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1 Introduction

Industry competition can substantially influence the values of claims on firms. Declin-
ing performance in one firm may signal the industrial ascendancy of others, while the
liquidation of one company may precipitate the acquisition of temporary monopoly
power by another. Interactions of this kind are common in oligopolies and give rise to
different incentives among debt and equity holders. While there has been much study
of how capital structure decisions affect strategic behavior in product markets,! few
studies have examined how competition affects capital structure decisions and the

pricing of securities.

An exception to this is Lambrecht (2000) which investigates the order of bankruptcy,
subsequent entry and debt exchange offers within a stochastic continuous-time duopoly
model. While Lambrecht’s study provides insight on how business failure and rene-
gotiation are related to macro-economic variables as well as firm and industry char-
acteristics, he devotes no attention to the behavior of default premia in oligopolies.
In this paper, we analyze strategic behavior in a duopoly model and study its impact
on credit spreads. Our continuous-time structural model reconciles the two strands
of the credit risk pricing literature and provides further theoretical justification for

the existence of surprise credit events by implicitly modelling the default intensity.

The recent literature on pricing risky debt has two principal strands. First, several
authors have refined and extended the so-called structural models of corporate default
first suggested by Merton (1974) and Black and Cox (1976).? Second, reduced form
models for pricing risky debt have been developed which may be fitted directly to
risky bond prices but have no very obvious link to the borrower’s financial position.?
An important difference between structural and reduced-form models is the way in
which they assume that default is triggered. In structural models, bankruptcy occurs

when the firm’s underlying asset value crosses a threshold.* By contrast, in reduced

1See, for example, Brander and Lewis (1986) and Maksimovic (1988).
2See Brennan and Schwartz (1978), Longstaff and Schwartz (1995), Leland (1994), Leland and

Toft (1996), Anderson and Sundaresan (1996) and Mella-Barral and Perraudin (1997) amongst other

contributions.
3See, amongst others, Litterman and Iben (1991), Jarrow, Lando, and Turnbull (1997), Jarrow

and Turnbull (1995), and Duffie and Singleton (1999).
4Tf the asset value follows a diffusion process, the probability of default in the next instant of

time is either zero (if asset values are a discrete distance from the default threshold) or one (if the
threshold is reached).



form models, borrowers may in principal jump into a default state at any time. The
likelihood that they will is described by a hazard of default. An advantage of models
which permit jumps into default is that they can explain the fact that credit spreads
on very short-term bonds appear to be strictly positive. The liquidity spreads found
in bond markets mean that it is hard to judge whether this is so for high credit quality

short-term debt but it is almost certainly true for lower quality credit exposures.

In our model, we obtain endogenous default intensities, that are functions of firm
and industry characteristics. The default intensities are the randomized strategies of
a pair of equity holders in a non-cooperative Nash equilibrium. The basic intuition
for the bankruptcy game between equity holders is as follows. Default occurs when
equity holders decide to cease injecting capital to meet debt service payments, and
payoffs are structured so that the last to exit is relatively better off. The trade
off between winning the higher payoff and of waiting inefficiently, cause the equity
holders to randomize their default decision through a conditionally Poisson process,
as in reduced-form models. Equity holders’” randomized default strategies in turn
affect debt values and the corresponding credit spreads. The randomized strategies
are equivalent to default hazards and so our model resembles other hybrid structural

models.

Recently, several other studies have sought to reconcile the two branches of the
literature on corporate debt by showing circumstances in which structural models
generate default hazards similar to those which arise in reduced-form models. The
simplest approach is to include jump components in the diffusion process driving firm
assets within a structural model. See Zhou (1997), El Jahel (1999) and Cathcart and
El-Jahel (1998).> This approach also leads to hybrid models that can explain the
empirical fact of positive short credit spreads but which are not entirely compatible
with the reduced form literature. Madan and Unal (2000) have refined this approach
by assuming that jumps are triggered by cash-shortages in non-interest-rate sensitive

components of the firm’s assets.

Another approach is to suppose that the firm’s asset value within a structural
model is imperfectly observed by the market. Again, bankruptcy is triggered when
asset values cross a threshold but the bankruptcy event will be a surprise for investors
and debt values will jump. This idea has been explored by Duffie and Lando (2000).

5In contrast, Cathcart and El-Jahel (1998) introduce a conditionally Poisson signalling process.

The jumps precipitate default but are not linked to firm asset values in any direct way.



They show that the first hitting time of an imperfectly-observed Brownian motion be-
haves like the first jump time of a Poisson process. Hence, such imperfect information
generates default hazards similar to those proposed in the reduced-form valuation lit-
erature.’ Finally, Cao and Wei (2000) have considered the behavior of credit spreads
when the indebted firm has short positions in vulnerable options. The presence of

these extra corporate liabilities generates positive short term credit spreads.

In most of these approaches, the default intensity generating jumps is either exoge-
nously specified or implied directly by assumptions about effects of different kinds.” So
the link between default hazards and the firm’s capital structure and macro-economic
variables is still relatively weak. Our model has the advantage of yielding endogenous
default hazards that are a function of the characteristics of the firm as well as reflect-
ing the market environment in which it operates. The endogenous hazards we derive
provide intuitions about the causes of random defaults in firms and have a number

of appealing features that we discuss.

The structure of the paper is as follows. Section 2 models the hazard rate in a
duopoly in which firms issue perpetual debt. Section 3 discusses the structure of these
hazards. Section 4 studies the impact of the default hazards on credit spreads and
demonstrates the main result of the paper: positive short credit spreads. Section 5
generalizes the hazard rate to asymmetric settings with incomplete information and

considers some extensions. Section 6 concludes.

6Lambrecht and Perraudin (1996) also incorporated incomplete information into a structural
model of risky debt, thereby generating “surprise defaults”. However, in their model the quantity
that is imperfectly observed by investors is the trigger level for bankruptcy (i.e., a random variable)
rather than the firm’s asset value (i.e., a stochastic process). The structure of Bayesian up-dating
that this implies meant that surprise bankruptcies can only occur when the state variable hits new

lows and thus the hazard of instantaneous default is either zero or infinite.
"Zhou (1997), EI Jahel (1999) and Cathcart and El-Jahel (1998) directly specify jump processes

that generate defaults. In Duffie and Lando (2000), the conditional distribution of the asset value is

exogenous, while in Madan and Unal (2000) the distribution of cash shortages is exogenously given.



2 Default Intensities in a Duopoly

2.1 Equity and Debt Values in a Monopoly

Suppose that all agents are risk-neutral and there is a constant interest rate, r. Con-
sider a firm that enters a product market by investing a fixed start-up amount, K.
Equity holders have a maximum sum .J < K to invest in the firm. To fund the differ-
ence, K — J, they issue perpetual debt that pays a continuous coupon, ¢. Following
Mella-Barral and Perraudin (1997), we suppose that the firm’s total profit flow is:
xy — w, where w is a constant continuous flow cost and z; is a geometric Brownian
motion:

dr; = padt + oxdBy . (1)

with constant volatility and drift parameters o and pu < 7. The net income flow to

equity holders is, therefore, x; — w — ¢, while bond holders receive c.

Application of Ito’s Lemma and financial market equilibrium with risk neutral

agents imply that the monopoly® equity value, V(:ﬁ), and debt value, ﬁ(:ﬁ), satisfy:

- o’x? d*V (z) AV (z)

rV(z) = z—w—c+ 5 dp2 + px pr (2)
. o%z? d?D(z) dD(z)

rD(z) = c+ 5 dp? + px e (3)

As z; tends to infinity, the likelihood of default diminishes and so the equity ap-

proaches the expected value of discounted net earnings: limg, o V(2;) = x¢/(r—p) —

(w + ¢)/r,'® while the debt value approaches its riskless value, i.e., lim,, o D(1;) =

c/r.

Boundary conditions for low levels of z; are generated by what happens in the

event of default. There is now considerable evidence of deviations from absolute prior-

8There is no difference between constructing a model in which the state variable is an earnings
flow or assuming that the state variable is the unlimited liability value of the firm’s underlying
assets since it is straightforward to show that, given our assumptions, assets are linearly related to
earnings.

9Throughout this paper we use hatted functions and variables to denote values and parameters
relating to the non-strategic, monopoly case.

10Gpecifically:

lim V(z) = B [/tm (s —w — ¢)exp [ (s — )] ds

T—0Q



ity in the allocation of firm value between stake holders during bankruptcy, especially
in the case of Chapter 11 bankruptcies in the US. The extensive powers given to
management in the Chapter 11 process and their ability to delay legal proceedings'
allow equity holders to extract value in bankruptcy settlements.'? Consistent with
this evidence, we suppose that in the event of bankruptcy equity holders extract a
constant value vg. Thus, V () = v, at the default trigger, 2. Furthermore, we
assume that bankruptcy involves dead weight administrative and legal costs equal
to a fraction, ¢, of total firm value, W(aj) In bankruptcy, debt holders, therefore,

obtain
D(iy) = (1 — ¢) W(is) — 7m

where the total firm value is equal to the sum of an unlimited liability claim to
the firm’s entire income stream plus an exit option to liquidate the firm: W(xt) =
2/ (r—p)—w/r+[y — &/(r — p) +w/r] (x;/2)*. Here, 7 is the liquidation value, £ is a
negative constant and z is the liquidation point at which the firm value satisfies value-
matching and smooth-pasting conditions for optimal liquidation of the pure-equity

firm.

Finally, we assume, as in Leland (1994) and Mella-Barral and Perraudin (1997)
that there are no net worth covenants on the debt. This implies that bankruptcy
occurs when equity holders decide to cease injecting capital. The bankruptcy trigger,
Iy, is therefore determined so as to maximize the equity value. This implies the
smooth-pasting (optimality) condition V'(%,) = 0 where &, (> %) is the trigger level
for bankruptcy.

Standard methods imply that debt and equity values in the simple monopoly case

are as follows.

Proposition 1 The values of a monopoly firm’s equity, V(xt) = V(xt; w), and debt,

D(xy) = D(x4; w), prior to bankruptcy are:

. ; ¢

Vizgw) = oo wre + [’YE -0 4z i C] <?> for x; € [T, 00)(4)
r—u T r—u T Tp

- c Jc N g\ ¢ .

Dlasu) = - [; — (1= Q)W (d) + WE} (z—b) for @ € [y, oclp)

1 See Franks and Torous (1989) and Brown (1989).
12Eberhart, Moore, and Roenfeldt (1990) find that on average equity holders receive 7 percent of

firm value in Chapter 11.



The trigger point for bankruptcy is:

o=y (0) = 5 (9 + ) - ©)

and &£ = (—(,u —0%/2) — \/(,u —02/2) + 20%‘) /o2,

2.2 Pure and Mixed Strategy Equilibria in a Duopoly

Now, consider the strategic interaction between two identical levered firms. Sup-
pose that if one firm exits first, the other obtains some monopoly power. The term
“monopoly power” should not be interpreted in the literal sense as reorganization
often involves the firm being subsequently run as an impaired pure-equity operation
by creditors. In many cases, however, the reorganized firm ends up being liquidated
or partially dismantled by creditors (see Franks and Torous (1989)). Specifically, we
assume that when one firm exits, the earnings flow variable, z;, obtained by the re-
maining firm jumps up by a fixed amount A and subsequently evolves according to
the same geometric Brownian motion as in equation (1) starting from the new higher

level.

The prospect of acquiring monopoly power gives each firm an incentive to out-
wait its competitor, delaying the decision of equity holders in a financially distressed
firm to cease injecting capital. Counter-balancing this incentive, equity holders must
inject capital to avoid bankruptcy. The longer the firm waits, the greater the costs

incurred. The model therefore resembles a war of attrition.'?

A study which closely resembles our own in that it focuses on levered firms in a
stochastic duopoly model is Lambrecht (2000). In the duopoly he examines, Lam-
brecht (2000) shows that when firms are identical, there exist two subgame perfect,
pure strategy Nash equilibria. These consist of the losing firm exiting first at the
trigger which would be optimal for a monopolist. Lambrecht’s analysis implies inter-
esting results on the order of firms’ departure from industries and relates these to the

firms’ “fitness” and “fatness”, as discussed in the empirical study by Zingales (1998).

Although we shall not focus on them, there are asymmetric pure strategy equilibria

in our model like those examined by Lambrecht. Under this solution concept, default

13The literature on war of attrition games is large. Studies of pure-equity firms operating in a
deterministic war of attrition include Ghemawat and Nalebuff (1985) and Fudenberg and Tirole
(1986).



is triggered when the state variable, z;, reaches a lower threshold. A striking feature
of the pure strategy equilibria however is their extreme asymmetry. Although firms
are ex ante identical, one firm extracts the entire “surplus” on offer in the game.
Experimental evidence suggests that game-playing agents are often reluctant to accept

4

severely asymmetric allocations. Much of this evidence!® is in the context of Nash

bargaining, but the results have significance for game theory in general.

A second and perhaps more serious disadvantage with the pure strategy equilibria
is that the debt values are greater than or equal to those one would observe in a
monopoly.'® This means that the corresponding default premia are smaller than
those in the monopoly case. A common criticism of structural models is the small

size of the default premia when they are parameterized in a plausible way. °

A significant contribution of this paper is that it introduces a class of randomized
strategies and solves for a symmetric equilibrium in which bankruptcy occurs at the
first jump time of a point process with rate of jump, );. Since )\; will turn out to be a
function of the contemporaneous levels of the state variables, the random bankruptcy
process becomes a conditionally Poisson process. This is important since it means
that the pricing expressions in our model resemble reduced-form models for valuing
defaultable debt of the kind developed by Duffie and Singleton (1999).

2.3 Claim Values and Default Intensities in a Duopoly

As in the monopoly described above, we consider two identical firms that issue infinite
maturity debt. We suppose that the two sets of equity holders precipitate bankruptcy
when they decide to cease payments to creditors. Since the firms randomize their

default decisions, there will be extra terms in the differential equation representing

For example, Weg, Rapoport, and Felsenthal (1990) experimentally test different bargaining
outcomes, when players make alternating offers over an infinite horizon with discounting. They
reject the hypothesis that players prefer sub-game perfect equilibria (SPE solution) and accept the
hypothesis that agents prefer alternative ‘focal points’, such as a ‘split-the-difference’ (STD) rule,
where the surplus is divided evenly between the two players. Ochs and Roth (1989) find similar

results in their experiment.
15With identical firms, one firm exits non-strategically while the other reaps the rewards of

monopoly power. The debt value of the first firm is the same as the monopoly value and the

second firm’s debt value is clearly larger.
16 Jones, Mason, and Rosenfeld (1984) is a standard reference for this problem. Using Merton’s

structural model, they found that credit spreads were consistently underestimated.



the probabilities of default by one of the two firms in the duopoly. In a time increment
0t, the probability of default with a conditionally Poisson process, \;, equals \;0t. As
the two firms are identical, it is natural to look for a symmetric Nash equilibrium. By
financial market equilibrium with risk neutral agents, the return on safe bonds must
equal the net income to equity holders plus the capital gains and the probability-
weighted payoffs that arise when one or other firm defaults. Applying the generalized
form of Tto’s lemma for jump-diffusions, one obtains a differential equation for each

of the duopoly equity values, V(x):

AV o?2? d*V -
g tmax (A = VA [V @+ 8) = V] (7)

The main difference between the above Hamilton-Jacobi-Bellman equation and the
equation we encountered in the monopoly case, (equation (2)), is the presence of two
payoffs, representing the gain to either firm of randomly “losing” or “winning” the
game. If a firm loses the game, it defaults first and its equity value jumps by an
amount yg — V. If it wins the game, the other exits and the equity of the remaining
firm jumps by 1% (x + A) — V. Since each set of equity holders only control their own

default decision, maximization operators appear only on the terms that result from
this decision (i.e. A[yg — V(2)]).

Two facts influence the equilibrium:

1. Since the equity holders can at any time decide to default receiving vg, the

absence of arbitrage implies that V(z) > vg.

2. To maximize their value, equity holders choose their (non-negative) hazard rate
A(z) to maximize \(x)(yg — V' (x)), taking the other firm’s randomization, A(x),

as given.

These two facts imply that A(z) = 0 if V(z) > g (as any other positive hazard
would leave the term [yg — V], which is in control of the equity holders, negative)
and A(z) > 0 only if V(z) = vg. By substituting the solution V(z) = vg, into
the HJB equation, however, the hazard (in this case the other firm’s response) must
satisty:

rvaLuH—c—x:)\[f/(x%—A)—vE] (8)
Thus, the equity holders are compensated for their inefficient waiting, where V(z) =

vE, by the possibility that the other firm defaults, with the randomization rate, A,
given in (8).



One may distinguish between an interval over which A(xz) = 0 and an interval over
which A(z) > 0. By symmetry, the two intervals will be the same for the two firms.
For z less than some level, 2*, V(z) = g and A(x) is given by equation (8). For
x> x* V(z) >yg and A\(z) = 0.

To derive the equity value, we solve equation (7) for z > z* imposing similar
unlimited liability boundary conditions as in the monopoly case and value-matching
and smooth-pasting conditions at x*. This is simple because with a zero hazard the
equation is just the monopoly differential equation (2). Effectively, one may think
of the equity holders as deciding on the switching point x*, at which they start

randomizing.

As in the case of the equity, the debt values are influenced by the possibility that
either firm may default. The value of debt must satisfy an analogous equation to (3),
with the addition of two probability-weighted payoffs, corresponding to the impact
on bond holders’ claim values when their equity holders “win” or “lose” the game.
By financial market equilibrium and Ito’s Lemma, the value of debt must satisfy the

differential equation:

dD  o*2? d’D . A
TD:C+,ULE%+ 5 W%—A[(l—d))W(z)—7E+D(x+A)—2D] (9)

As x; tends to infinity the risk of default disappears, so the debt must equal its riskless
value (i.e. limg, ,o, D(2;) = ¢/r). The lower boundary condition is obtained by noting
that in the limit as the earnings tend to * — A both agents exit with hazards tending
to infinity. The reason for this is that the equity holders stand to gain nothing from
waiting further in this limit (since V(z* — A+ A) = 5 and so the hazard in equation
(8) tends to infinity).

We thus arrive at the following important result concerning the duopoly default

intensity'” and claim values:

Proposition 2 Under the assumptions of this section, the value of each firm’s equity

in a complete information, feedback, Nash equilibrium with randomized strategies,

1"Throughout this paper we will use the terms ‘hazards’, ‘randomizing strategies’, ‘strategies’ and
‘default intensities’ interchangeably for A(z;). It is important to note, however, that A(z;) is not a
standard hazard, as in reduced form models. It is both a default intensity and an “intensity” of a
sudden upwards discontinuous jump A in the earnings x;. Both of these effects must be incorporated

into other pricing expressions.

10



prior to bankruptcy of either firm is:

for x € (&, — A, Ty

V(a) =V (zw) = { b (10)

(x) for x € (Zp, 00)
The default hazard rate is:

(ryg+w+c—x)/(V(e+A) —qp) for z € (&, — A, i)

0 for x € (2, 00)

Ax) = A(z;w) = {
(11)
The corresponding duopoly debt value is given by the solution to equation (9) with

the following boundary conditions:

lim D(x) =c¢/r

Tr—r0o0

lim D(z) =

aldy— A [(1 - @) (W (T — A) + W (jb))] —VE

(NN

The hazards shown in equation (11) have several interesting properties. First,
equity holders will not default at a point higher than their non-strategic trigger ;.
The reason for this is that the equity holders can always obtain the monopoly equity
value, by exiting at ;. Second, neither agent will default at an income value equal to
or lower than z, — A. In the limit as z | 2, — A each group of equity holders becomes
indifferent between foreclosing first or second since either leads to a post-exit payoff

of YE-

Figure 1 illustrates the monopoly and duopoly security values and the associated
hazard. In all the numerical calculations of this section, the same baseline parameters
are used. The short rate is set at 6 percent, which is the approximate rate in the U.S,
while the drift is 0. The continuous flow cost is set at 0.15 and the coupon rate at 0.3.
The liquidation value of the firm in the pure-equity case, v, is set equal to 2, while
the deviation from absolute priority was 0.2, which approximately equals 7 percent'
of W(x) over the randomizing interval. The volatility of the earnings process, o,
is set in such a way that the firm value’s volatility over the interval, (zg,z{ + A],
approximately equals 15 percent. We thus used a earnings volatility of 8 percent.
Finally, the monopoly jump was set in the base case to a modest level of 0.066 (less

than half the flow cost, w). This jump was chosen so that the predictable default

18This is the average value calculated by Eberhart, Moore, and Roenfeldt (1990) in their empirical

study of Chapter 11 reorganizations.

11



Dhat(x)

Claim Values
w

0 I I
0.2 0.4 0.6 0.8

Income Flow - x

Figure 1: Monopoly and Duopoly Security Values and the Default Hazard.

Base case parameters as described in the text were used for all figures in this section.

point was well above the liquidation point in the pure-equity case. i.e. xf >> 7.

We also set the costs of bankruptcy, ¢, to 0.2.

Figure 1 shows that the monopoly default trigger is just below an income flow
of 0.4. This is the point at which the hazard first becomes non-zero as x; decreases.
The hazard tends to infinity as earnings approach the duopoly default trigger which

is clearly well above the smooth-pasting firm liquidation trigger, Z.

3 The Structure of the Default Hazards

3.1 Features of the Hazards

If one examines Figure 1 and equation (11), several features of the default intensities
stand out. First, unlike the default hazards that arise in other hybrid structural

models, the default intensities in our model are entirely endogenous and reflect the

19Formally, the relation xg > Z, can be accomplished if:

(£55) c-mpe+i-a]>a

12



following features of the firm and the environment in which it operates: (i) macro-
economic variables (through the interest rate, drift parameter as well as the volatility);
(ii) the capital structure of the firm (through the coupon rate); (iii) the interaction
of real investment decisions with debt (through the continuous flow cost w of the
financial activity); (iv) shareholder incentives in deviations from the absolute priority

rule (through ~vg); (v) oligopoly effects (through the size in monopoly jump, A).

Second, the hazards can assume very large values for some levels of the state
variable, z;. Indeed, when earnings approach z§ = 7, — A the default hazard explodes
in that \; — oo. In contrast, many reduced-form models, drawing from methods in
fixed-income pricing, specify mean-reverting processes for the default intensity. It is

very unlikely in such models that the default hazard will ever assume high values.

Third, the hazard rate is non-increasing in the income flow which implies a sensible
negative correlation between the firm’s financial well-being and the risk of default.
Fourth, the recovery rate on the firm’s debt in the event of default is random since

bankruptcy may occur at any point in a discrete interval of state variable values.

3.2 Comparative Statics of the Default Hazard

The simplicity of the default hazards enables one to derive several comparative statics.

Proposition 3 Given the default intensity A (x;) calculated in proposition 2, the fol-

lowing four relations apply:

oA oA O\ oA

— <0 — >0 — <0 12

or — de = 7 ow — OA — (12)
The first result confirms the negative relation between credit quality and risk of
default. The second reaffirms the importance of a firm’s leverage in the equity holder’s
bankruptcy decision. A highly levered firm has more of an incentive to exit quickly
than a firm that has issued less debt. The third and fourth results reiterate in a formal
way the effect of firms’ costs and monopoly gain on the hazard. Note, moreover, that

the second and third results confirm the empirical finding of Zingales (1998) that the

‘fattest’ and “fittest’ firms, respectively, are most likely to survive market shake-outs.2’

Figures 2, 3, 4 and 5 illustrate other important comparative statics of the default

hazards. Perhaps surprisingly, the default hazards decrease with the volatility of

20Lambrecht (2000) finds analogous results in his model of pure strategy equilibria.
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Figure 2: Volatility Effects on the Default Hazards.
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Figure 3: Interest Rate Effects on the Default Hazards.
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Figure 4: Drift Effects on the Default Hazards.
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the income process. The effect is greater the further the earnings level is from the
monopoly bankruptcy point, z,. The volatility only influences the hazard through
the parameter, £, which appears in the expression for V(x + A). As the volatility
increases, this monopoly value increases causing a drop in the hazard. The upper
bound, 7, is decreasing in the volatility as one might expect given standard results

on the riskiness of option values.?!

The default hazard increases with the short rate (as can be seen in Figure 3)
while the growth parameter of the income process, pu, has a dramatic effect on the
hazards (see Figure 4). Finally, the default hazard increases with g (see Figure 5).
[t is interesting to note that even with strict priority (i.e. yg = 0), default hazards
are positive and substantial. So our results are independent of the arguably ad hoc

assumption of deviations from absolute priority.

4 The Term-Structure of Credit Spreads

4.1 Credit Spreads in a Duopoly

In this section, we study the impact of the default hazards on spreads of different
maturities. For simplicity, we suppose that the firms’ liabilities consist predominantly
of infinite maturity debt like that described above but that they have issued a marginal
amount of a pure discount bond. The discount bond issue is assumed to be so small
that it does not affect the equilibrium hazard rate so we can concentrate on pricing
it while avoiding the complications that arise if the firm has a complex, time-varying

capital structure.

Let D(t, x;) denote a zero-coupon bond with a terminal maturity 7. Suppose that
in the event of bankruptcy, holders receive a fraction, (1 — ), of a riskless bond (i.e.
recovery of treasury, see Jarrow and Turnbull (1995)) with the same maturity and
contractual cash flow as the original zero-coupon bond. The value of the defaultable

bond satisfies the following partial differential equation:

oD o222 92D aD )
— i TR ) B _
ot o g g, TA -0 Db+ A) = 2D =D (13)

x
with the final boundary condition, D(T,z7) = 1 and the lower predictable boundary

21 As ¢ tends to zero, the monopoly option value of waiting is destroyed and firms exit at the

zero-NPV, Marshallian trigger, &, > 2. In our set-up this is Z,, = ryg + w + c.
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condition: D(t,z8) = (1 —)exp[—r (T —t)]. As the earnings state variable tends
to infinity, the prospect of bankruptcy diminishes and so the bond value tends to that
of a riskless bond: limg, ,o D(t, ;) = exp [—r (T — t)]. Should the other firm default
first, the firm’s income flow will experience a jump A and the value of the bond will
equal that of a bond in a structural model with no strategic-interaction, D (¢, x;).22
The hazard in the differential equation (13) is given by equation (11) in proposition

2.

The credit spread of a zero-coupon bond equals the difference between its yield

to maturity and that of a riskless bond:
log D (t, x4
CS(t,z,) = ——g[T E t I

In Figure 6, we compare the credit spreads arising on the zero-coupon bond issued
by a firm operating in a duopoly and in a monopoly.?? Since the hazards are time-
independent, the lower predictable bankruptcy triggers z§ and Z, are constant over
time. We follow Longstaff and Schwartz (1995) in measuring credit spreads at ratios of
the income flow with respect to these two points, x; /%, and ;/(Z — A) monopoly and
duopoly cases, respectively.?* Clearly the effect of strategic behavior is substantial
with a strictly positive duopoly default premium at the short end, even for income

flows well above the predictable bankruptcy trigger.

The plots in Figure 6 resemble the credit term structures reported by various
empirical studies. For example, see Litterman and Iben (1991), Sarig and Warga
(1989) and Fons (1994). Few structural models are able to replicate the downward
sloping term structures for low quality debt in their studies. Our results also help
to resolve the problems with structural models documented by Jones, Mason, and

Rosenfeld (1984) in that, as Figure 6 shows, spreads are higher for all maturities in

22This debt value is given by the solution to the simpler partial differential equation:

oD o222 82D oD .
0 T o g thg, =D (14)

with final and upper boundary conditions similar to those of the duopoly case and the lower boundary
condition: D(t,2) = (1 — ) exp [—r (T —t)].

ZFor these figures the following parameters were employed: 7 = 0.06, u = 0.0, ¢ = 0.08, v = 0.5,
Tmaz = 0.7, Timae [0z = 200, T'/6t = 4000, A = 20 x éz, w = 0.08, ¢ = 0.3, $ = 0.3, ¢p = 0.3, T = 10,
and vg = 0.05.

24Other measures could have been used. For example, we could have compared spreads at equal
discrete earnings, &, from the respective predictable bankruptcy points. The comparison would have

been similar, however.
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Figure 6: Monopoly and Duopoly Credit Spreads

Dotted lines indicate monopoly credit spreads while solid lines represent duopoly spreads.
The different lines show spreads evaluated at different ratios between the state variable x;
and the predictable default points, Z; in the monopoly case and Z; — A in the duopoly
case. The labels ‘1°, ‘2’ and ‘3’ refer to spreads evaluated at the ratios 1.25, 1.30 and 1.35,

respectively.
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Figure 7: Duopoly to Monopoly Credit Spreads Ratios in Percent
These are taken at different ratios of the income flow from the predictable default point.

The labels ‘1’, ‘2°, and ‘3’ refer to income flow ratios 1.25, 1.30 and 1.35.
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the duopoly model. For further empirical evidence on the term structure of credit
spreads see Duffee (1998) and Helwege and Turner (1999).

To measure the effect of strategic behavior on the credit spreads, we define “a

duopoly percentage increase in credit spreads over the monopoly case”:

_ OS(t,z) — CS (t,x)

s Lt

where C'S (t,2;) = —log [f) (t, a:t)] /(T —t) — r, is the analogous monopoly credit
spread. In Figure 7, the logarithm of this quantity is plotted as a function of time
to maturity again keeping the ratio between the state variable and the predictable
default trigger constant in the monopoly and duopoly cases. Perhaps surprisingly,
for maturities in excess of 1 year, the increase in spreads resulting from strategic
behavior tends to increase with credit quality. In other words, the impact of the
default hazards is felt throughout a wide range of x; values, even though the hazards
are non-zero only in a limited lower interval, (x{,2;]. For very short maturities, the
reverse is true in that the effect of the hazards on spreads is much stronger for lower

quality debt.

5 The Generalized Hazard Rate

5.1 Learning with Incomplete Information

An apparent shortcoming of the analysis of the previous sections is that the Nash
equilibrium is a knife-edge case. As is true of mixed strategy equilibria in many other
contexts, asymmetries in parameters across agents cause the equilibrium to break
down. This would seem to limit the interest of the analysis. However, an equilibrium
with multiple types may be sustained if there is incomplete information. One may
also view the introduction of incomplete information as desirable as the model is then
more realistic. In a duopoly, a significant risk for firms is that their conjectures about

their rivals may be incorrect.

In this section, we generalize our model to include incomplete information over
firms types. While this adds little to the more important implications of the previous
sections, it answers the possible criticism that we are examining a knife edge case.

To be specific, we determine the default hazard when each firm in the duopoly may
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have flow costs equal to one of two levels, w; < w,. Evidently, one could designate
other parameters in the model as a source of incomplete information but it is natural

to think that information on flow costs will be private to the firm.

We develop a Bayesian model in which equity holders act rationally and filter past
events to revise their conjectures about each other’s type. In our case, firms acquire
new information from the fact that their competitor has not so far defaulted. We
assume that each firm’s prior at date 0 that its competitor is of the more efficient
type (i.e., has costs w,) is P. For date ¢t > 0, we denote the filtered probability that
the other firm has costs wy as P,. We show in the Appendix that if firms just observe
that the other has not so far defaulted, then in the period up to the other’s default,

P, evolves over time according to the Riccati-type equation:

% = P,(1- P) [%2 (a1, P) — M (21, Py)] (15)

where, )\; are the default hazards of firms in this two-type environment. As a condi-
tional expectation, P, is, of course a martingale. One may show that the upward drift
in P, shown on the right hand side of equation (15) is compensated by the chance that
the other firm will default, in which case P; will jump to zero. Further note that the
reason that the evolution of P, prior to default has no diffusion term is a consequence
of the fact that the new information that each firm acquires about its competitor in
any instant of time (¢,¢ + J) comes not from the level of x; but from the fact that it

does not default in (¢,¢ 4 ¢) when the hazards Xy and )\, are known and Xy > ).

5.2 Default Hazards with Incomplete Information

As in the perpetual debt duopoly model of Section 2, we look for a symmetric Nash
equilibrium. The presence of incomplete information introduces a second state vari-
able, P, that affects the pricing equations. Ito’s lemma and financial market equi-
librium imply that the value of equity in a firm, V;, of type i € {1,2} satisfies a

Hamilton-Jacobi-Bellmann partial differential equation:2’

o’z 0%V oV; < <10V
rV; = 5 92 +,uxax+P(1—P)[)\2—)\1]8P+x—wi—c

+ r;\r}%i {5\1 [ve — VZ]} + [Pj\l +(1-P) 5\2] [\7 (x 4+ Ajw;) — Vi] (16)

ZDebt values satisfy similar equations but we omit the details since the focus of this section is

default hazards with incomplete information.
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As before, the i-th agent maximizes terms involving their own hazard rate. The
second term on the second line of (16) reflects the probability of winning the game
for the i-th agent. Conditional on no defaults occurring up to time ¢, the opponent will
default in the next instant with probability P,A; if it is of the more efficient type and
with probability (1 — P,))s, if it is of the less efficient type. The absence of arbitrage
opportunities implies that V; > ~vg, as the equity holders can always default. When
the i-th firm’s equity value strictly exceeds vg, equity holders have no incentive to
default so \; = 0. Substituting from the no-arbitrage condition (i.e. V; = vp) into

the HJB partial differential equation reveals that the twin default intensities satisfy:

'YE+Ww;+Cc—T N N .
~ = PA + (1 = P) )\, 1€11,2 17
st LI (R RE {1,2} (17)

Equation (17) prescribes a linear system satisfied by the hazards. Since w; < wy,
and V (x 4+ Ajwy) > 1% (x + Aj;w,y), the system can only possibly yield solutions to
the hazards if one of the hazards is equal to zero. This will be true whenever one of
the equity values exceeds vi. We show in the Appendix that the value of a firm of
the efficient type is always greater than g as long as there is uncertainty about its
rival’s type (i.e., P < 1). Hence, the equilibrium will involve randomization by less
efficient firms (if they are present) in some upper range of the earning process x; until
one exits or P, equals unity. If P, = 1 and both firms remain, then they behave as in

the complete information equilibrium described before.

The incomplete information equilibrium is summarized in the following proposi-

tion.

Proposition 4 Under the assumptions of this section, there is a symmetric, feedback,
Bayesian Nash equilibrium in which less efficient firms default at the first jump time

of conditionally Poisson processes with the default intensity:

Al(xt,Pt):(), PtE
S\Q(xt,Pt):)\(xt;wQ)/[l—Pt], PtE

P,1) (18)
P,1) (19)

— —

When P = 1, the game reverts to the symmetric equilibrium of proposition 2, (with

w replaced by w ).
In equilibrium, the equity values are:

Va (mt, Pt) =V (mt; ’LUQ) (20)
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and,
T ,.
Vi(a, P) = v<xt;w1)+Et{/t (V (@r + Ajwy) =V (2rw1))

Ao (z,) exp [— /tT (r 4+ A2 (z5)) ds] dT} (21)

where Ay () = X (x; wa) and T = inf {s > 0|P; = 1}, is the first time that the con-

ditional probability equals unity.

Thus, equilibrium has a ‘type-filtering’ property, whereby more efficient types delay
their randomizing until they are convinced that their opponent is also efficient. Mean-
while, the less efficient firm (if one is present), randomizes its default decision with a
hazard that increases as the state variable, x;, declines and as the probability tends
to unity. The dramatic effect of learning on the hazard, through P,, can be seen in

equation (19).

Substituting the hazards given in Proposition 4, into the Riccati equation for the
probability, one obtains that the beliefs of the players evolve according to the simpler
differential equation:

dP,

_ ¢
b P, Ay(z;) which implies P, = Pexp [/ )\2(565)018] (22)
0

The hazard, )y, therefore, equals:

5 Aa(z1) {
Ay = — =——3lo
o P exp [fg )\g(zs)ds] ar 1%

P —exp (— /Ot )\g(xs)ds>] } (23)

As one may see from equation (23), the incomplete information default hazards de-

pend on the prior, P, and the historical time path of the state variable, z;. An
interesting feature of the hazard, as presented in equation (23), is that it is actually
a time-derivative of a function of the probability?, and thus confirms the important
relationship between learning and default events. Duffie and Lando (2000) also obtain
default intensities that are first derivatives of a function. In their case the function is
the conditional distribution of the firm’s assets and the derivative is with respect to

the underlying firm value.

26The argument of the logarithm in equation (23) can be expressed as (P;/P)/(P; —1).
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5.3 A Numerical Example

If both firms are of type wi, the time 7 at which they conclude that the other is
efficient is given implicitly by:

Pexp [/OT Ao (z5) ds} =1 (24)

Using a Monte Carlo approach, we estimate the expected time, Ey(7), when the
parameters are those of the baseline given in Section 2, and assuming that xo =
1/2(2 + £§) and P = 0.5. With a time-step of 0.001 years and 80,000 simulations,

Eo(7) was estimated to be 5.8 years.

Clearly, the time required to resolve incomplete information can be quite drawn
out and indeed longer than the maturity of many corporate bonds. Note that the
initial income flow, x(, is at a value that is halfway over the randomizing interval.
Since the firm is assumed to be solvent when it first enters the debt contract, xo will
be well above the monopoly bankruptcy trigger, and the expected time E;(7) will,

therefore, be even greater.

5.4 Extensions

The incomplete information version of the model outlined in this section can be
extended to include a discrete number n > 2 of types.?” The results would be similar
in that successively less efficient types would randomize on disjoint intervals of the
state variables and we would obtain the same “type-filtering” property described

above.

One may note that the assumption that there are no net worth covenants and,
hence, that equity holders decide the timing of bankruptcy is not a prerequisite for
obtaining equilibria in which game theoretic default intensities occur. An alternative
approach would be to consider a setting in which senior creditors decide when to
liquidate the firm, at which point they obtain a constant value, vp. The prospect
that the firm might become a monopolist whereupon defaultable debt values will
jump up may induce the senior bond holders to delay their liquidation decision and,

instead, randomize this decision through a conditionally Poisson point process. If

2"The main point of this section is to illustrate how asymmetries can be incorporated into the
duopoly model. If there were more than 2 types, the results would be similar to those described in

this section.
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the firms are symmetric, and the continuous coupon yield is replaced with a finite
maturity principal payment, keeping all other parameters the same as in Section 2,
one may show that the symmetric default intensities in such an equilibrium are:

At,z) = P
D(t,l“f‘A)—’YD

where Zj(t, x) is the monopoly senior debt value. Thus, endogenous default hazards in
firms, arising from strategic behavior, can exist both in the presence and the absence

of protective bond covenants.

So far we have not discussed the incentives that may result after one of the two
firms becomes bankrupt. The winner will clearly reap the rewards of temporary
monopoly power in the industry and if earnings recover to high levels, one might
expect another firm to enter the monopoly, causing the equilibrium to revert to the
one described in this section. The industry will thus go through a cycle alternating
between duopoly and monopoly market structures. This intuition is important as
it means that the default hazards will be present and influence claim values for a

significant portion of the time in such an industry.

6 Conclusion

This paper has examined the behavior of credit spreads in a duopoly when the firms
equity holders play a non-cooperative war of attrition game against each other. We
show that there are Nash equilibria in which each firm defaults on the first jump time
of a conditionally Poisson process, the jump rate of which is a function of the firm’s
earnings. Asymmetries in firm types may be introduced into the model by including

incomplete information.

Using this framework, we demonstrate that surprise defaults may occur even in
a complete information structural model of defaultable debt in which the underlying
information is generated by a diffusion state variable. The fact that defaults may be
a surprise in turn implies that our model can generate strictly positive short-maturity

credit spreads for low credit quality bond issuers.

Our analysis advances attempts to reconcile structural models of debt valuation
with the reduced form approach. The reduced form approach prices defaultable debt

by specifying a hazard that the borrower will jump into default at different levels of a
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set of state variables. The structural model developed in this paper yields endogenous
hazard rates for default for bond issuers that depend on firm-specific parameters and

variables describing the firm’s profitability and its financial environment.

The hazard rates we obtain have interesting properties. For example, as the state
variable for firm profitability approaches certain low levels, the hazards explode to
infinity so default takes place for certain. Standard reduced-form models of default-
able debt valuation usually adopt mean-reverting hazard rate specifications similar
to those employed in the default-free term structure literature. Our analysis sug-
gests that hazard rate specifications should allow for discontinuous hazard rates that

explode to infinity on some sample paths.
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A Proof of Propositions

A.1 Proof of Proposition 1

The proof of this is standard and is sketched in the text before the proposition with

discussion of the boundary conditions on the ordinary differential equations. O

A.2 Proof of Proposition 2

For there to be an equilibrium, the HJB ordinary differential equation, (7), must be
satisfied for V(x;) > g for all z; and the relevant maximization must be achieved.
Maximizing: A [yg — V] with respect to A > 0 for V' > ~g yields the optimal control:
A =0 for V > vg (as any other positive control would leave the term negative),
while for V' = ~g, the equity holders are indifferent to their hazard, as the term
is always equal to zero. By substituting, the solution V(z;) = 7 into the HJB
equation, (7), however, the best response control of the other firm is determined:

A~

A=(ry+w+c—a)/(V(z; + A) —yg). Thus, the hazards are:

Az :{ (()m+w+c—xt)/(x7(xt+A) — B), iifﬁf ;O)A,x*) .

where z* denotes the boundary between income flow values for which V(z;) = g
and V' (z;) > vg. By symmetry of types, this will be the same for both sets of equity
holders. Substitution of the hazards (25) back into the HJB equation over the two
regimes, results in the claim value begin equal to g for x € (2* — 0, 2*) (as this is
the interval over which the hazard (25) is finite) and satisfying the ODE:

o’x?

TV”(SE) +pxV'(x)+x —w—c=1rV(z) (26)
for x € [2*,00). The solution to the above ordinary differential equation with smooth-
pasting and value-matching conditions at x; = z*(V(2*) = vg and V'(2*) = 0) is
identical to the non-strategic value, V(x), which has a continuous first-derivative at
the boundary. The boundary, itself, is also the same as the non-strategic trigger,
¥ = i‘b.

As for the debt value, the ODE is given by the one in the monopoly case with
the addition of two terms: A [(1 — )W (x) — vg — D} and A [f)(m +A) — D} arising

from the fact that both sets of agents randomize. This results in the debt value being
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given by the ODE in the proposition. The first boundary condition is standard and
the lower condition stems from the fact that as z; | Z, — A, both firms exit with
infinite randomization. Thus with probability a half the firm exits first at &, — A,
and with probability a half exits second at 2, — A + A = 1, in the new monopoly

immediately afterwards. O

A.3 Proof of Proposition 3

We start with a couple of important results that are required by all 4 proofs:
Lemma: ryg +w+c—x > 0 for all z € (z¢, 7).

It can be readily shown that the term: rvp — x; + w + ¢ is always positive, by
showing that its value at the maximum z; (for which the hazard is non- zero. i.e. the
smooth-pasting point, &) is positive:

T’YE—«’IATb—Fw—f’C:[T’YE—"w—FC](l—<£§1> <T_'u>> (27)

r

The curved bracketed term in (27) is always positive for all values of o, p and r as
E/(E—1)<land (r—p)/r<1.0

Lemma: (z; +A/#,)¢ <1 for all z € (a2, &)

Over the interval mentioned (x; + A/Z;) is greater than one as the lower bound is
Ty — A+ A = z,. By noticing that ¢ is negative, the proof of this result is completed.
O

For ease of exposition we re-write the hazard:

Aa) = rAyE+w+c—xt (28)
Vi(ze+A) =g

Part 1: 0\/0x <0

Differentiating the hazard with respect to x, we have:
OX(zy) [V(:Et +A) — ’yE] +(ryg — 2 +w—+c) V' (z+ A)
- - 2
o [V (ze+A) = WE}

r— r Tp

; ¢
V’(x+A):TiM+< § >lvE— il +w+C] <xTA>



which after some rearrangement can be simplified to:
) 1 AN
Vi(z+ A) = [1 — (xjf ) ] (30)
r— Tp

Clearly the expression in (30) is always positive using the second result above. The

first result also implies that the other terms in the numerator of (29) are positive and

this completes the proof. O
Part 2 and 3: 9\/0w > 0 and 0\/0c > 0:

Differentiating with respect to w we obtain:

S =
N
/N
2
&
>
N——
ax%
[a—y
S~~~
| IS

N(w) V(@ +A) = 75] = (rym — 20+ w + ¢) [ a1
dw [V(:ﬁt +A) — WE]Q

Using the second result, the last bracketed term in the numerator of (31) is negative

and thus the product of this and —(rvyg + w + ¢ — z) is positive. This completes the
proof. O

The proof that dA\/0c > 0 is almost identical to the one presented here for the

cost flow, w.
Part 4: 0\/OA <0

Differentiating the hazard with respect to A:

. ¢
o) e mt o) [ s e+ ] (452)]

T
= " 3
oA (xy+ A) — 'YE]

Amy (= mrw+d) | ks [+ 2] [L- ] (252)'
2

oA [V(fﬁt +A) - ’YE]

H
2
S
+
g
<t
L
il
Tl
~—~
8
§>‘+
>
N——
2

ON(1) (rye — 2+ w + ¢) [Tlﬂ—mHA

oA [V(iﬂt +A) - '7E]2

BA(xt) _ _(T’YE_iEt+w+c)$ [1 . (%)f—l] (32)
” V(2 +A) = 7]

Analyzing (32), it is evident that the first bracketed term in the numerator is always
positive from the first result. The second bracketed term in the numerator of (32) is

always also positive from the second result, and this completes the proof. O
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A.4 Derivation of Equation (15)

Suppose we observe the sample path of a point process and do not know whether
jumps are generated by the jump rate Ay (z;) or Ao(z;). Let P, be the probability that
jumps are generated by Ay, conditional on observing the past path of z; and hence of

A1z or Ay, and suppose that P, is initially equal to a given prior, P, i.e., Py = P.

P, may be up-dated using Bayes’ Rule. The analysis may be performed conditional
on the time path of x; so the jump rates, iy OF Aoy, may be treated as functions of

time. By Bayes’ Rule

Prob {5\ =)\ and 1o jump by ¢ + A}
Prob {no jump by t + A}

Prob {5\ = ):1|n0 jump by t + A} = ,
(33)
where all the probabilities are conditional on no jump by ¢. Writing out the proba-

bilities for a small increment in time, A, we get:

Poa — (- XltA)NPt | (34)
(1= AA)P+ (1 — AyA)(1 = P)
Pia—P _ _ Qe =) - P) (35)
PtA [(]_ — )\UA)Pt + (]. — )\QtA)(]_ — Pt)]

Taking the limit as A | 0 yields the Riccati equation in (15). O

A.5 Proof of Proposition 4

Solving the Equilibrium

For an equilibrium, the HIB PDE’s, must be satisfied for V;(x;, P;) > 75 and the
maximizations must be achieved. Maximizing: \; [ve — Vi] with respect to \; > 0 for
Vi > g yields the optimal control: 5\2 = 0 for V; > g (as any other positive control
would leave the term negative), while for V; = g, the equity holders are indifferent
to their hazard, as the term is always equal to zero. By substituting, the solutions
Vi(zy, P;) = 7yg into the HJB PDE’s, however, the following linked equations must be
satisfied:

~ ~ Yy +w;+c—x
Vi(zy, P) = g = Pt)\1+(1_Pt))\2:A,YE !

(36)
V(xe + Ay wy) —vE

5 5 rYE+tw;+c—x
Va(zy, P) = g = Pt)\1+(1—Pt))\2:A7E !

(37)
V(ze + A we) — vE
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Hypothesis: Vi > v for all P, < 1

If Vi > ~vg for all P, < 1, then A, = 0 when P, < 1. The reason for this is that
type 1 agents maximize the term, 5\1[%9 — V1], with respect to 5\1. Since V; > v the

term is always negative unless the hazard is equal to zero.

An important consequence of that fact that V; > ~g, is that equation (36), no
longer applies. Substituting M =0in (37) then implies that the other hazard, Ao, 18
given by:

Aoz, P) = R
2(, P) 1=P |V (x+ A;ws) — g

when V5 = . Substituting these two hazards into the PDE for V3, (16), then implies
that the PDE is:

o?x? 0%V, 5% oVi N

In the case of the less efficient firm, the equity value is either greater than or equal

- 1 lmE%—c%—wg—x] (38)

rVi =

to vg. In the former case, Ao is equal to zero and so substituting both zero hazards
into the HJIB PDE, (16), then implies that the PDE is:
o%a? 0%V, n oV,
x
2 oz Mo

rVy = +x—wy—c (39)

which is the same differential equation as in the monopoly case, (2). Thus, when V5 >
vE, for some upper interval, (z3,00), the equity value satisfies differential equation,
(39), while for a lower interval, V, = «g. In order to maximize the equity value it
must satisfy value-matching and smooth-pasting conditions at z3: Vi(z3, P) = g,
and 0V (x5, P)/0V = 0. At a3 — A, the winner’s equity value is Va(z5 — A+ A, P) =
Vo (%, P) = v and so there is no longer an incentive to wait. So the lower interval for
which V5 = 7p, is (x5 — A, 23]. The upper boundary condition is a standard unlimited

liability one, and so the equity value is identical to the one in (10):

Va(x), @€ (i (), 00)

40
vE, T € (:ib (we) — A, &7 (wg)) (40)

‘/2(337 P) = {
The only difference here is the smooth-pasting trigger. The hazard, Ao, in (38), then

applies over the interval, (z5 — A, 23] while elsewhere it is equal to zero.

As for the boundary conditions on the more efficient equity value, V;. First, note
that as P, — 1, the game turns into a game of complete information; and both firms
are of type w;. So the equity value tends towards the one in proposition 2 with
w = wy. Thus, Vi(x, 1) = V(x4; wy), where this latter value is defined in (10). As
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zp | Zy(ws) — A, Ay — o0o. So, once again, the game turns into one of complete
information and limg sz, (w,)-a Vi(#, P) = V(@y(we) — A;wy). Finally, a standard

unlimited liability boundary condition applies as x; — oo.

Substituting the twin hazards into the Riccati equation, the probabilities evolve
according to a much simpler differential equation, whose solution can be written out
by inspection:

dP;

Sl =Pam) = Pi=Pe [ M) (41)

where \o(z;) = A(wy;wy), from (11) and P = P,. Since the integrand in (41) is

non-negative the probability is non-decreasing in time. O
Proof that the Hypothesis: V; > vz, for P, <1 holds

Since P, is non-decreasing in time (see (41)) define T" as the first time that the

probability equals unity:
T
1::f5expt/ AQQQ)d4 =  T=inf{s>0P =1} (42)
0

Also, consider the hazard ),, from (38):

Ao (21) _ A (1) N () exp [ i () ds|
1=F 1—Pyexp [f(f Ao (25) ds] exp [— I3 Xa (x4) ds] - P

Aot = Xo () = (43)

Now, consider the value of the firm equity, V;(z, P;). This may be written down
as the sum of (1) the probability of facing a type 1 agent multiplied by the payoff if
that is the case, plus (2) the weighted-probability that the opponent is of the less-
efficient type. Since the stopping time for the winner’s payoff is generated by a point
process, Ao, this latter term must be conditioned on the fact that default has not
taken place up until a given time multiplied by the probability of an exit in the next
time increment. The payoff for the former term is simply V(zy;wy) = Vi(x;) from

proposition 2. So the equity value of the more efficient firm is given by:
Vi(ze, P) = BPVi(z) + (1= P){Vi(z) +
T , . - T ~
E, ( [ (A G+ 2) = Vi) deresp | = [ (7 + 3a.) ds
t t
= ‘/l(xt)—i_(l_Pt) X
T . ~ T ~
Ei { [ (W (@ + 8) = Vi (22) Aar exp [— | (r+2a)ds
t t

)|

dT}(44)

where Vl(xﬂLA) = V(xT+A; wy) and Aor = Ay (z;). The term Ao exp[— ftT(r+5\25)ds]
can be simplified, using (43):
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5 7 5 _ [ e(zr)exp[—r (1 —1)]
Aar €xPp [_/t (7“ T >\2s) ds] - (1 i Pyexp[[]” Ao (z5) ds]) %
T —Xo (zs)exp [— [ Ao (z,) dV]
exp Vt oxp = I 2 (20) d] — P, ds]

( Az (27) exp [—r (T — 1)] ) y

1 — Pexp[f,] A2 (z,) ds]

exp{ log (eXp [— /ts A2 () d'/] - Pt)]:::}

( Ao (z) exp[—r (T — t)] ) o
1 — Peexp[f, Ao () ds]

<exp [— [ A2 (2) dv] — Pt>

1- P
- (el [ [0

Substituting this back into the expression for V;(z;, P;) we obtain:

Vi(zy, P) = Vi(zy)+ (45)
E, {/tT (\71 (x, +A) =W (:ET)) Ao (x;) exp [— /tT (r + Ag (x5)) ds] dT}

Since the probabiliy can only increase with the progress of time (see (41)), increases
in P, result in the second term of (45) decreasing. The reason for this is that the
integrand is non-negative and so increasing the lower limit of the outer integral in
(45) makes the second term smaller. Thus, 0V;/OP < 0, and the more efficient
equity value is strictly decreasing in P,. Since the final condition on the equity value
is greater than or equal to vg (i.e. Vi(z,1) > vg), we have that V; > ~g for all
P, € [Py, 1). Thus the hypothesis required by the proof is verified and this completes
the proof. O
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