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Abstract

This paper develops a parameterised model for liquidity e�ects arising from trading an asset.

The liquidity e�ect is de�ned as an individual transaction cost and a price slippage impact, that

is felt by all participants in the market. The liquidity model is based on the CRR binomial

and is applied to the pricing and hedging of options. It derives natural bid-ask spreads for an

option that are based on the liquidity of the market for the underlying. We also mention further

applications of our model like portfolio trading, liquidity options and strike detection.

1 Introduction

Two of the underlying assumptions of, amongst other, the basic Black-Scholes or CAPM economies
are, �rstly, frictionless markets and, secondly, that every agent is a price-taker. But real world
markets substantially deviate from these assumptions, because for virtually all traded assets there
exist both bid-ask spreads and a limited market depth. The e�ects of the two on asset dynamics
are loosely referred to as liquidity, meaning the more of an asset is tradeable at tight spreads, the
more liquid, and thus attractive, a market. Currently, a vast amount of research is conducted on
how to measure, parameterise, price and manage liquidity in most �elds of �nance. This includes
the extension of basic arbitrage or equilibrium models to cover the case of �nite liquidity.

The latter has two main e�ects. Firstly, it represents a random transaction cost, which is
correlated with the market's dynamics. In general, a market consists of competing buyers and sellers,
who quote an asset's transaction directions, prices and quantities. The most common exchange
structures are respectively, a monopolistic market maker, an oligopoly of market makers or an order-
driven market. In all cases, there will be layers of bid and ask quotes with the respective quantities.
The width and depth of the spreads primarily represent a transaction cost for market makers, since
they will buy low and sell high and, secondly, an insurance again asymmetric information. Generally,
if there exist many competing market participants that want to trade, bid-ask spreads tend to be
narrow and market depth substantial, because low transaction cost will attract large volume. But,
whereas it may be possible for agents to trade small quantities of an asset at the best possible price,
the larger the trade size, the more levels of market depth will have to be tapped. Hence the average
transaction price will be a, in general, nonlinear monotonously increasing function of trade size.

�contact: bakstein@maths.ox.ac.uk; work supported by the EPSRC, Charterhouse, Socrates and ESF; the author
would wish to thank Sam Howison, Hyungsok Ahn, Je� Dewynne, Henrik Rasmussen and Paul Wilmott for helpful
comments
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Secondly, liquidity is directly responsible for the degree of market slippage. This means that,
since every participant can observe the same market depth, every trade of any one agent is felt
throughout. If a large trader removes a certain price level in its entirety, called the slippage, then
subsequently market makers may adjust their prices. Comparatively large individual transactions
or in
uential market participants hence push the asset price in a certain direction, in some cases
deliberately (see e.g. [Tal]). Hence there is a market manipulation e�ect associated with liquidity,
that goes beyond pure transaction costs. The two e�ects may have opposite signs, but for the market
to be free of arbitrage, transaction costs have to be higher than the gains from market manipulation.

Generally, however, there is no consensus approach to the parameterisation and measurement of
the liquidity of a market. The papers of [Lon] and [CRS] use combinations of bid-ask spreads, volume
and open interest as a proxy to empirically investigate the e�ects on returns and distributions of
the underlying and options on it. The papers of [Jar1], [Sch�o], [Frey], [A&C] and [H&S1] propose
liquidity models that feature a reaction function that models the immediate impact of a trade and
the average price paid per asset. It is also a function of both an liquidity scaling parameter and
the trade size. A possible proxy for the former is explicitly given by [Krak] as the ratio of notional
traded to the relative change in the price of the underlying asset. This choice of estimator has the
advantage that at the time of the trade the liquidity parameter is observable and predictable. The
papers by [A&C], [H&S1] and [H&S2], further consider a permanent slippage e�ect on the asset, by
making its new equilibrium price a function of both the previous and the average transaction price.
But they only apply their models to optimal portfolio trading strategies.

One area of �nance where liquidity is a signi�cant factor is the valuation and hedging of options.
Even if no single trader has the intention to push the market in a certain direction, there exist
agents who have to trade certain quantities of the underlying in order to hedge their exposure to
a portfolio of derivatives. If, as in the Black-Scholes theory, they try and Delta-hedge, then for
options with non-smooth or even-discontinuous payo�s, the Delta and Gamma, i.e. the amount
of the underlying they have to hold and add/remove, respectively, may become very large close to
expiry or close to payo� discontinuities. Since, in reality, markets only have limited liquidity, they
will thereby automatically move the market in a certain direction. To avoid any mis-hedging, the
respective ratios have to be adjusted for this feedback e�ect. This in turn will a�ect the price of the
portfolio, since the risk-free amount that can be earned on a replicating portfolio changes as well.
Moreover, the price of a portfolio of options is not the sum of the individual options.

To incorporate the e�ects of �nite liquidity into option prices and hedging strategies, we employ a
discrete time model, based on binomial trees. For the transaction cost e�ect we make the observable
asset price an exponential function of the trade size, scaled by a liquidity parameter. For the per-
manent slippage e�ect, we take a geometric average of the last observed and the average transaction
price. This makes the model nonlinear. We show that under certain realistic assumptions the trees
become recombining and can be implemented. By changing the sign of the option payo�, we derive
natural bid-ask spreads of the option, that arise from the degree of illiquidity of the market for the
underlying. Finally, we mention some further extensions to and applications of the basic model.

2 The basic model

The main building block for the pricing framework of derivatives and portfolio trades is a suitable
model for the underlying asset. We thus commence our analysis in a discrete time �nite horizon
economy where trading in assets takes place at times ft0; t1; : : : ; tn = Tg. The state of the economy
is given by the �nite set 
 = f!1; : : : ; !mg and the revelation of the true state by the increasing
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sequence of algebras (Ft)t2ft0;:::;Tg. The initial set of states is Ft0 = 
, the eventual true state of
the economy is revealed as FT = !j , 8!j 2 
. There are two assets, namely a risky \stock" St(!)
and a riskless \bond" Bt, whose respective processes are adapted to the �ltration (Ft)t2ft0;:::;Tg and
valued in R+ .

Resorting to the widely used binomial model of [CRR], we will model randomness, which repre-
sents the arrival of information and agents trading in the stock, by making the risky asset go up by
a fraction u� 1 with probability p or down by a fraction 1� d with probability 1� p over one time
step. Therefore

Sti+1(!j) =

�
uSti if !j = !u
dSti if !j = !d

; (1)

where u > d. The bond on the other hand will always yield the riskless return r, namely

Bti+1 = (1 + r)Bti : (2)

Moreover we can set the initial values of stock and bond equal to St0 = S and Bt0 = 1, without loss
of generality. Two key properties of the model are, �rstly, the absence of arbitrage provided that
0 < d < 1+ r < u and, secondly, that for appropriate choice of u, d and the risk-neutral probability
p the model's �rst two moments, approximately, can be �tted to the corresponding moments of
continuous geometric Brownian motion

dSt = rStdt+ �StdXt; (3)

where � is the assets volatility and dXt increments of standard Brownian motion. The same model
is employed in the seminal paper by [B&S] as the model for the underlying asset.

On top of this random process for the underlying we construct a controlled process that represents
the e�ect of a large or in
uential trader on the market. We denote this trader's holding process
in the stock by (Ht(!))8t;! and in the bond by (Ĥt(!))t2f8t;!. Both processes are adapted to
the �ltration (Ft)t2ft0;:::;Tg and one step ahead predictable with respect to it. The latter point
entails, that the trader's portfolio can be rebalanced in between the random jumps of the underlying
asset. If we now assume that S represents the mid-market price, then the best buying and selling
prices will be above and below, respectively. Also, if the quantity traded is larger than the quantity
o�ered at the best price, then more than one quote has to be �lled in order to complete the trade.
This means that the average transaction price �S is a monotonously increasing function of the trade
size. We de�ne its process ( �St)8t;! as a function f(�) of the current spot St, liquidity � and trade
size (Hti+1 � Hti). Intuitively, the trade-reaction or price-impact function, in addition to being
monotonous and positively sloped with respect to the trade size, should have the properties that

lim
Hti+1

�Hti
#�1

f = 0; lim
Hti+1

�Hti
"1

f =1; f(Hti+1 �Hti = 0) = Sti :

One possible function as already noted in [Jar1] and [Frey] is

�Sti = Stie
�(Hti+1

�Hti
); (4)

where � � 0 is a liquidity scaling parameter and we suppressed the explicit dependence on the
trajectory !. As an example �gure 1 shows the exact average transaction price as a function of
trade size for an order book with homogeneous equidistant market depth and compares it with
an estimate obtained from (4). The total cash 
ow and implicit transaction cost are given by
(Hti+1 �Hti) �Sti and �(Hti+1 �Hti)( �Sti � Sti), respectively. Unlike the transaction cost functions
of [B&V] and [ENU] (4) is asymmetric, but does not require the modulus sign, which, as we will
see, makes it possible to remove the path dependence and make the resulting tree recombining.
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Figure 1: Average transaction prices

Now, in addition to the transaction cost e�ect, there is a market manipulation e�ect that is felt
by all participants, since the best quotes have been removed from the order book. Unlike [Jar1],
[Jar2], [Sch�o], [Frey] and [Krak] the papers by [A&C], [H&S1] and [H&S2] treat the reaction function
as an instantaneous price impact and they distinguish a permanent price update e�ect, which is a
function of both the previous equilibrium and the average transaction price. An intuitive explanation
is that large trades may not contain fundamental new information and hence push the market to
an untenable price level. A mathematically convenient model for this e�ect is to make the new
equilibrium log-price a linear combination of the two previous equilibrium and average transaction
log-prices or, equivalently, a geometric average of the two prices:

Sti+1(!j) =

�
uS�ti

�S1��ti if !j = !u
dS�ti

�S1��ti if !j = !u
: (5)

If 0 � � � 1 and constant, then the new observable price Sti+1 is a convex combination. But �,
realistically, can be negative, since in general the average transaction price is, depending on the
trade direction, below or above the last price traded, unless only one level of market depth was
�lled. Combining the instantaneous trade-reaction (4), the permanent slippage (5) and reverting to
the binomial representation (1) we obtain 8ti the price dynamics

Sti ! �Sti = Stie
�(Hti+1

�Hti
) !

(
uS�ti

�S1��ti = uStie
�(1��)(Hti+1

�Hti
)

dS�ti
�S1��ti = dStie

�(1��)(Hti+1
�Hti

):
(6)

This model setup, albeit structured similarly, is di�erent from those of [A&C], [H&S1] and [H&S2],
who in their respective papers, resort to arithmetic Brownian motion

dSt = �dt+ �dXt; (7)

as the model for the dynamics of the underlying. Even though the latter is a computationally
convenient model for high-dimensional portfolio trading applications, it may cause concerns when
applied to the pricing of derivatives, mainly due to the fact that the spot of the underlying may
become negative with positive probability. In the standardly used geometric Brownian motion this
is only possible with zero probability.
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3 The hedging and pricing of vanilla options under the basic

model

Contingent claims are valued in reference to the initial value Vt0 of a portfolio strategy in the
underlying risky and riskless assets. This self-�nancing hedging strategy (H�

t (!); Ĥ
�
t (!))8t;!, with

H�
t0 = Ĥ�

t0 = 01 will exactly replicate or super-replicate any payo�s of the claim Ct(!);8! 2 
. For
a discrete time economy the valuation of European vanilla type contingent claims under our �nite
liquidity model can then be formulated as a non-linear programme with objective function

min
(Ht(!);Ĥt(!))t2ft0;:::;Tg

Vt0 = Ht1
�St0 + Ĥt1Bt0 (8)

subject to initial holding, the self-�nancing and payo� super-replication constraints

Ht0 = Ĥt0 = 0; (9)

(Ĥti(!)� Ĥti�1(!))Bti�1 + (Hti(!)

�Hti�1(!))e
�(Hti

(!)�Hti�1
(!))Sti�1(!) = 0; (10)

VT (!) = HT (!)ST (!) + ĤT (!)BT � CT (!); (11)

8! 2 
;8ti 2 ft0; : : : ; Tg;

respectively, where the processes of (Bt; St)8t;! are given by (2) and (6). Because, in general, St(!),
�St(!) and thus CT (!) are functions of the present and past stock-holdings the problem is path-
dependent and the number of variables as well as constraints is exponentially growing as the number
of time steps increases. As an example, we consider the three period economy with the set of states

 = f!uuu; !uud; : : : ; !dddg and the �ltration2 Ft0 = f
g, Ft1 = f!u = f!uuu; : : : ; !uddg; !dg,
Ft2 = f!uu; : : : ; !ddg and Ft3 = ff!uuug; : : : ; f!dddgg. Then the asset's dynamics are

t0 : St0 ! St0e
�Ht1

t1 :

�
uSt0e

�(1��)Ht1 ! uSt0e
�(Ht2

(!u)��Ht1
)

dSt0e
�(1��)Ht1 ! dSt0e

�(Ht2
(!d)��Ht1

)

t2 :

8>><
>>:

u2St0e
�(1��)Ht2

(!u) ! u2St0e
�(Ht3

(!uu)��Ht2
(!u))

udSt0e
�(1��)Ht2

(!u) ! udSt0e
�(Ht3

(!ud)��Ht2
(!u))

duSt0e
�(1��)Ht2

(!d) ! duSt0e
�(Ht3

(!du)��Ht2
(!d))

d2St0e
�(1��)Ht1

(!d) ! d2St0e
�(Ht3

(!dd)��Ht2
(!d))

t3 :

8>>>>>>>>>><
>>>>>>>>>>:

u3St0e
�(1��)Ht3

(!uu)

u2dSt0e
�(1��)Ht3

(!uu)

u2dSt0e
�(1��)Ht3

(!ud)

ud2St0e
�(1��)Ht3

(!ud)

u2dSt0e
�(1��)Ht3

(!du)

ud2St0e
�(1��)Ht3

(!du)

ud2St0e
�(1��)Ht3

(!dd)

d3St0e
�(1��)Ht3

(!dd)

:::

It becomes apparent that a one period model has two variables/constraints3, a two period model
6 variables/constraints and an n-period model 2n � 2 variables/constraints. The controlled process

1This condition is mainly for simplicity and can easily be relaxed to an arbitrary value H0. The total replication
cost will actually be less, if H0 = Ht1

.
2Strictly speaking, the �ltration (Ft)t is given by the �-algebra of the given partition at every ti, i.e. all the unions

and complements of the elements of Fti
.

3We do not count the t0 holdings or constraints.
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makes the asset tree bushy and thus hard to implement. But when we turn the inequality (11) into
an equality for Markovian contingent claims two distinct trajectories with identical number of up
and down moves at a time ti will result in identical holdings in stock and bond, e.g. Ht3(!ud) =
Ht3(!du). We refer to this condition as the \justi�ed manipulation" e�ect. Because normally market
manipulation or front-running are illegal, the condition gives the large trader a valid reason to exactly
hedge his position. The asset tree becomes recombining and thus feasible to implement. The asset's
dynamics are visualised in �gure 2. Under the special case where � = 0 the process reduces to �gure
3. The case � = 0 entails that any price impact due to large trades is a permanent e�ect in its
entirety. Still it represents a possibly large scale nonlinear optimisation problem. To solve for the
holding process (Ht(!); Ĥt(!))8t;! we have to resort to an optimisation algorithm that will converge
quickly. One standard possibility is the Newton method:

J([H(i+1) Ĥ(i+1)]T � [H(i) Ĥ(i)]T ) = �[g1 g2];

where

J =

�
rHg1 rĤg1
rHg2 rĤg2

�

is the Jacobian matrix. For the terminal condition (11)we have to solve the system of implicit
nonlinear functions

g1(H; Ĥ; !2j ; T ) = HTu
n�jdjSt0e

�(1��)HT + ĤTBT

�C(un�jdjSt0e
�(1��)HT ) = 0

g2(H; Ĥ; !2j�1; T ) = HTu
n�j+1dj�1St0e

�(1��)HT + ĤTBT

�C(un�jdiSt0e
�(1��)HT ) = 0;
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8j = 0 : : : n, where j and n are the number of down and time steps, respectively, and Hti(!2j) =
Hti(!2j�1) = Hti ;8i for notational convenience. Furthermore, the intermediate self-�nancing con-
ditions (11) span the system

g1(H; Ĥ; !2j ; ti) = (Hti �Hti+1)e
�(1��)Hti+1un�jdjSt0

+(Ĥti � Ĥti+1)Bti = 0

g2(H; Ĥ; !2j�1; ti) = (Hti �Hti+1)e
�(1��)Hti+1un�j+1dj�1St0

+(Ĥti � Ĥti+1)Bti = 0;

8j = 0 : : : n, i = 1 : : : n� 1 and suppressing the explicit dependence on !j .

The so calculated prices represent the seller's price, i.e. how much a writer would require or a
buyer would need to pay for. By multiplying the payo�s by �1 we obtain the buyer's price, i.e. how
much the customer would obtain for entering into this position. These two prices, which due to the
nonlinearity of the model will not be the same, represent natural bid-ask spreads, that are founded
on the degree of illiquidity of the market for the underlying. Tables 1 and 2 show the bid-ask spreads
for di�erent scenarios for call and put options with time to expiry of 1 year, 50 time steps, strike of
50, annualised riskless rate of 5% and volatility of 20%.

The case � = 1 implies, that there is no permanent slippage e�ect. The other market participants
did not consider the trade to be based on fundamental information. In this case the model resembles
the pure transaction cost models of [B&V], [BLPS] and [ENU]. In fact we can deduce the value of
the manipulation e�ect of illiquid markets, by subtracting the result of a particular choice of � from
the result for � = 1.

3.1 Distinct bid and ask liquidity

Typically the market depth on the bid and ask side and thus liquidity is not equal. If there exist
large imbalances this usually leads to increased volatility and to price movements. In that case i.e.
buying when everybody is selling and vice versa, the liquidity for the transaction will be good, the
converse holds if one follows the market. The reaction function (4) o�ers only one scaling parameter
and has a linear approximation for small changes. Thus it may not o�er enough 
exibility to account
for distinct bid and ask liquidity. One simple modi�cation would be to replace (4) by

�Sti = Sti(e
�a(Hti+1

�Hti
)IR+(Hti+1 �Hti) + e�b(Hti+1

�Hti
)IR�(Hti+1 �Hti))

where �a, �b are the bid and ask liquidity, respectively, and IA(x) is the indicator function. Figure
4 shows an actual order book snapshot and a two parameter estimate. This modi�cation, however
makes the model path-dependent and we cannot solve it through the tree structure any longer.
Instead a large scale dynamical programming algorithm, possibly with approximations would have
to be employed (see e.g. [ENU]).

3.2 Parameterisation and calibration of the model

[Krak] explicitly de�nes liquidity as the reciprocal of �H
�S , i.e. the sensitivity of the stock price to

the quantity traded. However in this form the parameter is not dimensionless and depends on the
absolute size of both the quantity and nominal stock price. A better measure would be to treat
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European Calls
r=.05 sigma=.2 T=1 steps=50 H0=0

ASK PRICES BID PRICES
perf. Liq. Black-Scholes alpha=1

alpha=1 moneyness lambda 0.01 0.001 0.0001 0 exact lambda 0.01 0.001 0.0001
0.7 0.2850 0.2623 0.2601 0.2598 0.2649 0.2339 0.2573 0.2596
0.8 1.1745 1.1058 1.0987 1.0979 1.1156 1.0139 1.0899 1.0971
0.9 3.1670 3.0607 3.0495 3.0483 3.0547 2.9149 3.0357 3.0470

1 6.3770 6.2594 6.2470 6.2456 6.2703 6.0953 6.2316 6.2442
1.1 10.7023 10.6195 10.6110 10.6100 10.5978 10.5098 10.6004 10.6090
1.2 15.7611 15.7078 15.7023 15.7017 15.7014 15.6383 15.6956 15.7011
1.3 21.2970 21.2698 21.2671 21.2668 21.2642 21.2358 21.2637 21.2665

alpha=0.5
alpha=0.5 moneyness liquidity 0.01 0.001 0.0001 lambda 0.01 0.001 0.0001

0.7 0.2848 0.2623 0.2601 0.2358 0.2574 0.2596
0.8 1.1767 1.1059 1.0987 1.0196 1.0899 1.0971
0.9 3.1708 3.0609 3.0495 2.9167 3.0356 3.0470

1 6.3795 6.2594 6.2470 6.1187 6.2333 6.2444
1.1 10.7008 10.6192 10.6109 10.5153 10.6007 10.6091
1.2 15.7627 15.7079 15.7023 15.6381 15.6955 15.7011
1.3 21.2963 21.2697 21.2671 21.2370 21.2638 21.2665

alpha=0
lambda 0.01 0.001 0.0001

moneyness liquidity 0.01 0.001 0.0001 0.2368 0.2575 0.2596
alpha=0 0.7 0.2838 0.2622 0.2600 1.0280 1.0898 1.0971

0.8 1.1781 1.1060 1.0987 2.9225 3.0354 3.0470
0.9 3.1732 3.0610 3.0496 6.1328 6.2348 6.2445

1 6.3794 6.2594 6.2470 10.5165 10.6010 10.6091
1.1 10.6950 10.6189 10.6109 15.6357 15.6953 15.7010
1.2 15.7626 15.7080 15.7023 21.2364 21.2639 21.2665
1.3 21.2936 21.2696 21.2670

alpha=-0.5
lambda 0.01 0.001 0.0001

moneyness liquidity 0.01 0.001 0.0001 0.2374 0.2575 0.2596
alpha=-0.5 0.7 0.2816 0.2621 0.2600 1.0336 1.0898 1.0971

0.8 1.1786 1.1060 1.0987 2.9315 3.0353 3.0470
0.9 3.1742 3.0612 3.0496 6.1404 6.2363 6.2447

1 6.3762 6.2594 6.2470 10.5142 10.6013 10.6091
1.1 10.6830 10.6185 10.6109 15.6356 15.6952 15.7010
1.2 15.7607 15.7081 15.7023 21.2342 21.2639 21.2665
1.3 21.2884 21.2695 21.2670

Table 1: Call options
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European Puts
r=.05 sigma=.2 T=1 steps=50 H0=0

ASK PRICES BID PRICES
perf. Liq. Black-Scholes alpha=1

alpha=1 moneyness lambda 0.01 0.001 0.0001 0 exact lambda 0.01 0.001 0.0001
0.7 15.3602 15.3375 15.3353 15.3350 15.3386 15.3091 15.3325 15.3347
0.8 10.2497 10.1810 10.1739 10.1731 10.1894 10.0891 10.1651 10.1723
0.9 6.2421 6.1359 6.1247 6.1235 6.1285 5.9901 6.1109 6.1222

1 3.4522 3.3346 3.3222 3.3208 3.3441 3.1705 3.3068 3.3194
1.1 1.7775 1.6947 1.6861 1.6852 1.6715 1.5850 1.6756 1.6842
1.2 0.8363 0.7830 0.7775 0.7769 0.7752 0.7135 0.7707 0.7763
1.3 0.3722 0.3450 0.3423 0.3420 0.3379 0.3110 0.3389 0.3416

alpha=0.5
alpha=0.5 moneyness liquidity 0.01 0.001 0.0001 lambda 0.01 0.001 0.0001

0.7 15.3607 15.3376 15.3353 15.3089 15.3324 15.3347
0.8 10.2461 10.1801 10.1738 10.1024 10.1661 10.1724
0.9 6.2359 6.1349 6.1246 6.0056 6.1120 6.1223

1 3.4549 3.3346 3.3222 3.1944 3.3085 3.3196
1.1 1.7807 1.6949 1.6862 1.5859 1.6755 1.6842
1.2 0.8344 0.7826 0.7774 0.7197 0.7712 0.7763
1.3 0.3733 0.3451 0.3423 0.3112 0.3389 0.3416

alpha=0
lambda 0.01 0.001 0.0001

moneyness liquidity 0.01 0.001 0.0001 15.3078 15.3324 15.3347
alpha=0 0.7 15.3604 15.3376 15.3353 10.1097 10.1671 10.1725

0.8 10.2458 10.1791 10.1737 6.0144 6.1130 6.1224
0.9 6.2303 6.1339 6.1245 3.2097 3.3100 3.3197

1 3.4558 3.3347 3.3222 1.5854 1.6753 1.6842
1.1 1.7829 1.6950 1.6862 0.7236 0.7715 0.7763
1.2 0.8302 0.7822 0.7774 0.3110 0.3388 0.3416
1.3 0.3741 0.3451 0.3423

alpha=-0.5
lambda 0.01 0.001 0.0001

moneyness liquidity 0.01 0.001 0.0001 15.3058 15.3323 15.3347
alpha=-0.5 0.7 15.3592 15.3376 15.3353 10.1127 10.1680 10.1726

0.8 10.2435 10.1780 10.1736 6.0186 6.1139 6.1225
0.9 6.2297 6.1328 6.1244 3.2195 3.3115 3.3199

1 3.4547 3.3346 3.3222 1.5839 1.6752 1.6842
1.1 1.7841 1.6952 1.6862 0.7260 0.7719 0.7764
1.2 0.8272 0.7818 0.7774 0.3104 0.3388 0.3416
1.3 0.3745 0.3452 0.3423

Table 2: Put options
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Figure 4: Average transaction price estimate with 2 parameters

Figure 5: Lambda on a particular trading day

the product �(Hti � Hti�1) as a dimensionless variable. In this case � = �S=S
�H . In this case the

liquidity parameter becomes observable at the time of the trade, since the market depth is visible.
Figure 5 shows � for all the subsequent trades in one particular trading day. To further make
liquidity comparable across di�erent stocks and markets we would need to make the denominator
dimensionless as well. This could be done by dividing it by the total quantity traded across the
time interval in question. That means, that one's own trades are treated as a fraction of the total
market. However the total trade size in general is not predictable.

4 Conclusion

We believe that our model o�ers a 
exible, simple but realistic approach to parameterising liquidity.
It relies on inputs that are either directly observable or possible to estimate. Moreover, the speed
of calculation entirely depends on the choice of optimisation algorithm employed. Also this model
may o�er the framework for a number of related applications, that primarily depend on liquidity.

Portfolio trading

Portfolio trading is the liquidation or rebalancing of a large portfolio of one or more stocks. In
general the portfolio is assumed to be large enough to substantially move a market, so that it has
to be broken up into smaller chunks. Sometimes an agent guarantees a client the liquidation price
in advance, usually in terms of a spread around the volume weighted average price (vwap) over a
period of time. Depending if it is necessary to return any outperformance of the vwap to the client
or not, the initial agreement represents an option. The papers of [A&C] and [H&S2] deal with this
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problem by resorting to arithmetic Brownian motion, optimising on objective function that trades
o� return against variance, scaled by a risk-aversion parameter. The implementation with our model
would be straightforward.

Liquidity options

[Scho] de�nes liquidity options as the right or obligation to buy or sell a certain amount of an asset
at the quoted spot price, exercisable within a prespeci�ed time window. Under perfect liquidity, this
amounts to a call or put option with a strike price of zero. Hence it would theoretically amount to
the forward price of the asset. However when liquidity is not perfect this valuation does not hold
any longer, since it may not be the cheapest alternative to take a static hedge up-front.

Exotic options in illiquid markets

[Tal] mentions, possibly illegal, practices of a large trader front-running the client that holds positions
in the market. The author moreover mentions that clients require a liquidity rebate when entering
into positions in illiquid markets, especially when exposed to knock-out Barriers. Our model may be
extended to exotic, possibly non-Markovian payo�s so that the manipulation e�ect can be extracted.

Strike detection

Finally, our model may proof useful for the inverse problem: given that certain large trades are ob-
served, is it possible to deduce where the trader wants the asset price to be or what position (strike,
barrier) is defended. [L&W] show how options should be priced when asset returns are correlated.
Another possibility would be to perform a maximum likelihood analysis, after having observed a
sequence of large trades.

All these applications form part of current research and development. Hopefully some interesting
results can be expected in the future.
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