
A note on the pricing and hedging

of volatility derivatives1

S.D. HOWISON
Mathematical Institute, University of Oxford, 24 – 29 St. Giles,

OX1 3LB Oxford, UK
Email: howison@maths.ox.ac.uk

A. RAFAILIDIS
Department of Mathematics, Kings College London,

The Strand, London WC2R 2LS, UK
Email: avraam@mth.kcl.ac.uk

H.O. RASMUSSEN
Mathematical Institute, University of Oxford, 24 – 29 St. Giles,

OX1 3LB Oxford, UK
Current Address: Citigroup, Fixed Income Derivatives Research,

Canary Wharf, London.
Email: henrik.rasmussen@ssmb.com

Abstract

We consider the pricing of volatility products and especially volatility and
variance swaps. Under risk-neutral valuation we provide closed form formulae
for volatility-average and variance swaps. Also we provide a general partial
differential equation for derivatives that have an extra dependence on an av-
erage of the volatility. We give approximate solutions of this equation for
volatility products written on assets for which the volatility process fluctuates
on a timescale that is fast compared with the lifetime of the contracts.

1 Introduction

There has recently been much interest in products that provide exposure to the re-
alised volatilities or variances of asset returns (or covariances between asset returns),
while avoiding direct exposure to the underlying assets themselves. These products
are attractive to investors who either wish to hedge volatility risk or who wish to
take a view on future realised volatilities. Indeed, much of the investor interest
in volatility products seems to have been provided by the LTCM collapse in 1998,
which was accompanied by a dramatic increase in volatilities. As a result, a number
of recent papers [2, 5, 6, 9] address the evaluation of volatility products.

Like several of these authors, we take a stochastic volatility model as our starting
point. The fact that stochastic volatility models are able to fit skews and smiles,
while simultaneously providing sensible Greeks, have made these models a popular
choice in the pricing of exotic options. Under this framework, we present a number
of formulae for the ’fair’ delivery price for volatility and variance swaps, and show
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how other related contracts can be priced. We introduce a general pricing equation
for derivatives depending on four state variables: the asset value S, the time t, the
volatility σ, and a running average, denoted by I, which represents our knowledge
to date of the average that will determine the payoff. We focus on volatility and
variance swaps, in which case the average is of the volatility or the variance respec-
tively. We also consider an asymptotic analysis under which we derive approximate
solutions to this equation. The main motivation here is the empirical evidence that
volatility is fast mean-reverting, compared with the typical lifetime of options and
other contracts. That is, when considering the time-scale of months, stock and index
volatility is observed to fluctuate rapidly, see for example the discussion in [7] or
[13] and references therein. The model that we choose in this context is the mean-
reverting lognormal; others can also be considered, see for example [12] for the case
of an Ornstein–Uhlenbeck model. We then narrow the choice of derivatives to those
whose payoffs do not depend on the underlying asset S. In this case, the analysis is
simpler. In particular, having a solution for the value of the volatility swap to first
order, we are able to compare with the explicit results obtained before.

The rest of the paper is organized as follows: we begin section 2 by briefly discussing
the contracts, while the stochastic volatility framework is introduced in 2.1, and the
general pricing equation is given. In 2.2 we present the analysis and the results
for risk-neutral valuation for the volatility-average swap and the variance swap,
together with formulae that allow us to hedge. We can evaluate the vega, namely
the derivative with respect to volatility, and therefore have an estimate for our
hedging parameter. We can then hedge efficiently using liquid contracts. In section
3 we present the asymptotic analysis which concludes with first order approximations
for the volatility derivatives of interest. In section 4 we give a brief summary and
motivation for further work.

2 Variance and volatility swaps

The variance swap is a forward contract in which the investor who is long pays
a fixed amount Kvar/$1 nominal value at expiry and receives the floating amount
(σ2)R/$1 nominal value, where Kvar is the strike and (σ2)R is the realized variance.
The entering price must be zero, that is, it costs nothing to enter the contract; we
use this condition to find the fair value Kvar. The measure of realized variance to
be used is defined at the beginning of the contract; a typical formula for it is

1

T

M∑
i=1

(Si − Si−1

Si−1

)2

, (1)

which in continuous time we approximate by

(σ2)R =
1

T

∫ T

0

σ2 (t, · · ·) dt.

The corresponding payoff is then

(σ2)R −Kvar. (2)
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We shall also consider other contracts, one being the realised volatility swap with
payoff (

1

T

M∑
i=1

(Si − Si−1

Si−1

)2
) 1

2

−Kvol,

derived from the standard deviation of the averaged variance, with continuous-time
limit

σvolR −Kvol =
( 1

T

∫ T

0

σ2
t dt
) 1

2 −Kvol, (3)

or a variation that represents the average of the local volatility, with payoff√
π

2MT

M∑
i=1

∣∣∣Si − Si−1

Si−1

∣∣∣−Kvol-ave, (4)

which in continuous time is

σvol-ave
R −Kvol-ave =

1

T

∫ T

0

σt dt−Kvol-ave. (5)

In addition, we shall consider products based on an average of a suitable implied
volatility, for example the implied volatility σit of the at-the-money call options
with the same expiry as the volatility derivative; this implied volatility swap has
continuous-time payoff

σiR −K i-vol =
1

T

∫ T

0

σit dt−K i-vol. (6)

We could also use a single option throughout the life of the contract, for example
the option that is initially at-the-money; we could further construct implied variance
swaps, and so on.

Generalizing further, we can contemplate volatility options, a typical payoff being

max(σvolR −K, 0). (7)

We can also consider contracts whose payoff depends on both a realised volatility or
variance and the asset; for example, the payoff

max(Se−σ
vol
R −K, 0) (8)

is a call option which pays more if the asset rises steadily without much volatility
than if it rises in a volatile way.

The asset S is considered to follow the usual log normal process

dSt
St

= µ (t, · · ·) dt+ σ (t, · · ·) dWt, (9)
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where Wt is Brownian motion. For the rest of the paper we fix notation as follows:
the conditional expectation at time t is denoted by Et = E[ . |Ft] where Ft is the
filtration up to time t and E0 is thus the initial value of the expectation. All expec-
tations are considered with respect to the risk-neutral probability measure.

Discounting the payoff (2) we have for the present value of a variance swap

F var = E0[e−rT
(
(σ2)R −Kvar

)
].

This is zero and we derive for the fair variance forward price

Kvar =
1

T
E0[

∫ T

0

σ2
t dt]. (10)

However, we need a model for the evolution of the volatility, and this we now con-
sider.

2.1 Stochastic volatility models

In this section we consider a stochastic volatility model. That is, the asset S satisfies
the risk-neutral stochastic differential equation

dSt
St

= r dt+ σt dWt,

where volatility is now a stochastic process satisfying the risk-adjusted equation

dσt = (M − λQ)dt+QdŴt, (11)

where M and Q depend on the specific model we use and λ is the market price
of volatility risk. The Brownian motions Wt and Ŵt have correlation coefficient ρ,
where −1 < ρ < 1. We consider specifically the mean-reverting lognormal model,
that is we take

M − λQ = α(σ̄ − σt), Q = βσt.

This not only ensures that volatility stays positive but also captures the empirically
observed mean-reversion property : volatility tends to return to the mean σ̄ on char-
acteristic time-scale 1/α. We also note that it is not difficult to generalize to other
types of models.

We begin by pricing derivatives whose payoff depends not only on the asset and the
volatility, but on some average I of the volatility during the life of the contract.
This average is defined as

It =

∫ t

0

F (σs) ds. (12)

Using this notation the contracts described above have payoffs

P var =
IvarT

T
−Kvar, (13)
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corresponding to (2),

P vol =
(IvarT

T

)1/2

−Kvol, (14)

corresponding to (3),

P vol-ave =
IvolT

T
−Kvol-ave, (15)

corresponding to (5), and

P i =
I i-vol
T

T
−K i-vol, (16)

corresponding to (6). Here

IvarT =

∫ T

0

σ2
t dt,

IvolT =

∫ T

0

σt dt,

I i-vol
T =

∫ T

0

σit dt,

so that F (σt) = σ2
t for Ivart , F (σt) = σt for Ivol-ave

t , and for I i-vol
t , F (σit) is the implied

volatility of an at-the-money call option with the current value of St and σt.

In some cases, such as an implied volatility swap where the strike of the reference
option is fixed (i.e. not floating at-the-money), F may additionally depend on St.
We do not treat such cases here. We then have Vt = V (St, t, σt, It) and the analysis
is very similar to that of Asian options. Following a general no-arbitrage approach
(see [12], [14]), we derive a partial differential equation for V (we drop the subscript
t without ambiguity),

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ ρSσQ

∂2V

∂S∂σ
+

1

2
Q2∂

2V

∂σ2
+ F (σ)

∂V

∂I

+rS
∂V

∂S
+ (M − λQ)

∂V

∂σ
− rV = 0, (17)

where λ is the market price of volatility risk. The terminal condition is V (S, σT , T, I) =
P (S, I), where P is the payoff. We can thus price either by solving equation (17)
with the payoff condition, or, equivalently, by taking risk-neutral expectations, as
in (10).

2.2 Pricing Volatility and Variance Swaps

The risk-adjusted equation for volatility under the mean-reverting lognormal model
is

dσs = α(σ̄ − σs)ds+ βσsdŴs. (18)
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We need the unconditional (t = 0) and conditional (t > 0) expectations both for
the volatility and the variance. The expectation of the volatility is given by

Et[σs] = σ̄(1− e−α(s−t)) + σte
−α(s−t) s ≥ t. (19)

This is obtained easily by integrating and taking expectations in (18); note that it
tends to σ̄ as t → ∞. The unconditional expectation is obtained by setting t = 0.
The stochastic differential equation for the variance is obtained using Ito’s formula
as

d(σ2
s) = 2σsdσs + β2σ2

sds.

Substituting from (18), we have

d(σ2
s) =

(
σ2
s(β

2 − 2α) + 2ασ̄σs

)
ds+ 2βσ2

sdŴs. (20)

Integrating and taking expectations we get

Et[σ
2
τ ] = σ2

t + 2ασ̄

∫ τ

t

Et[σs]ds+ (β2 − 2α)

∫ τ

t

Et[σ
2
s ]ds (21)

where the conditional expectation of the volatility is given by (19). The solution of
this integral equation is

Et[σ
2
τ ] =

2ασ̄2

2α− β2

(
1− e−(2α−β2)(τ−t)

)
+

2ασ̄(σt − σ̄)

α− β2

(
e−α(τ−t) − e−(2α−β2)(τ−t)

)
+ σ2

t e
−(2α−β2)(τ−t), τ ≥ t, (22)

where clearly the mean reversion only keeps the expectation finite if 2α > β2. (The
case α = β2 has terms τe−α(τ−t) and we do not deal with it here.) Note that

Et[σ
2
τ ]→ σ2 = 2ασ̄2/(2α− β2), as τ →∞,

the long-term average of σ2. Using these expectations, we are able to derive formulae
for the fair price of the variance swap with payoff (13) and the volatility-average swap
with payoff (15); the payoffs (14) and (16) can only be priced numerically. We begin
with the easier volatility-average swap (15).

2.2.1 Volatility-Average Swap

Consider the value of the volatility-average swap at any time 0 ≤ t ≤ T . In this
case the contribution

Ivol-ave
t =

∫ t

0

σs ds

to the final value Ivol-ave
T has been realized, and the payoff can be decomposed as

follows:

P vol-ave =
1

T

(∫ t

0

σs ds+

∫ T

t

σs ds
)
−Kvol-ave

=
1

T

(
Ivol-ave
t +

∫ T

t

σs ds
)
−Kvol-ave. (23)
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The value of the swap at time t is now

Vt = e−r(T−t)
[ 1

T

(∫ t

0

σs ds+

∫ T

t

Et[σs] ds
)
−Kvol-ave

]
.

Combining with (19) we immediately get

Vt = e−r(T−t)
{
Ivol-ave
t

T
+
σ̄

T
(T − t)−

( σt
αT
− σ̄

αT

)
(e−α(T−t) − 1)−Kvol-ave

}
. (24)

For t = 0 we get V0, which must be 0; from this condition we derive the fair price
for Kvol-ave,

Kvol-ave =
1− e−αT

αT
(σ0 − σ̄) + σ̄. (25)

We emphasize here the dependence on the model parameters α and σ̄, and note that
we need to know the initial volatility σ0. Substituting this back into (24), the price
Vt takes the final form

Vt =
e−r(T−t)

T

{
Ivol-ave
t − tσ̄ +

1

α
(e−α(T−t) − 1)(σ0 − σt)

}
=

e−r(T−t)

T

{∫ t

0

(σs − σ̄)ds+
1

α
(e−α(T−t) − 1)(σ0 − σt)

}
. (26)

We can directly verify that the above expression satisfies equation (17) for M =
α(σ̄− σ) and Q = βσ with F (σ) = σ. It is now clear that hedging is possible, since
the derivative of V with respect to σ (Vega) can be obtained:

∂V

∂σ
=
e−r(T−t)

αT
(1− e−α(T−t))

(note that this is independent of β as indeed is Vt). Here, it should be empha-
sized that (26) is the value of a par volatility swap, to distinguish from other more
complicated contracts.

2.2.2 Variance Swap

We now consider the case of the variance swap. The payoff is

P var =
1

T

∫ T

0

σ2
s ds−Kvar.

We proceed to derive a formula for the value of the contract at any time 0 ≤ t ≤ T .
We have

Vt = e−r(T−t)Et

[ 1

T

∫ T

0

σ2
s ds−Kvar

]
= e−r(T−t)

{
Ivart

T
+

1

T

∫ T

t

Et[σ
2
s ] ds−Kvar

}
, (27)
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where

Ivart =

∫ t

0

σ2
s ds.

The conditional expectation is given by (22), and we obtain

Vt = e−r(T−t)
{Ivart

T
+

2ασ̄2

(2α− β2)T

(
(T − t)− 1− e−(2α−β2)(T−t)

2α− β2

)
+

2ασ̄(σt − σ̄)

(α− β2)T

(1− e−α(T−t)

α
− 1− e−(2α−β2)(T−t)

2α− β2

)
+

σ2
t

2α− β2

(
1− e−(2α−β2)(T−t)

)
−Kvar

}
(28)

Setting t = 0 we obtain V0 which must be 0, and so we derive for the fair variance

Kvar =
2ασ̄2

(2α− β2)T

(
T − 1− e−(2α−β2)T

2α− β2

)
+

2ασ̄(σ0 − σ̄)

(α− β2)T

(1− e−αT

α
− 1− e−(2α−β2)T

2α− β2

)
+

σ2
0

(2α− β2)T

(
1− e−(2α−β2)T

)
. (29)

We substitute this into (28) and the final result is

Vt = e−r(T−t)
{
Ivart

T
+

2ασ̄2

(2α− β2)T

(
− t+

e−(2α−β2)(T−t) − e−(2α−β2)T

2α− β2

)
+

2ασ̄

(α− β2)T

{
σt

(1− e−α(T−t)

α
− 1− e−(2α−β2)(T−t)

2α− β2

)
− σ0

(1− e−αT

α
− 1− e−(2α−β2)T

2α− β2

}
+ σ̄

(e−α(T−t) − e−αT

α
− e−(2α−β2)(T−t) − e−(2α−β2)T

2α− β2

))
+

1

2α− β2T

(
σ2
t (1− e−(2α−β2)(T−t))− σ2

0(1− e−(2α−β2)T )
)}

(30)

Again, this is the value for the par variance swap.

3 Asymptotic analysis

We now present an asymptotic approach similar to that of Fouque et al. [7], who
take volatility to be a fast mean-reverting Ornstein–Uhlenbeck process. They derive
results for vanilla calls and under this framework they are able to fit the skew,
deriving a linear relationship between the implied volatility and the log-moneyness-
to-maturity-ratio,

LMMR =
log(K/S)

T − t
.

In order to fit the smile, in addition to any skew, one should include higher–order
terms in the asymptotic analysis [13].
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3.1 General Payoffs

We begin by discussing a larger family of contracts with payoffs of the form P (ST , IT ),
where

IT =

∫ T

0

F (σs) ds.

Having given the general approach, we illustrate the method with some simple ex-
amples.

Recall the risk-adjusted process for σ, namely

dσt = α(σ̄ − σt)dt+ βσt dŴt, (31)

where Ŵt is a Brownian motion with respect to the risk-neutral measure and σ̄ is the
mean. Taking the correlation to be zero for simplicity, the general pricing equation
(17) becomes

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+

1

2
β2 σ2 ∂

2V

∂σ2
+ rS

∂V

∂S
+ F (σ)

∂V

∂I
+ α(σ̄ − σ)

∂V

∂σ
− rV = 0.(32)

The stationary density for σ, i.e. the time-independent solution of the forward
Kolmogorov equation, is given by

p∞(σ) = Ae−2ασ̄/β2σσ−2−2α/β2

, (33)

where

A =
(2ασ̄/β2)1+2α/β2

Γ(1 + 2α/β2)
,

is the normalization constant. We also note here that higher moments of σ may not
exist for small values of α/β2.

We now assume that the characteristic time-scale for the volatility process is small
compared with the time to maturity of the volatility swap. We introduce a small
parameter by writing α = a/ε, where a = O(1) and, bearing in mind the need for a
non-trivial standard deviation for p∞(σ), we scale the volatility of volatility so that
the random walk (18) takes the form

dσt =
a

ε
(σ̄ − σt)dt+

b√
ε
σt dŴt

for 0 < ε � 1 (note that the invariant density p∞(σ) can be written in terms of a
and b by replacing α by a and β by b in (33)). We introduce the operators

L0 =
1

2
b2σ2 ∂

2

∂σ2
+ a(σ̄ − σ)

∂

∂σ
,

L1 =
∂

∂t
+

1

2
σ2S2 ∂

2

∂S2
+ rS

∂

∂S
+ F (σ)

∂

∂I
− r.

The equation for V then becomes(
L1 +

1

ε
L0

)
V = 0.
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Consider now the expansion

V ∼ V0 + εV1 + ε2V2 + · · · .

Substituting, we have

1

ε
L0V0 + (L1V0 + L0V1) + ε (L1V1 + L0V2) + · · · = 0. (34)

Equating coefficients, at lowest order we have

L0V0 = 0

and so

V0 = V0(S, t, I)

since the operator L0 consists of derivatives with respect to σ only. For the terms
of O(1) we find

L0V1 + L1V0 = 0. (35)

This equation can be treated as a Poisson equation for V1, considering V0 known.
The solvability (Fredholm Alternative) condition for this equation can be expressed
as

< L1V0, p∞ >= 0

where < . , . > denotes the usual inner product. Thus, L1V0 is orthogonal to p∞,
which, being a solution of the stationary forward Kolmogorov equation for σ, is an
eigenfunction of the adjoint of L0. That is,

∂V0

∂t
+

1

2
S2∂

2V0

∂S2

∫ ∞
0

p∞(σ)σ2dσ + rS
∂V0

∂S
+
∂V0

∂I

∫ ∞
0

p∞(σ)F (σ)dσ − rV0 = 0,

where we have used the result that V0 is independent of σ. Noting that the integrals
are equal to σ2 and F = F (σ) respectively, we have

∂V0

∂t
+

1

2
σ2S2∂

2V0

∂S2
+ rS

∂V0

∂S
+ F

∂V0

∂I
− rV0 = 0. (36)

Making the transformation

Ī = I + F (T − t)

and writing V0(S, t, I) = V 0(S, t, Ī), reduces this further, to

∂V0

∂t
+

1

2
σ2S2∂

2V0

∂S2
+ rS

∂V0

∂S
− rV0 = 0 (37)

which is the Black–Scholes equation with volatility
(
σ2
)1/2

. The dependence on I

is retained parametrically via the payoff, which takes the form

P (S, I) = V0(S, T, I) = V0(S, T, Ī),
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and so we have V0(S, t, I) = V 0(S, t, I + (T − t)F ).

The next step is to calculate V1. This is a complex task and here we only give an
outline of the procedure; further details will be given elsewhere. First, observe that
L1V0 can be written as

L1V0 =
1

2
(σ2 − σ2)S2∂

2V0

∂S2
+ (F (σ)− F )

∂V0

∂I
. (38)

Hence, (35) can be written as

L0V1 =
1

2
(σ2 − σ2)S2∂

2V0

∂S2
+ (F − F (σ))

∂V0

∂I
. (39)

We seek a solution of the form

V1(S, t, σ, I) = f2(σ)S2∂
2V0

∂S2
+ f1(σ)

∂V0

∂I
+H(S, t, I), (40)

where H is independent of σ. The functions f1 and f2 are then solutions of the
equations

1

2
b2σ2d

2f2

dσ2
+ a(σ̄ − σ))

df2

dσ
=

1

2
(σ2 − σ2),

1

2
b2σ2d

2f1

dσ2
+ a(σ̄ − σ)

df1

dσ
= F − F (σ).

and can readily be found in integral form. However, H(S, t, I) can only be deter-
mined by proceeding to next order and applying the solvability condition to the
equation

L0V2 + L1V1 = 0.

We further see that the solution (40), which depends on σ, cannot satisfy the pay-
off condition V1(S, T, σ, I) = 0. This discrepancy is resolved by a boundary layer
analysis in which T − t = O(ε) (if the payoff has discontinuities, as for a volatility
option, further local analysis near these points are also necessary). We point out
that the lowest order analysis is quite general, and not specific to the random walk
(18). Only at higher order do we need to know more about these details, and even
then only certain moments need be calculated. As stated above, details of the higher
order analysis will be described elsewhere.

3.2 Examples

We illustrate the theory with the four versions of variance/volatility swaps described
in §2.1, for two of which we could not easily obtain explicit solutions. In each case we
give the lowest-order solution only, leaving the details of the higher-order solution
to a later publication.
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3.2.1 The variance swap

For this contract, we have F (σ) = σ2 and so F = σ2, the average variance to be used
in the Black-Scholes equation (37). The payoff is Ivar/T − Kvar = Īvar/T − Kvar

and the solution to the leading order problem is (reintroducing the subscript t to
denote time-t values)

V t0(St, t, Īt) = e−r(T−t)
( Ītvar
T
−Kvar

)
, (41)

so the leading order approximation to the variance swap value is

Vt0(S, t, I) = e−r(T−t)
(Ivart + σ2(T − t)

T
−Kvar

)
. (42)

For the random walk (20) for which σ2 = 2ασ̄2/(2α − β2) = 2aσ̄2/(2a − b2), it is
easily confirmed that we recover the O(1) terms of the exact result (28).

3.2.2 The volatility swap

For the standard volatility swap payoff (14), we still have F (σ) = σ2 but now the
payoff is (Ivar/T )1/2 −Kvol. Hence,

V t0(St, t, Īt) = e−r(T−t)
(( Īvart

T

)1/2

−Kvol
)

(43)

and the leading order term in the expansion of the volatility swap price is

Vt0(St, t, Īt) = e−r(T−t)
((Ivart + σ2(T − t)

T

)1/2

−Kvol
)
. (44)

3.2.3 The volatility-average swap

For the payoff (15) we have F (σ) = σ and we find that

V t0(St, t, Īt) = e−r(T−t)(
Īt
T
−Kvol-ave),

so that

Vt0(St, t, It) = e−r(T−t)
(Ivol−avet + σ̄(T − t)

T
−Kvol-ave

)
. (45)

It is easily confirmed that the O(1) terms in (24) are consistent with this approx-
imation. We also note that in this case, and for the random walk (18), we readily
find that

Vt1(St, t, It, σ) = (σt − σ̄)/a+ h(It, t) (46)

and comparison with (24) reveals that h(It, t) is proportional to e−α(T−t) = e−a(T−t)/ε;
this is the boundary layer correction referred to above, and it decays very rapidly
as t decreases from T .
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3.2.4 The implied volatility swap

In this case, F (σ) is the implied volatility of an at-the-money option. Now we can
apply the same asymptotic procedure to standard options, and it is clear that the
lowest order solution for a call option under this approximation is given by solving

(36) with no I-dependence, i.e. the Black–Scholes equation with volatility
(
σ2
) 1

2
.

Hence to leading order, we have F = F =
(
σ2
) 1

2
. The leading order value of this

swap is consequently

Vt0 = (St, t, It) = e−r(T−t)
(I i-vol

t +
(
σ2
) 1

2
(T − t)

T
−K i-vol

)
. (47)

4 Conclusion

In this note, we have presented closed–form solutions for the prices of volatility and
variance swaps, under the assumption that volatility is a mean–reverting log–normal
process. The work presented here can be extended in several ways. The obvious next
step is calibration of the model, which will give empirical proof (or otherwise) of the
effectiveness of the approach. Furthermore, the generality of the model permits the
pricing of other derivative instruments using a similar approach.
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