I is above

average, our stochastic clock runs faster and the observed asset volatility in-

creases. Hence it is natural to interpret our model as a stochastic volatility

model. There are a number of possible approaches to solving this model, both

numerical and asymptotic and space does not permit a fuller discussion here;

for further details see [9].
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