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Abstract

In this paper we examine the dependence of option prices in a general jump-diffusion
model on the choice of martingale pricing measure. Since the model is incomplete there
are many equivalent martingale measures. Each of these measures correponds to a choice
for the market price of diffusion risk and the market price of jump risk. Our main result is
to show that for convex payoffs the option price is increasing in the jump-risk parameter.
We apply this result to deduce general inequalities comparing the prices of contingent
claims under various martingale measures which have been proposed in the literature as
candidate pricing measures.

Our proofs are based on couplings of stochastic processes. If there is only one possible
jump size then we are able to utilize a second coupling to extend our results to include
stochastic jump intensities.
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1 Introduction

The aim of this paper is to prove option price monotonicity results in a jump diffusion
model with both Brownian and Poisson sources of uncertainty. The market is incomplete,
with many equivalent martingale measures. Each measure corresponds to a pair of choices
for the market price of diffusion risk and the market price of jump risk where the pair is
chosen so that the discounted price process is a martingale. Our result is that for convex
payoffs the option price is monotone increasing in the market price of jump risk, and hence
effectively monotone decreasing in the market price of diffusion risk.

The problem of determining how the price of an option varies with the value of the
model parameters is an important question in finance, and has led to many of the ‘greeks’.
For example in a diffusion set-up we can ask whether option prices are monotone in volatil-
ity. This problem has been considered by El Karoui et al [11], Bergman et al [4], Hob-
son [20], Lyons [24], Martini [26] and Henderson [18] who show that for convex European



payoffs (and some convex path-dependent options) the option price is indeed increasing
with volatility. Our paper has a similar theme to these papers; we investigate whether
option prices are monotonic in the value of a parameter, but in a more complex jump-
diffusion model.

Jump diffusion processes were first used by Merton [27] to introduce discontinuities
into the sample paths of the stock dynamics. His model, often called the normal jump
diffusion model, had jumps at the event times of a Poisson process and jump size normally
distributed. Options were priced in this incomplete set-up by assuming the investors’
attitude to jump risk is risk neutral, or that the jump risk is unpriced.

Bardhan and Chao [1] were amongst the first authors to consider market completeness
in a jump-diffusion model. They consider a model driven by a number of Brownian motions
and Poisson processes with stochastic intensity, each assigned a unique predictable jump
size. They assume that the number of assets is equal to the number of sources of risk
and this has the effect of completing the market. However, in a subsequent paper [2] they
show that in a model with random jump sizes it is not possible to complete the market
by increasing the number of traded securities.

We are interested in models where the number of risky assets is smaller than the
number of sources of risk. In this case the model is incomplete. Examples of such models
include Kou [22], Duffie et al [8] and Prigent et al [29]. Kou [22] proposed a model where
jumps occur at the times of a Poisson process and the logarithm of jump size has a double
exponential distribution. The purpose of this model is to capture the leptokurtic feature
of returns and the volatility smile. Duffie et al [8] describe a general class of affine jump
diffusion models of which Kou’s is a special case. Another way to model jumps in prices
is to consider infinite activity pure jump processes such as the variance gamma model in
Madan and Seneta [25], the hyperbolic model in Eberlein and Jacod [10] and the model
in Carr et al [5]. Chan [6] considers a geometric Levy process for the stock price which
includes many of the previous models as special cases.

Jump models have found recent applications in modelling defaults in credit models, see
Duffie and Singleton [9], and are used in a paper of Elliot and Jeanblanc [13] which exam-
ines insider information. Jump models are also very important in insurance mathematics,
see the overview paper of Embrechts et al [14].

This paper is most closely aligned with those of Bellamy and Jeanblanc [3] and Pham
[28]. Bellamy and Jeanblanc [3] find bounds for European call prices in a jump-diffusion
model. They show that if we price options as discounted expected payoffs under members
of the family of equivalent martingale measures then there are upper and lower bounds
on the set of feasible call option prices. The lower bound is the Black-Scholes option price
obtained by assuming the jump intensity is zero and the upper bound is the trivial upper
bound of the asset price itself. Moreover they show that under certain model assumptions
these bounds are attained. Pham [28] extends these results to show that option prices are
monotonic in the jump intensity, and that they apply to American options.

Our results generalise and extend those of these two papers in the following ways. The
first contribution is to prove the price monotonicity result for convex FEuropean options
in a deterministic parameter setting using a simple coupling argument. This extends
the bounds result of Bellamy and Jeanblanc [3]. Our generalisation to American options
gives a result equivalent to Pham [28], but without one of his assumptions (namely the
r-excessive condition (Cp), page 156).

The second contribution of this paper is to obtain results for a stochastic intensity
model, where the intensity is dependent on the stock price. (Both Bellamy and Jeanblanc



and Pham concentrate on the case of deterministic parameters.) In order to prove that
options prices are higher under one martingale measure than another we need a comparison
condition on the jump intensities under the two measures. This comparison condition says
that when the prices are at the same level in both models, then the intensities are ordered.
If this holds, then the option prices (European and American) are also ordered. The
limitation of the result is that the proof requires us to restrict the model to have a single
jump size. This seems to be necessary since we give an example of a situation where there
are two sorts of jumps, and the stochastic jump intensities are ordered, but the option
prices are not ordered.

The key tool that we use in our comparison theorems is the coupling of stochastic
processes. For a primer on coupling methods, see Lindvall [23]. Coupling has been used in
finance by Henderson and Hobson [19], and Henderson [18] in a passport options context.
It has also been used by Hobson [20] to investigate option prices in a level dependent
stochastic volatility model when one volatility process dominates another.

The third contribution of this paper is to find relationships between the prices of
options under different pricing measures. In an incomplete market the price of an option
depends on the choice of equivalent martingale measure — we prove comparison theorems
between prices derived from various popular measures from the literature.

The remainder of the paper is organised as follows. Section 2 describes the model and
relates it to models in other papers. The next section establishes the set of equivalent
martingale measures in the jump diffusion model. Some popular martingale measures
are identified in Section 4. These include the pricing measure used by Merton [27], the
Follmer-Schweizer minimal martingale measure [15], the martingale measure which min-
imises relative entropy, and the Esscher transform martingale measure. The material in
these sections is fairly standard and can be found in the union of [2], [3] and [6].

In Section 5 we discuss coupling as a technique and Section 6 uses coupling ideas to
prove the monotonicity result when parameters are deterministic. The next section uses
a different coupling and treats the case of stochastic parameters. The results of these two
sections are extended to American-style claims in Section 8. In the penultimate section
we prove some comparison results using the monotonicity theorems. In particular we find
some relationships between option prices under the various martingale measures mentioned
in the previous paragraph. Specifically, when there is only one possible jump size, then
for a European option with convex payoff the option price under the Follmer-Schweizer
minimal martingale measure is smaller than the price under the measure which minimises
relative entropy, which in turn is smaller than the price under the Esscher transform
martingale measure.

2 Model Description

Consider a financial market with a riskless asset and a single risky asset which are traded
up to a horizon T

Let (2, F,P) be a probability space with a filtration F; supporting a Brownian motion
and a Poisson point process, and satisfying the usual conditions and assume that all
parameters are previsible with respect to this filtration.

The dynamics of the riskless asset are given by

th = RtT (t)dt,



for a bounded, deterministic interest rate r so that

Ry = Ryexp (/Otr(u)du> .

Without loss of generality we assume Ry = 1.
Consider the following model for the risky asset. Under the ‘real-world’ measure P the
asset price process S; is a jump-diffusion process given by
dS;

(1) 5 = bedt + oy dW; + P (y)o(dt, dy),
t— [0,1]

where W; is a Brownian motion and
v(dt, dy) = v(dt,dy) — q(dt, dy)

is a compensated Poisson random measure on ([0,7] x [0,1]) with intensity measure
q(dt, dy) = \dtdy. We write

t t
M)} = / / v(dt, dy) — / \edtdy,
0 J[0,1] 0 J[0,1]

where the superscript A denotes that v has intensity A;dtdy, and by construction M? is a
martingale.

The interpretation that should be given to the various parameters is as follows: b is the
drift of the asset under the real-world measure, and ¢ the volatility of the Brownian part.
The rate of jumps in the price process is given by A; associated with each jump is a label
y, and a jump at time ¢ with label y corresponds to a proportional jump in the asset price
process of size ¢;(y). We assume the labels are uniformly distributed on [0, 1]. Both the
label space and probability distribution could be made arbitrary upon a transformation
of variables.

In order to ensure limited liability (S > 0) we assume that ¢ > —1. Note that the
parameters governing S can all be stochastic; for example we should write ¢; = ¢(y;w),
or in the Markov case we shall be interested in later ¢, = ¢(y; Si—,t) when the size of the
jump at time ¢ depends on the current asset price as well as the label y. We assume that
for fixed ¢, ¢ is a Borel-measurable function. Since it does not make sense to consider a
jump of zero size we assume ¢4 (y) # 0 for each ¢ and y.

In order to guarantee existence and uniqueness of a solution to (1) we need to impose
some regularity conditions on the parameters. In particular in the non-stochastic case it
is sufficient to assume b is integrable, o and A are bounded and that for each ¢, ¢:(y) is
an increasing square-integrable function bounded below by é4 > —1. For further details
see [3] or [6]. Essentially to guarantee existence and uniqueness of a solution to (1) it is
sufficient to show that the right-hand-side is the stochastic differential of a semimartingale
X, see Elliott [12, Theorem 13.5].

The solution to (1) is given by:

(2) Si=50E(b-1+0 W+ M)y = Sof(b-1)iE(0 - W)E(¢- M),

where the Doléans-Dade exponentials £ are given by:

E(b-1), = exp(/otbsds>,



t 1 t
EmM-W)y = exp (/ nsdWs — —/ nfds) ,
0 2 Jo

. A = eXx ' n viau — ‘ U M
£(0- M), p< / /Ml (1 + Bu(y) v (du, dy) /0 /mxueu(y)d dy),

and we have used Yor’s addition formula and the fact that [W, M*] = 0, see Elliott [12,
Chapter 13].

Our model and notation are a generalisation of the model given in Bellamy and Jean-
blanc [3]. If we change the label space from [0,1] to [—1,00) then we can identify the
labels directly as the sizes of the (proportional) jumps in the risky asset price, and with
this transformation we can recover the models of Baradhan and Chou [2], Pham [28] and
Kou [22].

It is implicit in our notation that the jump rate A is finite. It is possible to generalise
this and to extend the analysis to include models where the jumps (or equivalently the
right-hand-side of (1)) form a Lévy process and this is the approach taken by Chan [6].
In that case, if the Lévy measure of the jumps is not finite then the definitions of this
section have to be extended. Details can be found in Elliott [12, Chapter 13], see especially
Theorem 13.5.

3 Risk-neutral pricing measures

In general the jump-diffusion model described in the previous section is incomplete. Ex-
ceptions include the degenerate cases where ¢ = 0, or where ¢ = 0 and there is only
one possible jump size at any given instant, but see also the recent paper by Jeanblanc
and Privault [21] in which a more intricate jump-diffusion model is constructed which
possesses the completeness property. Since our model is incomplete there is no unique
equivalent martingale measure which can be used for determining unambiguous options
prices. Our goal in this section is to characterise the set of risk-neutral measures each of
which corresponds to a possible pricing functional.

Henceforth we assume that ¢ is bounded below by a constant d, > 0 and that ¢ is non-
zero. A measure QQ is an equivalent martingale (or risk-neutral) measure if it is equivalent
to the real-world probability P and if the discounted price process R;S; is a martingale
under Q.

Theorem 3.1 ([2], [28], [3], [6]) Q is an equivalent martingale measure if it has Radon-
Nikodym density with respect to P of the form

dQ
hab )l B
dP Fi '
where iL
3) T = Wit [ ()l dy),
t— [071]
and 1) and 7y are two previsible processes such that 1+~ > 0, E(Ly) =1 and
@) b — (1) + ot + A /[ )0y =0,
0,1

almost surely.



Remark 3.2 Tt follows that L; = £(¢p- W) E(y- M*);. In general L; is a supermartingale
and the assumption E(L7) = 1 is necessary to ensure that Q is a probability measure.

Remark 3.3 Let p = 1+ +, so that p = p(y) > 0. It is convenient to parameterise the
space of equivalent martingale measures as {Q,p > 0}. Once p is fixed, 1 is uniquely
determined via (4). (The advantage of parameterising Q via p is that if conversely
is fixed, then neither existence nor uniqueness of a 7 solving (4) is guaranteed. Indeed
uniqueness will only follow in a limited set of special cases.)

Remark 3.4 Under the real world measure the intensity of jumps with label y at time ¢
is A¢; under QP the intensity of jumps with label y is Aipi(y). Thus p acts multiplicatively
on the jump rate. The parameter 1 quantifies the modification to the drift of W and
represents a market price of diffusion risk, and v;(y) = pi(y) — 1 is the risk premium
associated with the jump risk.

Under QP the stochastic differential equation for S is:

ds
(5) i = r(t)dt + o, dW] + o du(y) (v(dt, dy) — Mpi(y)dt dy)

where Wf = W, — fg Yydu is a QP Brownian motion and v now has intensity Aip:(y)dt dy.
The solution to (5) is given by:

(6) Sy = SoR:E(a - WP)E (¢ - MP),.

4 Examples

In this section we review some of the common choices of changes of measure from the
literature, and in particular determine various choices for the pair (1,~) which make the
discounted price process into a martingale.

Consider the standard Black-Scholes model in which there is no jump component, and
the asset price is driven by a single Brownian motion B, so that dS;/S; = oydB; + b.dt.
In that case there is a unique equivalent martingale measure Q and the density of Q with

respect to the real-world measure P is L where, with & = —(b; — 7(t))/0?2,
dL ds,

(7) — = &t — _bdt ) = §t04d By, Ly =1,
L St

or equivalently

T 1 T
(8) L1 = exp ( / §o1dB; — 5 / gfafdt) :
0 0

Alternatively, we can write S; = Sj exp(Y;) where

t t 1
Y; = / 04dB, —I—/ (bu — 505) du.
0 0
With this set-up we have

T T
) Ly = exp ( /0 £,dY, — /0 ({tbt + %af{t(l _ gt)> dt) .

6



4.1 Merton

In Merton’s original jump-diffusion model [27] he proposes leaving the intensity rates
of the discontinuous component of the price unchanged and changing the drift of the
Brownian component. This is equivalent to taking v = 0 and M = —(by — r(t))/0y.
The superscript M refers to Merton.

4.2 The Minimal Martingale Measure

The minimal martingale measure as introduced by Follmer and Schweizer [15] is the mar-
tingale measure with the property that the (discounted) asset price becomes a martingale,
and that martingales which are orthogonal to the asset price process continue to be mar-
tingales.

Consider a family of changes of measure L" which we think of as a generalisation
of (7) where 04dB; is replaced by the martingale part driving S. We write Q7 for the
measure whose density with respect to P is given by L7. (Note that this is a different
parameterisation to that used in Remark 3.3, but we choose to represent the parameter
choice by a superscript in either case. The form of the parameterisation should be clear
from the context.) We have

dr? ds L (5
L—"t = (—t — btdt) = (O'tth + / oe(y)o(dt, dy)) :
i 0

(10) S,

Here, in the notation of (3), 1 = po¢ and v = e (y), so that for Q7 to be a martingale
measure we must have

(11) bt - T(t) + O'tz'f]t + )\t?’]t 0] (bt(y)zdy =0.
0,1

This forces 1, = nf, where by definition

~h=r()
0t2 + )‘t f[O,l] d)t (y)Qdy

(12) =

Hence ¢/ = nfoy and vF = nf¢i(y). It is clear from (10) that the change of measure
affects the drift of the price process, and intuitively clear that any martingale orthogonal
to S remains a martingale. See Chan [6] for details.

Recall that we need v/ = 0} ¢:(y) > —1, so that in the typical circumstance of b; > r(t)
we need an upper bound on the possible jump sizes for the minimal martingale measure
to be well defined. This is an example of the fact that in general the minimal martingale
measure may be a signed measure.

4.3 The Minimal Entropy Martingale Measure

Given the ‘real-world’ measure P the relative entropy Ip(Q) of the probability measure Q
with respect to P is given by

Ip(Q) :E(%ln%) =EQ (m%).

In the diffusion setting the minimal entropy martingale measure and the Follmer-Schweizer
minimal martingale measure are identical, though in our setting with jumps they differ.

7



A further motivation for the use of the minimal entropy measure is the fact that there are
strong connections between the use of this measure and pricing under exponential utility.
See Delbaen et al [7], Rouge and El Karoui [30] and Frittelli [16].
Suppose that all the parameters o, b, ¢ and A are deterministic and define
dLy

L— = atatth + ﬁt (y)ﬁ(dta dy)a LO = 1,
t— [071]

and suppose L; is the Radon-Nikodym derivative of a measure Q%# with respect to I’ on
Fi. Then

T T T
Ly = exp (/ oo dWy — lozfafdt) exp (/ / In(1 + B (y))v(dt,dy) — / / A (y)dt dy) .
0 2 o Jo, o Jio,1]

Under Q*#, the process W has drift ayo; and the Poisson process v has intensity A;(1 +
Bi(y))dt dy. Then

T
(13) EQ*” In Ly = B¢’ / Gi(au, By)dt
0
where )
(14 Glanf) = gafot + [ (14 A 1 +Aw) — Aw)dy,
(0,1]

We seek to minimise this expression over choices of a and # which make the discounted
price process into a martingale.

For fixed ¢t and w consider minimising G¢(ay, 8;) subject to the martingale condition
M(ay, B) = 0, where

(15) Mi(au, Bt) = by — () + oo} + e o Be(y)de(y)dy-

If we define the Lagrangian Gi(a, B;) — &My, B) then it is easy to show that the
minimising parameter choices are oy = & and §;(y) = &%) —1. We find that F¥ = ajo;
and 7 (y) = (e*#¥) — 1) where o solves

(16) by —r(t) + ofaj + N\ / (e%t9t) — 1)y (y)dy = 0.
[0,1]

Note in particular that under our assumption that the parameters are deterministic, the
solution o* is again deterministic. Write 3 = e () — 1 and QF = Q%A and note that
Gy and Gi(af, Bf) are also deterministic.

Hence we find that for parameter pairs (o, ) satisfying the martingale condition we
have Gi(as, B;) > Gi(of, Bf) = E¥ (Gi(af, Bf)). Finally, therefore, for any («, §) satisfying
(16)

ES Gy(ar, 1) > Guloi, ) = BY 7 (Gulaf, B))

and (13) is minimised by the choices (a*, 5*).

Remark 4.1 Instead of choosing the measure (Q to minimise entropy we could instead
attempt to minimize J;(Q) where, for ¢ > 1

7,(Q) :E<%>q.
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We can then modify the above calculations to deduce that the optimal change of measure
parameters are ¥f = a* o and v (y) = (14 (¢— 1)ad*¢(y))/(¢=1) — 1 where a?* solves

(17) b —r(t) +oial” + N /[0 1]((1 +(q—Daf ¢ () — 1) (y)dy = 0.

If we take ¢ = 2 we recover the Follmer-Schweizer minimal martingale measure. Further,
the limits ¢ T oo and ¢ | 1 correspond to the Merton measure and the relative entropy
measure respectively.

Remark 4.2 When the parameters of the price process are stochastic the story is more
complicated. In that case, although the definitions of the a and # which minimise G; sub-
ject to (16) are unchanged, they themselves are now non-deterministic. Hence, although
Gi(au, Bt) > Gi(ag, BF) it does not follow that REQ™* Gi(au, Br) is greater than EY Gi(af, BY)
since the expectations are taken with respect to different measures. In essence we can
define a martingale measure using (a*, 3*) but the definitions of these quantities are local
in ¢, and there is no guarantee that they lead to the measure which minimisizes entropy,
which is a condition that is global in ¢.

4.4 Esscher Transforms

Suppose that S; = Spexp(Y;) where Y; is a time-homogeneous Lévy process. Since Y; has
stationary independent increments we have

E(exp (Y1) = exp(tO(0)),

where O is the Lévy exponent. The Esscher transform (Gerber and Shiu [17]) of the Lévy
process Y is the process whose law @ is given by

_ @

L= |, =exp{0Y; —t©(0)}.

Now consider our more general inhomogeneous case. Again we write S; = Sy exp(Y})
where

t t t
Y, = / oudW, + / / In(1 + du(y))v(du, dy) + / be— 02— [ puly)dy | du.
0 0 J[o,1] 0 2 [0,1]

We consider generalised Esscher transforms of the form

(18) L= e {/Oteudyu - /Ot @u(Ou)du}

dP

where
1 1
@u(g) = _020'12; + 6 bu - _03. - )‘u ¢u(y)dy + )‘u/ [(1 + ¢u(y))0 - l]dy-
2 2 [0,1] [0,1]

We can think of this change of measure as a generalisation of (9). It follows that

dL,

(19) I = 0,00 dW; + /[071][(1 + ()% — 1)o(dt, dy).

9



and L is a martingale under P as required.

The martingale measure Esscher transform is the measure Q7" , where 6* is chosen to
make the discounted price process into a martingale. Comparing (19) with (3) we find
YF = 0o, and vF(y) = (14 ¢:(y))% — 1 where #* is the unique solution to

(20) b — r(t) + 026 + A /[0 [+ 6w =1ty = 0.

Remark 4.3 In defining the Esscher transform we wrote S; = Sg exp(Y:) and considered
exponential transforms of Y. A related approach is to consider dS; /Si— = dY; for a Lévy
process Y and to consider changes of measure of the form

a t t
o’ | _ exp{/ 0,dY, —/ 9u(0u)du}.
dP Fi 0 0

If S has no jumps then these formulations are identical, but otherwise the jumps manifest
themselves in Y and Y in different ways. Chan [6] has shown than if we consider the mar-
tingale Esscher transform derived from (21) then we recover exactly the minimal relative
entropy measure derived in Section 4.3, at least in the case of deterministic parameters.

5 Coupling

A standard text on coupling is Lindvall [23].
By a coupling of the models (', F', P, X’) and (Q", F",P" X") we mean a model
(Q,F,P, (X', X")) such that

x! 2 X/ X" 2 X-//.

In words, a coupling is a model which supports two processes each of which is an identical
stochastic copy of one of the original processes.

We will be interested in two couplings of Poisson random measures. As a motivational
example we consider these couplings in terms of Poisson processes.

Let N’ and N” be Poisson processes with constant intensities A’ < A\ respectively
and let § = M — X > 0. These processes are possibly defined on different probability
spaces. Now for the coupling. On a suitable probability triple (Q,f" , If”) define a pair of
independent Poisson processes (N NN %) with rates X' and § respectively. Define N by
N{\” = N{V + Nt‘s Then

1 D XN it DXy
N =N7*, N'"=N* .

Further it is clear from the coupling that N*" > N, so that for example for any function
Gy

PN} > G, Y0 <t <T)
< PN} > G, V0<t<T)
(22) = PN/ >G,Y0<t<T)

P'(N > G,VO <t <T)

This coupling can easily be extended to deterministic rate functions with the property
Ap < AY uniformly in ¢.

10



There is a second coupling of Poisson processes which is also extremely useful, partic-
ularly when the rate processes are stochastic. Again suppose that N’ and N” are Poisson
processes with constant intensities A’ < \’. Suppose N is a Poisson process of unit rate.
Set A} = X't and A} = X't and define

’\AI_'\ AAII_ e}
Nt :NA;7 Nt :NA’t’
If
D A D~
NI:NA, NII:NA’

then we have a coupling of N’ and N” which again can be used to deduce inequalities of
the form (22). This coupling can easily be extended to deterministic rate functions with

the comparison property
t t
/0 N, du < /0 N du v t.

6 Monotonicity of Option Prices: Deterministic Case

Suppose that all the parameters b, o, A and ¢ = ¢(¢,y) are deterministic functions of time.
In this section we prove a comparison theorem which includes the results of Bellamy and
Jeanblanc [3] and Pham [28]. In the next section we use different methods to extend our
results to cover some non-deterministic situations.

If the exogenous parameters b, o, A and ¢ are deterministic functions of time then there
are solutions to (4) for which v and p are stochastic. However we will restrict attention
to the case where p;(y) = p(t,y) is (chosen to be) deterministic also. It then follows that
1) is deterministic.

Suppose p(t,y) and 1 (t) have been chosen to satisfy (4) and let QP be the corresponding
equivalent risk-neutral measure. Then WP = W, — fot Y(u)du is a QP-Brownian motion,

and ‘ t
M}P:/ / v(du, dy) —/ / p(u, y)A(u)du dy
0 J[0,1] 0 J[0,1]

is a compensated Poisson random measure under QP. Since p(t,y) — 1 = (¢, y) and ¢ (u)
solve (4) we can assume that f[o 1 p(t,y)o(t,y)dy < oo. If we assume further that this

integral is uniformly bounded then we have that £(¢ - M*P) is well defined.

Theorem 6.1 Price monotonicity result (deterministic case)
For (European) options with convex payoff, h, the option price is increasing in the deter-
ministic parameter p.

Remark 6.2 In the current set-up we imagine a single model and various candidate
equivalent martingale measures, and this theorem compares prices under these different
measures. However, another fruitful way to think about this result is as a comparison of
expected payoffs under different models for the underlying.

Proof of Theorem 6.1: Suppose p”(u,y) > p'(u,y) uniformly in v and y and set
N'(u,y) = Mu, y)p" (u,y) = Mu, y)p' (v, y) =: N (v, ). Let 6(u, y) = N'(w,y) = N'(u,y).
Write E/ as shorthand for E2* and similarly E. Our goal is to show that E'h(S7.) >
E'h(S’) where S’ (respectively S”) denotes the solution to (6) under the parameter value
!/

p' (repectively p).

11



We have
(23) E'h(S}) = Eh(SoRrE(o - Wp&(p- M')T)

where W/ = W? and M’ = M are martingales under E/, and similarly
(24) B h(S%) = B h(SoRr&(o - W"r&(¢ - M")r).

Now consider a new probability space with probability measure P supporting a Brow-
nian motion W and a pair of independent Poisson random measures 2’ and 2% on ([0, T] x
[0,1]) with rates X (u,y)dudy and &(u,y)dudy. Let M’ and M? denote the corresponding
compensated processes.

Note that the Q¢ law of W', the QP law of W” and the P law of W are identical
(each are Brownian motion), so for any function f, E f(W4) = B/ f(Wi) = Ef(Wr) and
moreover

(25) E h(SoRrE (o - Wr&(p- M) ) = Bh(SoRp&(c - W)pE(d - M')r).

Now define 7" to be the sum of the Poisson random measures &' and #°. By the
independence of these last two quantities, P" is again a Poisson random measure on ([0, T"] X
[0, 1]) with rate A" (u,y)dudy, and let M" be the corresponding compensated process. Then
the law of M" under P is the same as the law of M" under P”. Let S} = SoR.E(o-W).:E(¢-
M"); and similarly for SY.

Now

E'h(SY) = E'h(SoRr&(c-W")rE(¢p- M")7)
(26) = REh(SoRr&(c - W)r&(¢p- M")7)
= En(57)
since the laws of WP and MP" under E” are identical to those of W and M" under .
But

Eh(SoRrE(o - W)rE (¢ - M")7) =
(27) Eh(SoRr&(o - W)rE(p - M')pE (¢ - M®)r)

where we have used the independence of the constituent parts of 2”. In particular, since
' and % are inAdependent [ M, ¢- M%) =0 and by Yor’s addition formula &(¢- (M’ +
%)) = E(- M€ (@ - NP,

Conditioning on W and M, using a conditional Jensen’s inequality and the fact that
RE(¢ - M) = 1, we have

ER(SoRrE(0 - W)rE(¢ - M')7E(¢p - MP)7)
(28) > Eh(SoRré(o - W)rE(¢- M)rE(E(¢ - M°)p|W, M'))
= Rh(SoRr&(o-W)r&(p- M)7).

Finally, combining (26), (27), (28), and (25) we have the result:

E'R(SL) = E'h(SoRré(d- M")pE(o - W)r)
> Elh(S()RTg(gb . MI)T(‘:(O' . WI)T)

(29) = E'h(St)

12



Remark 6.3 This proof fails if the parameters ¢, o or A are stochastic. For example, if

¢ = ¢(S¢_) then

E'h(SY) = Eh(SoRr&(H(S") - M")rE(o - W)r)
> Bh(SoRrE(H(S") - M) p&(o - W)

However this last term cannot be identified with Eh(S%) since
St = SoRr&(§(S) - M')ré(o - Wr)r)

and in general the terms &(¢(S") - M')p and E($(S') - M')p are not the same.

7 Monotonicity of Option Prices: non-deterministic case

The results of the previous section, and the price comparison results of Bellamy and
Jeanblanc [3] and Pham [28], rely on the crucial assumption that both the parameters
of the price process and of the equivalent martingale measure are deterministic. In this
section we make partial progress in extending this result to allow for state dependent jump
rates.

This generalisation comes at a cost however: our proof only works in the case where
there is at most one possible (proportional) jump size, so that the size of any jump is
independent of both time and the label, and in particular ¢:(y) = ¢ > —1. In this case
there is no point in considering p¢(-) as a function of the label, so we drop any dependency
of p on y.

We consider the Markovian case. Assume A and b are functions of time and the current
value of the asset price, so that for example A = A(S;—,t), but suppose that o = o(t) is
deterministic. The space of equivalent martingale measures is parameterised by p where
p and v solve (4). Again, this equation does not force p and 1 to be functions of time
and asset price alone, but we will only consider p of the form p = p(S;_,t), and given our
other assumptions this forces ¥ = 1(S;—,t) also. Hence we find that p and 1 solve

(30) b(St—a t) - ’l"(t) + U(t)"/)(st—a t) + (p(St—at) - I)A(St—a t)¢ = O,

For the purposes of this section we make some further technical assumptions. Recall
that A and ¢ are bounded and assume that p is bounded also. Assume further that A and
p satisfy a global Lipschitz condition. Hence we have |A| < K and |A(z1,t) — M(xe,t)| <
Cy|x1 — x|, with similar expressions for the other parameters.

Our main result is

Theorem 7.1 Price monotonicity result: non-deterministic case.

Assume that there is only one possible (proportional) jump size ¢, and that the functions
b and X depend on t and Si;— alone, and o is deterministic. If we consider equivalent
martingale measures parameterised by p = p(t,S¢—), then for a (European) options with
convez payoff, h, the option price is increasing in p.

Remark 7.2 Consider two alternative pricing measures, Q' = Q' and Q' = Q¢". Sup-

pose
(31) p(z,t) > p'(2,t) >0 VYV, t>0

13



If (S}, S}) are a pair of realisations from the different models then we are not requiring that
p"(S;_,t) > p'(S;_,t) uniformly in S;_, S} and ¢, but rather the much weaker condition
that, if the price levels are identical in both models so that S; =z = S}_, then p"(z,t) >

p'(@,1).
Before proving the theorem we introduce some further notation and prove a crucial

lemma. Suppose that QF is any pricing measure and that under Q7

ds
(32) S—t = rydt + o, dWy + G(AN)P — p(t, S;_)A(t, S;_)dt)
t—

where W is a QP-Brownian motion, and N*? is a Poisson process with rate Ap. Then
A A
(33) Sy = SoRE(0 - W)i(1 + )N e ¢4

where Aj AP — fo p(Su_,u)du. Tt is profitable to think of N*? as a time change of

a Polsson process Nl Of umt rate, so that N{\ P=N! (A?p)- In particular (33) becomes
A A
St = SORtg(O- . W)t(]. + ¢)N1(Atp)€_¢AtP.

We wish to use a coupling to obtain a price comparlson result. To this end suppose
that Pis a probability measure and that W is a P-Brownian motion and N* is a unit rate
Poisson process. The discount factor Ry and the exponential martingale £(o - W)t can be
defined as before. Fix w and let A and § solve the coupled equations

t
(34) A= Av - / A(Su,,u)p(gu,,u)du
0
(35) S, = SyRiE(o-W)(1+ )N —¢A:

Now suppose we are given p and p" and let the pairs (A’, $") and (A", ") solve (34)
and (35) with p replaced by p’ or p” respectively. Note that we use the same W and N?
in the construction of each pair; only the form of p varies.

Our first result is that if the functions p are ordered then so are the time changes A.

Lemma 7.3 Suppose p"(z,t) > p'(x,t) for each pair (x,t) and that p" and the parame-
ters o, \,r satisfy the smoothness, growth and boundedness conditions given above. Then,
except on a null set, for each w we have A} (w) > A}(w).

Proof:
Fixing w is equivalent to fixing the realisation of the Brownian motion W and the unit
rate Poisson process N1. Tt is clear that A'T and A% are both bounded by K, K,T. Hence,
except on a set of measure 0, we can assume for our w that each of Ry, (o - W), N'(A})
and N(A!) is bounded on [0, T].

Let Y, = A/, — A”; we show Y, < 0. Let T} be the time of the first jump of N! and

w?

suppose ¢t < T is such that A}V A” < Tj. Observe that Y is finite variation so that
t
Y?— = / I{Yu>0}dYu
0

= [ s (MG (8 - NS (S, ) do
0

14



IA

t
/O I{Yu>0} ()\(S;—a u)p"(SL_,u) - )\(SZ_, u)p"(SZ_,u)) du
t
= [ Ty (ASL 0 (S ) = NS0 () du
¢
[ Tsoy (M (Sl w) — ML (8L ) du
0
t
< (O + G [ TirsoylS = SLldu
Since there have been no jumps by time ¢ we have that
1S — 8" | = SyRiE(0-W)le ?At — 947
< KA, — Ayl
for some constant K. We deduce
t
VS KOG+ Gl [ (- Al i
t
= K(C\K,+ CPKA)/ Y, du
0

Then, by Gronwall’s Lemma [31, 5.11.11] we must have Y;© = 0.

Thus, AY > Al for all ¢ with A/ < T}, and since A” and A’ are both continuous and
increasing processes this holds for all ¢ < ¢(1) = (A")~'(T}). We extend this result to all
t < T by induction on the number of jumps of the Poisson process.

Let T} be the time of the k%" jump of N', and define # (k) = (A)"1(T;). As the
inductive hypothesis suppose A;’, = A;,(k). Then Yy < 0 and we prove Ys; < 0 for
t'(k) <s <t(k+1).

If A;’,(k) > Ty then AL < A:t’(k+1) = Ty < A;’I

prove. Otherwise, for ¢ such that A? v A, < #/(k + 1)

k) < A" and there is nothing to

t
v = / o [0l A (8, ) =ML (S )
t

The argument proceeds exactly as before except for an additional factor (1 + ¢)* in the
modulus of |$!  — 5" |. Again we deduce from Gronwall’s Lemma that ¥;* = 0, and by
extension A > Al for t <#'(k+ 1) AT.

For fixed w the number of jumps of the Poisson process is finite and we deduce A > Al
for all ¢ as desired. O

We now prove the theorem.
Proof of Theorem 7.1:
If @ and Q' are the martingale measures associated with p’ and p” then the goal is to
show
(36) E'h(S}) < E'h(SL).

Note that, with W’ a (-Brownian motion and N’ a Poisson process with rate \p’
Eh(S}) = Eh(SoRrE(o - Wp(1 4 ¢)Nre= A7)
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Similarly,
(37) E'h(S") = BR(SoRr& (o - W)p(1 + ¢)N' (A1) =04t

Using the independent increments property of N and Lemma 7.3
(38) NY(Ag) = (N (Af) — NL(Ap)) + N (A7)
and we can rewrite the right-hand side of (37) as
BR(SoRr€(0 - W)r(1 + ¢)N (A =947 (1 4 )V (A7) =N (A7) o= p(Af— A7)

Conditioning on the value of (¢ - W)r and N 1(fi’T), and using a conditional form of
Jensen’s inequality we deduce that

E'h(S%) > Bh(SoRr&(o - W)r(1 + ¢) N (Ar) g=¢47)

and the result follows. O

Remark 7.4 Again it is interesting to consider where this proof breaks down if there is
more than one possible jump size. In this case for each possible jump size ¢(y) we would
have to consider cumulative intensities A’(y) and A”(y) and we would have to prove a
condition of the type AQ’ ( ) > Al(y) unlformly in y. If there is only one possible jump size
then we know that if A} = A} then S/ = S!, and hence we deduce A” > A’. If there is
more than one possible j Jump size, then if for a single y we have A”(y) = A'(y) it does not
follow that S = S!.

Finally, in this section, we provide a counter-example to show that if there is more
than one jump size then an ordering on the factors p is not sufficient to guarantee an
ordering on the prices of options, even in the Markov case.

Example 7.5 Suppose we have a model with two potential jump components: ‘unit’
jumps with ¢ = 1 and ‘large’ jumps with ¢ = 6 > 1. (Suppose further that Sy = 1,
interest rates are zero and that ¢ = 0 so that there is no Brownian component. We remove
this last restriction later.)

We consider an option with maturity 7' = 1 and payoff h(z) = (z — 3)™.

Suppose the rate of large jumps is §~' and the rate of unit jumps is ¢, but that both
these jump types can only occur when the price level is in the range In S;— € J, := [—¢, €].
Here € is small and certainly € < (In2)/2.

Then,
St = 2Nt1/\'r(]_ _I_ H)Nt2/\'re_(c+1)(t/\‘r)

where 7 is the time of the first jump, or the time when In S first leaves J, and N' and
N? are Poisson processes governing the times of the first jumps of type ‘unit’ and ‘large’
respectively.

At the time of the first jump of either type the process stops. If there are no jumps
the process In S leaves J at t = (1 + ¢) !¢, and again the process is constant from then
on.

The option pays out a positive amount if and only if there is a large jump before time
1. If there is a large jump at 7 then the option pays out (1 + 0)6_(°+1)T — 3 and since
InS,;_ € J. and € is small this is approximately 6 — 2.
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The probability that there is a large jump is the probability there is any jump multiplied
by the probability that conditional on a jump, the jump is large. Until In S leaves J, the
rate of jumps is ¢+ 07! and since in the absence of jumps In S leaves J, at time (1+c) e
the probability there is a jump is

1—exp(—(c+0_1) < >

1+e¢

which is approximately ec/(1 + ¢). Given there is a jump the probability it is large jump
is
6! 1
c+0 1" ¢
Finally we deduce that the expected value of the option is approximately

ec 1 €

0—2 — ~ )
( )l—l-ccH 1+c¢

This is a decreasing function of c.

When there is more than one possible jump size, increasing the rates of jumps affects
the dynamics of S;. In this case increasing the rate of unit jumps means that the drift of
S is stronger and reduces the length of period for which In.S € J. and reduces the overall
probability of large jumps. This decreases the value of far-out-of-the-money call options.

In fact it is not possible to have the volatility parameter ¢ equal to zero and remain
within the framework of this paper, not least because if ¢ = 0 there then is only one
value of ¢ for which the model of this example is a martingale. However if the volatility
co-efficient is a small positive constant (small even in comparison with €) then the spirit of
the above example still holds, each ¢ corresponds to a different martingale measure, and
with careful analysis it can be shown that option prices are not increasing in c.

8 American Options

It is straightforward to extend the results of the previous sections to a American options
and we provide a sketch of these extensions here. Note that in the deterministic case these
results can also be found in Pham [28]. The prices of American-style options under the
pricing measure QP are given by

sup Ry IEY h(S,).
<<T

First assume that we are in the setting of Section 6 so there are jumps of various
sizes, but parameters are deterministic. We borrow notation from Section 6 and assume
P} (y) > pi(y) uniformly in ¢ and y.

Then, for any stopping time 7

Eh(S)) = Bh(SoR,E(0 - W),E(p- M'),E(p - MP);)

and conditioning on W and M’ and using the martingale property of £(¢ - M 5)t we have
by Jensen’s inequality

~

En(SY) > Er(SoR-E(o W) E(¢- M'),)
Eh(S7)
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It follows that
sup R7'ER(SY) > sup R;'ER(SL)
T <T

and hence Theorem 6.1 holds for American options also.

Now suppose the assumptions of Section 7 hold so that there is a unique jump size,
but some of the parameters may be stochastic. Since Lemma 7.3 holds for all ¢ it also
holds at any stopping time 7. The extension of Theorem 7.1 is straightforward; we simply
use the conditional Jensen’s inequality at the stopping time 7 and note that given N Lean)
the increment N'(A”) — N'(A") is a Poisson random variable.

9 Comparison Results

To begin with we suppose that all parameters are deterministic so that we are in the
setting of Theorem 6.1. Suppose further that b(t) > r(t).

Theorem 9.1 Suppose we are considering an option with convex payoff h.

(a) Suppose all jumps are positive; ¢y (y) > 0 uniformly in uw and y. Then the price under
the Merton measure is greater than the price under each of the Follmer-Schweizer (if de-
fined), relative entropy and Esscher transform martingale measures.

(b) Suppose all jumps are negative; ¢, (y) < 0 uniformly in u and y. Then the price under
the Merton measure is smaller then the price under each of the Follmer-Schweizer, relative
entropy and Esscher transform martingale measures.

Proof.
Following the results of Section 7 it is sufficient to prove corresponding results about the
orderings of the parameters Y™, v ~RBE F.

Recall that Y™ = 0 and 7' (y) = 1} ¢:(y) where 5} is given by (12). By our assumption
on b and r, n* is negative, so if ¢;(y) is uniformly positive (respectively negative) then
vF (y) is uniformly negative (respectively positive). The comparisons between the Merton
and Follmer-Schweizer prices follow.

Define

(39 Hi(@) = b(0) = r(®) + 2B+ A0 [ (609~ 1)o(t,)dy

(0,1]
so that the minimal entropy martingale measure is parameterised by o where H(aj) = 0.
(This equation has a unique solution since

T =) [ gty
da [0,1]
is positive for all a.) Further H;(0) > 0 so we must have af < 0. Since y*F(y) =
e®¢(ty) — 1 we have that 47 (y) is positive if and only if ¢(¢,) is negative.

The argument for the Esscher transform martingale measure is very similar except
that it is based on

(40) HE(0) = b(t) —r(t) + o?(1)0 + A() /[0 1][(1 +¢(t,y))" — 16(t,y)dy
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Remark 9.2 Bellamy and Jeanblanc [3] show that the set of prices for a European call
option taken under the various equivalent martingale measures is bounded below by the
corresponding Black-Scholes price when the jump rates are set to zero and bounded above
by the price of the underlying itself. This result can be seen as an alternative application
of Theorem 6.1, the lowest possible price corresponds to the smallest possible jump rates,
and the highest possible price arises in the limit as the rate of jumps grows without bound.

Now suppose that there is only one possible jump size.

Theorem 9.3 The price of an option with convezx payoff h under the Follmer-Schweizer
minimal martingale measure is lower than the price under the minimal relative entropy
martingale measure which in turn is lower than the price under the Esscher transform
martingale measure.

Proof.

By hypothesis there is exactly one possible jump size so we can suppress the jump-label
y. We know that each of nf, o and 6] must be negative and it is easy to check that for
any non-zero ¢ and negative x

(1+ @)% > e®® > px + 1.
Hence for negative a and positive ¢
Hy(a) > b(t) —r(t) + o*(t)a + A(t)ag?

and in particular Hy(n;f) > 0. Hence if ¢ is positive we have af < nf. Conversely, if ¢ is
negative we have of > nf so that ¢(n; — af) > 0. Further, from (12) and (16) we have

= b(t) —r(t) + > (O)n; + At)p
b(t) —r(t) + o*()ai + M)

Subtracting and multiplying by ¢; we find

A (W =) = o> (t)p(n; — a7) > 0.

Hence, v/*¥ > +f" and the first part of the theorem follows as an application of Theorem 6.1.
Conversely

Hi(a) < b(t) —r(t) + o (t)a + At)(1 + ¢)%¢

and in particular Hy(0}) < 0. From this we can proceed as above to deduce that v > v/tF,
and the inequality between the Esscher and relative entropy martingale measures follows.
O

Suppose that o = o(t) is deterministic, and that there is only one possible jump size ¢.
The intensity process A = A(S;—,t) and drift b = b(S;_,t) > r(t) may be stochastic. Hence
we are in the setting of Theorem 7.1. Since the parameters are stochastic, the construction
in Section 4.3 does not necessarily lead to the minimal relative entropy measure. However,
we have the following result the proof of which is a direct copy of the proof of Theorem 9.3,
except that it appeals to Theorem 7.1 at the final step.
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Theorem 9.4 Suppose that o = o(t) is deterministic and that there is only one possible
Jump size ¢. The price of an option with convex payoff h under the Follmer-Schweizer
minimal martingale measure is lower than the price under the Esscher transform martin-
gale measure.

Remark 9.5 These result gives us some relationships between the various martingale
measure prices in a simple model. It is an open question as to whether these relationships
will hold more generally. It seems intuitively natural that the Follmer-Schweizer minimal
martingale measure should give the lowest price since this measure leaves risks which are
orthogonal to the asset price process unpriced.

10 Conclusion

In this article we considered option pricing in a jump-diffusion model for the underlying. In
general such a model is incomplete and there are no unique preference independent prices
for options. Equivalently the set of equivalent martingales measures is not a singleton.

Several authors have characterised the set of equivalent martingale measures. This set
is parameterised by two processes which correspond to the market price of jump risk and
the market price of diffusion risk. Our results show that if we consider two martingale
measures, and if the jump intensity under the first measure is higher than the jump
intensity under the second measure, then the price of an option whose payoff is a convex
function of the underlying is higher under the first model than under the second. In
the case of deterministic parameter values this result is derived using pde methods by
Pham [28]. Our methods, which involve coupling of Poisson processes, allow us to make
some progress towards considering stochastic parameters. In particular we give an example
to show that option prices are not monotonically increasing in the jump intensity if there
is more than one possible jump size, and the jump intensities are stochastic.

In the situation where there is only one possible jump size there is more to be said.
In this case it is possible to prove a comparison between the options prices under various
candidate martingale measures which have been proposed in the literature. In particular,
again for options whose payoff is a convex function of the underlying, we have that the price
under the Follmer-Schweizer minimal martingale measure is smaller than the price under
the minimal relative entropy measure which in turn is smaller than the price under the
Esscher transform martingale measure. We conjecture that the Féllmer-Schweizer minimal
martingale measure continues to give the lowest price amongst these three common pricing
measures even if there is more than one possible jump size.

References

[1] Bardhan I. and X. Chao; Pricing Options on securities with discontinuous returns, Stochastic Pro-
cesses Appl., 48, 123-137, 1993.

[2] Bardhan I. and X. Chao; On martingale measures when asset returns have unpredictable jumps,

Stochastic Processes Appl., 63, 35-54, 1996.

[3] Bellamy N. and M. Jeanblanc; Incompleteness of markets driven by a mixed diffusion, Finance and

Stochastics, Vol 4, 2, February 2000.

[4] Bergman Y.Z., Grundy B.D and Wiener Z.; General Properties of options prices, Journal of Finance,
Vol 51, p1573-1610, 1996.

20



(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]
23]

[24]

[25]

[26]

27]

Carr P.;, Geman H., Madan D.B. and Yor M.; The fine structure of asset returns: an empirical
investigation, Preprint, July 2000.

Chan T.; Pricing contingent claims on stocks driven by Levy processes, Annals of Applied Probability,
9,2, p504-528, 1999.

Delbaen F., Grandits P., Rheinlander T., Samperi D, Schweizer M. and Stricker C.; Exponential
Hedging and Entropic Penalties, To appear in Mathematical Finance.

Duffie D., Pan J. and Singleton K.; Transform Analysis and option pricing for affine jump diffusions,
FEconometrica, 68, p1343-1376, 2000.

Duffie D. and K.J. Singleton; Modelling Term Structure Models of default bonds, Review of Financial
Studies, 12, p687-720, 1999.

Eberlein E. and J. Jacod; On the range of option prices, Finance and Stochastics 1(2), 131-140, 1997.

El Karoui N, Jeanblanc Picque M. and S.E. Shreve; Robustness of the Black and Scholes formula,
Mathematical Finance, Vol 8, No.2, p93-126, 1998.

Elliot R.J.; Stochastic Calculus and Applications, Springer-Verlag, New York, 1982.

Elliot R.J. and Jeanblanc M.; Incomplete markets with jumps and informed agents, Math Methods
Oper Res, 50, p475-492, 1999.

Embrechts P., Frey R. and H. Furrer; Stochastic Processes in Insurance and Finance, In: Handbook
of Statistics, Vol 19, ’Stochastic Processes: Theory and Methods’, Elsevier Science, Amsterdam,
p365-412, 2001.

Follmer H. and Schweizer, M; Hedging of contingent claims under incomplete information. In Applied
Stochastic Analysis (Eds M.H.A. Davis and R.J. Elliott), Gordon and Breach, New York. 1990.

Frittelli M; The Minimal Entropy Martingale measure and the valuation problem in incomplete
markets, Mathematical Finance, 10, p39-52, 2000.

Gerber H.U. and E.S.W. Shui, Option pricing by Esscher transforms. With discussion. Transactions
of the Society of Actuaries, XLVI, p99-191. 1994.

Henderson V.; Price comparison results and super-replication: an application to Passport options,
Applied Stochastic models in Business and Industry, 16, 4, p297-310, 2000.

Henderson V. and D.G. Hobson; Local time, coupling and the Passport option, Finance and Stochas-
tics, Vol 4, 1, p69-80, January 2000.

Hobson D.G.; Volatility mis-specification, option pricing and super-replication via coupling, Annals
of Applied Probability, 8, No.1, p193-205, 1998.

Jeanblanc, M. and Privault, N.; A complete market model with Poisson and Brownian components,
Prépublication du Département de Mathématiques, Université de La Rochelle. 1999.

Kou S.; A jump diffusion model for option pricing, preprint, Columbia University, August 2001.
Lindvall T.; Lectures on the Coupling method, Wiley, New York, 1992.

Lyons, T.; Uncertain volatility and the risk-free synthesis of derivatives, Applied Mathematical Fi-
nance, 2, p117-133, 1995.

Madan D.B. and Seneta E.; The variance gamma model for share market returns, Journal of Business,
63, p511-524, 1990.

Martini, C.; Propagation de la convexite, These, Universite d’Evry, 1996.

Merton R, C.; Option pricing when underlying stock returns are discontinuous, Journal of Financial
FEconomaics, 3, p125-144, 1976.

21



[28] Pham H.; Optimal stopping, free boundary and American option in a jump diffusion model, Appl.
Math. Optim., 35, p145-164, 1997.

[29] Prigent, J. Renault, O. and Scaillet, O; Option pricing with discrete rebalancing; Preprint 2001.

[30] Rouge R. and El Karoui N.; Pricing via utility maximisation and entropy, Mathematical Finance, 10,
2, p259-276, 2000.

[31] Rogers, L.C.G. and D. Williams, Diffusions, Markov Processes and Martingales, Volume 2. Wiley,
1987.

22



