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Abstract

We develop a parameterised model for liquidity e�ects arising from the trading in an asset.

Liquidity is de�ned as the combination of an individual transaction cost and a price slippage

impact, which is felt by all participants in the market. The chosen de�nition allows liquidity

to be observable in a centralised order-book of an asset as is usually provided in most non-

specialist exchanges. The discrete-time version of the model is based on the CRR binomial tree

and in the appropriate continuous-time limits we derive various nonlinear partial di�erential

equations. Both versions can be directly applied to the pricing and hedging of options, thereby,

due to the nonlinear nature of liquidity, deriving natural bid-ask spreads that are based on the

liquidity of the market for the underlying and the existence of super-replication strategies. We

test and calibrate our model set-up empirically with high-frequency data of German blue chips

and discuss further extensions to the model as well as applications like liquidity derivatives and

portfolio trading.

Keywords: liquidity, option pricing, liquidity derivatives, portfolio trading

1 Introduction

Two of the underlying assumptions of, amongst others, the basic Black-Scholes or CAPM economies

are �rstly that markets are frictionless, and secondly that agents are price-takers, i.e. no single

participant can a�ect asset prices in the market through her trading strategies. But real world

markets substantially deviate from these assumptions, because for virtually all traded assets there

exist both bid-ask spreads and a limited market depth. In general, the former serve as a revenue

source as well as a risk insurance bu�er for market makers, since they will buy low and sell high,

and the latter is the volume of an asset available to buy or sell at a certain price. Together they

represent the order book of an asset, which serves as market inventory allowing immediate execution.

Usually, if many market makers and participants want to trade, bid-ask spreads tend to be narrow

and market depth plentiful because of competition. Colloquially, the market is then said to be

liquid.1 Obviously market participants prefer markets or assets with high liquidity, because they

�contact: bakstein@maths.ox.ac.uk; work supported by the EPSRC, Charterhouse, Socrates and ESF
ycontact: howison@maths.ox.ac.uk
1Other factors that might a�ect bid-ask spreads are the availability of information about the traded asset or the

legislation of the market itself.
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can get in and out of their positions quickly and cheaply. Hence, say, the equity of a large company

that has a high free oat and trades on a big exchange will, ceteris paribus, have narrower spreads,

compared to a closely held small-cap.2 The same will also apply to contingent claims written on

that asset. Because the value of a derivative both originally in the Black-Scholes theory and in

reality at least partly is derived from replicating trading strategies in its underlying, the contract's

bid-ask spreads will be narrower, the more liquid the market for the hedging instrument. Generally,

however, there is neither a consensus approach how to calculate liquidity premia of derivatives nor

how to parameterise and measure the liquidity of a market or asset.

Qualitatively, liquidity or the lack of it causes two e�ects. Firstly, it has an impact on the

transaction price. Whereas it may be possible to trade small quantities of an asset at the best

possible price, which is close to the published mid-price, the larger the trade size the more levels of

market depth (from one or more market makers) will have to be tapped and the further the average

transaction price will deviate from the mid-price. Thus, in general, the average transaction price

will be an increasing function of trade size. Secondly, liquidity is directly related to the degree of

market slippage due to individual transactions. This means that, since every participant can observe

the same market depth,3 large trades of one agent may remove entire price layers and lead market

makers to adjust their prices accordingly. In reality, it is common that asset prices are pushed, in

some cases deliberately, in a certain direction by comparatively large trades (see e.g. [Tal]). But

even if no trader has an explicit intention to do so some agents have to trade certain quantities

of the underlying to execute a large portfolio trade or to hedge the exposure of their portfolios of

derivatives. In the latter case if, as in the Black-Scholes theory, they try and Delta-hedge, then for

options with non-smooth or even-discontinuous payo�s, the Delta and Gamma, i.e. the amount of

the underlying they have to hold and approximately add or remove, respectively, become large close

to expiry or close to a payo� discontinuity. Since, in reality, markets only have limited liquidity,

these traders may thus move the value of the underlying in an undesired direction because the

trade-induced slippage feeds back into their mark-to-market contract values. To avoid mis-hedging,

the required quantities of the underlying thus have to be adjusted by a liquidity factor. This will

a�ect the value of the position, since the latter is derived, by the Black-Scholes framework, from the

risk-free amount that can be earned on a replicating portfolio. Beyond this if a trader has a good

intuition of the liquidity of the market, then, instead of hedging a position, she may be inclined to

liquidate the accumulated hedge quantity and thus push the market in a desired direction. However,

normally, traders are not supposed to know the positions of other participants in the market, yet,

if it became known or if a trader acted on behalf of a client on the one hand and had a proprietary

book on the other, then she might exploit his knowledge. Taking this possibility into account, the

initial premium required for a contingent claim from counterparties could be reduced due to this

informational asymmetry.

To capture the various e�ects of liquidity analytically the papers of [Jar1], [Sch�o], [Frey], [A&C1]

and [H&S1] propose a number of models with similar components. Firstly, they introduce a reaction

function that models the immediate impact of a trade and the average price paid per asset. It

is also a function of both a liquidity scaling parameter and the trade size. A possible proxy for

the former is explicitly given by [Krak] as the ratio of change in the price of the underlying asset

to notional traded. This choice of estimator has the advantage that at the time of the trade the

liquidity parameter is observable and predictable. Secondly, the papers by [A&C1], [H&S1] and

[H&S2], further consider the permanent slippage e�ect on the asset, by making its new equilibrium

2In this case the more liquid stock should also trade at a fundamental premium. But in this paper we will consider

equity valuation as an exogeneous factor.
3As is the case in virtually all European exchanges and also e.g. NASDAQ, we assume that all participants either

deal in a centralised transparent order-driven or electronically-linked broker market, instead of a specialists' market

as is e.g. the NYSE.
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price a function of both the previous and the average transaction price. In our paper we employ

a combination of these e�ects, which will make them observable given a particular order-book. In

section 2 we derive the discrete-time version of the model, which is a combination of the binomial

model of [CRR] and a nonlinear controlled process, and apply it to the valuation of options. In

section 3 we derive various nonlinear partial di�erential equations (PDEs) in the continuous-time

limit under special choices of parameters. In section 4 we empirically analyse a trading book for

various stocks traded on the German Xetra system. We present a consistent de�nition of liquidity

and calibrate our model to the data. In section 5 we mention various extensions to the model and

present a number of applications including liquidity derivatives and portfolio trading. Section 6

summarises the paper and suggests further areas of research around our model.

2 The discrete-time model

The main building block for the pricing framework of derivatives and portfolio trades is a suitable

model for the underlying assets or, more generally, the state variables. We commence our analysis in a

discrete-time �nite-horizon economy where trading in assets takes place at times ft0; t1; : : : ; tn = Tg.
The state of the economy is given by the �nite set of trajectories 
 = f!1; : : : ; !mg and the revelation
of the true state by the �ltration, i.e. increasing sequence of algebras, (Ft)t2ft0;:::;Tg. The initial set
of states is Ft0 = 
, the eventual true state of the economy is revealed as FT = !j , !j 2 
. There

are two assets, namely a risky \stock" St(!) and a riskless \bond" Bt, whose respective processes

are adapted to the �ltration (Ft)t2ft0;:::;Tg and valued in R+ .

Resorting to the widely used binomial model of [CRR], we will model randomness, which repre-

sents other participants' trading in the stock, by making the risky asset go up by a fraction u � 1

with probability q or down by a fraction 1� d with probability 1� q over one timestep. Therefore

Sti(!j) =

�
uSti�1 if !j = !u implies up-step,

dSti�1 if !j = !d implies down-step,
(1)

where u > d. The bond on the other hand will always yield the riskless return r, namely

Bti+1 = (1 + r)Bti : (2)

The two key properties of the model are, �rstly, the absence of arbitrage in the market provided

that 0 < d < 1 + r < u. This implies that expectations of the discounted risky asset have to be

taken with respect to the risk-neutral probabilities q and form a martingale when taking the bond

as numeraire:

EQ[ST ] = St0BT =Bt0 ; T > t0: (3)

Secondly, u, d and q can be calibrated such that St follows (risk-neutral) geometric Brownian motion

dSt = rStdt+ �StdWt; (4)

in the continuous-time limit. Here � is the asset's volatility and dWt a Wiener process, i.e. the

increments of standard Brownian motion. The same model is employed in the seminal paper by

[B&S] as the model for the underlying asset.

On top of the random process for the underlying we construct a controlled process that represents

the e�ect that a large or inuential trader has on the market. This trader's holding process in the

risky asset we denote by (Ht(!))8t;! and in the bond by (Ĥt(!))8t;!. Both processes are adapted

to the �ltration (Ft)t2ft0;:::;Tg and moreover one-step-ahead predictable with respect to it. The
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Figure 1: Average transaction price time series for BASF stock in a particular trading period derived

from the electronic order book. At the beginning of the time period shown, liquidity is high on the

ask side (the surface is nearly at, so that 1 to 4000 stocks can be bought at approximately the

same unit price) and less so on the bid side. The mid-price is the average of the values at the top

and bottom of the 'cli�'.

latter point entails that the trader's portfolio can be rebalanced in between the random changes

to the underlying asset. Now, if we assume that St represents the mid-market price at a generic

time, then the most favourable prices to sell or buy the asset, i.e. the bid and the ask, will be

below and above it, respectively. Also, if the quantity to be traded is large, then more than one

quote has to be �lled in order to complete the trade. This means that the average transaction

price �St is an increasing function of the trade size. We de�ne its process ( �St(!))8t;! as a function

f(Sti�1 ; Hti � Hti�1 ; ; �) of the observable spot (St)8t;!, trade size (Hti(!) � Hti�1(!))8t;! and

liquidity parameters ; � � 0, where the former is a proxy for the width of the spread and the

latter for the market depth. Intuitively, the reaction or price-impact function, in addition to being

increasing with respect to the trade size, should have the properties that

lim
Hti

�Hti�1
#�1

f = 0; lim
Hti

�Hti�1
"1

f =1; f(Sti�1 ; 0; ; �) = Sti�1

and that

lim
Hti

�Hti�1
#�>0

f > Sti + �; lim
Hti

�Hti�1
"��<0

f < Sti�1 � �; � small:

The �rst set of properties reects the intuition that large sell or buy orders push the market down

and up, respectively, while if no trading takes place the spot remains unchanged. The second set

states that even if the traded quantity is small, there exists a positive bid-ask spread around the

mid-market price. The latter is usually the one quoted in various information sources and its (two-

dimensional) time series is employed in most �nancial applications like e.g. performance ratios or

technical trading rules. But as �gure 1 shows, when including a price impact function the true

average transaction price time series has a dependence on the traded quantity and is thus three-
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Figure 2: An example of an order book of Deutsche Telekom stock on 13 Jan 2000 at 12:14:41pm.

dimensional.4 This reects the fact that the mid-market price doesn't exist, i.e. nobody can transact

at it.

One possible form of f that does capture the properties of the third dimension, as partly noted

in [Jar1] and [Frey], is

�Sti�1 = Sti�1
�
1 + sign(Hti �Hti�1)

�
e
�(Hti

�Hti�1
)
; (5)

where we suppressed the explicit dependence on the trajectory !. In (5) the sign(�) models the
bid-ask spreads and the exp(�) term the market depth, which represents the elasticity of a price

to the quantity traded. Under this model the total cash ow and implicit transaction costs over a

timestep are given by (Hti�1 �Hti)
�Sti�1 and (Hti�1 �Hti)(

�Sti�1 � Sti�1), respectively.

But in addition to the pure transaction cost e�ect, there is a market impact e�ect that is felt

by all participants. If the size of the trade was large the best quotes have been removed from the

order-book, which, in a centralised order-driven exchange, e�ectively represents the market.5 Thus

some layers are no longer available to any of the other market participants and the latter will adjust

their new quotes accordingly. Hence, in e�ect, the market has been moved. Depending whether the

transaction is a buy or a sell, the average transaction price is below or above the last price traded,

unless only one level of market depth was �lled. In any case the market impact, i.e. the post-trade

new asset price that was last traded, is directly observable given an order-book. Mathematically a

convenient model for this e�ect is to make the new equilibrium log-price a combination of the two

previous equilibrium and average transaction log-prices, namely their geometric average. Adding

this permanent e�ect to the temporary reaction (5) we obtain the price dynamics

Sti�1 (mid-market price) (6)

! �Sti�1 = Sti�1
�
1 + sign(Hti �Hti�1)

�
e
�(Hti

�Hti�1
) (average transaction price) (7)

! S�
ti�1

�S1��
ti�1

= Sti�1
�
1 + sign(Hti �Hti�1)

�(1��)
e
�(1��)(Hti

�Hti�1
) (price slippage) (8)

!
(

uSti�1
�
1 + sign(Hti �Hti�1)

�(1��)
e
�(1��)(Hti

�Hti�1
) = Sti(!u)

dSti�1
�
1 + sign(Hti �Hti�1)

�(1��)
e
�(1��)(Hti

�Hti�1
) = Sti(!d)

(random change)(9)

One interpretation of the new parameter � is given in the papers of [A&C1], [A&C2], [H&S1] and

[H&S2], which also model a permanent price update e�ect that is a function of both the previous

equilibrium Sti and the average transaction price
�Sti , given as a convex combinations, i.e. 0 � � � 1.

4If liquidity were perfect, the third dimension would be at.
5Usually there is also a broker market on top of the order-book, but most brokers should will a dual presence.
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Figure 3: The exact average transaction price and resulting price slippage (last price traded) as a

function of no. of stocks traded for the order book of �gure 2. The at parts of the price slippage

curve represent the price layers of the order book.

Their explanation of � is that large trades may not contain fundamental new information and hence

push the market to an untenable price level. The latter adjusts itself immediately as the order-book

is re�lled with updated quotes. However this e�ect is rather intuitive and not directly observable

prior to a trade. At the limits, if � = 0 then the new equilibrium price will be exactly the last average

transaction price, corresponding to the case that only one layer of market depth was tapped. For

� = 1, since there is no subsequent manipulation e�ect, we have a pure transaction costs model

similar to those of [B&V], [BLPS] and [ENU]. This would imply that other market participants

didn't believe that the trade bore new fundamental information.

In our interpretation of � as an observable slippage parameter we have a choice, whether (8)

should represent the new last price traded or the new mid-market price derived therefrom. In the

former case � would be non-positive because we assume that, in general, the best quotes are �lled

�rst. Moreover it would directly give the last observed price traded, which may be important in

contingent claim contracts, especially in barrier type contracts (see e.g. [Tal]). Speaking for the

latter interpretation is the fact that because we resort to the mid-price as the reference point of the

controlled process it may be more consistent to return to it. In this case � may be positive. In any

case, it will only make a di�erence in the empirical estimation of the parameters. Figure 2 shows an

example of an order-book and �gure 3 the exact average transaction price derived from it as well as

the new last slippage price as a function of trade size.

Our model set-up, albeit structured similarly, is di�erent from those of [A&C1], [A&C2], [H&S1]

and [H&S2], who resort to arithmetic Brownian motion

dSt = �dt+ �dWt; (10)

as the process for the underlying. In their respective papers, it is an acceptable und computationally

convenient model regarding portfolio trading applications. But it may cause serious concerns when it

is applied to the pricing of derivatives. Mainly this is due to the fact that the spot of the underlying

may become negative with positive probability, whereas with geometric Brownian motion this is

impossible. Another reason for their choice may have been the symmetry of up and down movements

of the spot, but as long as � or the quantity traded are small, our reaction function (5) will also

be locally linear. Moreover, as derived in the next subsection, the exponential form of the reaction

function will make the resulting tree Markovian, whereas it would be path-dependent for a linear

model. Lastly, our model is also free of arbitrage opportunities, as we now demonstrate.

Proposition 2.1 (Non-existence of arbitrage opportunities)

6



If the risky and riskless assets (St(!); Bt)8t;! follow the processes (6)-(9) and (2) respectively, there

does not exist a particular holding strategy (H 0
t(!); Ĥ

0
t(!))8t;!, with H 0

t0
= H 0

T
(!), 8!, which is

self-�nancing and value-conserving, i.e.�
Ĥ 0
ti
(!)� Ĥ 0

ti�1
(!)
�
Bti�1 +

�
H 0
ti
(!)�H 0

ti�1
(!)
�
�Sti�1(!) = 0; 8t; ! (11)

and results in a positive expected gain

E[VT � Vt0 jFt0 ] > 0; (12)

where Vti(!) = Hti(!)Sti(!) + Ĥti(!)Bti , 8t; ! is the mark to market value of the portfolio.

Proof: For simplicity and without loss of much generality we assume that r = 0, Bt0 = 1, � = 0 and

Ĥt0 = Ht0 = HT = 0. Thus, since Vt0 = 0, (12) reduces to

E[VT jFt0 ] = E[ĤT jFt0 ];

which after repeated substitution of (11) gives

E

h
Ĥtn�1 � (HT �Htn�1)

�Stn�1

���Ft0i = E

"
�

nX
i=1

(Hti �Hti�1)
�Sti�1

�����Ft0
#

= E

"
�

nX
i=1

ÆHiSti�1(1 + sign(ÆHi))e
�ÆHi

�����Ft0
#
; (13)

where we de�ne the operator ÆHi = Hti �Hti�1 , i = 1 : : : n. Now, from (3), it is apparent that in

the absence of trading Sti has to have the martingale property, thus

EQ[Sti jFt0 ] = St0 ; 8ti: (14)

Substituting (14) into (13) and separating the buy orders from the sell orders we obtain

�St0

0
@X

j

ÆHj(1 + )e�ÆHj +
X
l

ÆHl(1� )e�ÆHl

1
A � 0; (15)

where ÆHj � 0, 8j and ÆHl < 0, 8l. Inequality (15) follows from the fact that Ht0 = HT , thereforeP
j
ÆHj = �P

l
ÆHl, but exp(�ÆHj) � 1, 8j and exp(�ÆHl) < 1, 8l. This means that due to the

increasing convexity of the exponential function a buy order will move an asset price up more, in

relative terms, than a sell order will move it down. Thus transaction costs dominate the market

manipulation e�ect and there are no arbitrage opportunities in trading the underlying.�

[Jar1] provides a proof of non-arbitrage for a more general class of reaction functions and also

incorporates traded options into the market. In our model we ignore other traded options and the

market impact on and due to them. The reason is, �rstly, that we do not intend to employ them

as a hedging instruments for other derivatives; secondly, that we assume that the large trader is

supervised by a market authority and hence requires a valid economic reason to place vast orders

in the market; and thirdly, that traded options themselves have �nite liquidity, usually much lower

than that of the underlying. The primary application of the model as presented in this paper is

the hedging of over-the-counter (OTC) derivatives positions as well as trading strategies in the

underlying, but not the manipulation of the listed derivatives market.
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2.1 The hedging and pricing of contingent claims in discrete time

A contingent claim Ct(!) is a time-dependent generic function of the values of the underlying assets

in the economy. Depending on the structure of C over its lifetime, it requires the writer to exchange

certain amounts (Ht(!); Ĥt(!))8t;! with the holder at particular times. In general, contingent claims

are valued in reference to the setup cost V �
t0
of a self-�nancing portfolio strategy in the underlying

risky and riskless assets. This hedging strategy (H�
t (!); Ĥ

�
t (!))8t;!, subject to an initial holding

H�
t0
= H0, will exactly replicate or super-replicate any payo�s of the claim Ct(!);8t; !. Moreover,

under the optimal hedging strategy V �
t0
is at its minimum.

As a special class of contingent claims European vanilla options have a single expiry time T .

Upon the latter there exist di�erent methods of how a European contract is settled. The settlement

can either be at the writer's discretion, i.e. that the holder has to accept exchanging any combination

of assets

HT (!)ST (!) + ĤT (!)BT = CT (!); 8!; (16)

or another possibility is physical delivery, so that at expiry (HT (!); ĤT (!))T is �xed for every !.

Finally, under cash settlement at expiry we have ĤT (!)BT = CT (!), 8!. It becomes apparent

that physical and cash deliveries are subsets of discretionary settlement, hence the latter is the least

restrictive and may thus lead to a lower initial setup cost. Provided that delivery is at the writer's

discretion, in a discrete-time economy the valuation of European vanilla type contingent claims

under �nite liquidity can be formulated as the following nonlinear program:

Proposition 2.2 (Replication ask price of a contingent claim)

The ask price of a contingent claim Ct(!) at time t0 is

Ct0 = max(V �
t0
; 0); (17)

where

V �
t0
= min

(Ht(!);Ĥt(!))8t;!

Vt0 = (H�
t1
�H0) �St0 + Ĥ�

t1
Bt0 +H0St0 ; (18)

and the optimal controls (H�
t
(!); Ĥ�

t
(!))8t;! satisfy the initial holding

Ht0 = H0; (19)

the self-�nancing condition

(Ĥti(!)� Ĥti�1(!))Bti�1 + (Hti(!)�Hti�1(!))
�Sti�1(!) = 0; (20)

the payo� replication constraint

VT (!) = HT (!)ST (!) + ĤT (!)BT = CT (!); (21)

and the processes (St(!); Bt)8t;! are given by (6)-(9) and (2), respectively.

The solution V �
t0
of (18) represents the minimum amount of funds required for the writer to engage

in a strategy

(H�
t
(!); Ĥ�

t
(!))8t;! = arg min

(Ht(!);Ĥt(!))8t;!

Vt0

that will allow her to meet CT (!);8! 2 
. Thereby the last term of (18) represents the mark-

to-market value of the initial quantity of the risky asset that is employed for hedging the claim.

8



Moreover (17) adds a natural lower bound for the claim as the writer would not pay for a position

that doesn't o�er him the chance of positive returns. Conversely, the bid price ~Ct0 , represents the

amount of funds the trader would be willing to pay in order to be the receiver of the payo�. This is

equivalent to the amount she could borrow against the contract as a collateral.

Corollary 2.1 (Replication bid price of a contingent claim)

The bid price of the contract is the solution of the program

~Ct0 = max( ~V �
t0
; 0);

where
~V �
t0
= � max

(Ht(!);Ĥt(!))8t;!

Vt0 = (H�
t1
�H0) �St0 + Ĥ�

t1
Bt0 +H0St0 ;

subject to the initial holding (19) and self-�nancing condition (20), along with the replication con-

straint

VT (!) = HT (!)ST (!) + ĤT (!)BT = �CT (!);

with the asset dynamics as in proposition (2.2).

We can show that Ct0 � ~Ct0 i.e. that the ask price for a particular position must always be at

least as big as the bid price, with equality when the market is perfectly liquid. For the proof we

require the following result:

Lemma 2.1 (Non-homogeneity of prices)

Denote by C
(i)
t0

and (H
(i)
t
(!); Ĥ

(i)
t
(!))8t;!, i = 1; : : : ; 3 the optimal values and holding strategies for

the program given in proposition 2.2 with the right hand side of (21) replaced by C
(1)

T
(!) = �CT (!),

C
(2)

T
(!) = �CT (!) and C

(3)

T
(!) = (� + �)CT (!), where �; � are constants. Then,

1. if �; � � 0 or �; � � 0, we have jC(1)
t0

+ C
(2)
t0
j � jC(3)

t0
j,

2. if � � 0 � � or � � 0 � �, we have jC(1)
t0

+ C
(2)
t0
j � jC(3)

t0
j.

Proof: The lemma follows directly from the facts that for the respective � and � given the form of

the processes St and �St, the following hold:

1. At expiry ���H(3)

T
(!)
��� � ���H(1)

T
(!) +H

(2)

T
(!)
��� ; 8!;

thus ���C(1)

T
(!) + C

(2)

T
(!)
��� � ���C(3)

T
(!)
��� ; 8!;

and so, given the self-�nancing condition,

�
H

(1)
ti

(!)�H
(1)
ti�1

(!)
�
e
�

�
H
(1)
ti

(!)�H
(1)
ti�1

(!)
�
+
�
H

(2)
ti

(!)�H
(2)
ti�1

(!)
�
e
�

�
H
(2)
ti

(!)�H
(2)
ti�1

(!)
�

�
�
H

(3)
ti

(!)�H
(3)
ti�1

(!)
�
e
�

�
H
(3)
ti

(!)�H
(3)
ti�1

(!)
�
; 8t; !:
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Figure 4: Asset tree, where lines represent random change and arrows slippage.

2. The converse of 1.�

By choosing � = 1 and � = �1 we observe that C
(1)
t0

= Ct0 , C
(2)
t0

= � ~Ct0 and C
(3)
t0

= 0, so that

Ct0 � ~Ct0 . This is due to the fact that the trader will have to buy high and sell low, every time

she rehedges. Hence the liquidity of the market gives the natural bid-ask spreads in the underlying.

Also, the larger the absolute payo� jCT j, the wider the relative spreads, since the reaction function

is super-linear. Thus the price of x options will be greater than x times the price of one option.

Again, intuitively a trader would like to put small orders into the market to avoid transaction costs.

Because, in general, St(!) and �St(!) are functions of (Ht(!); Ĥt(!))8t;!, i.e. the present and

past stock-holdings, the problem in proposition 2.2 is path-dependent and the number of variables

as well as constraints is growing exponentially as the number of time steps increases. The following

example demonstrates the growth of distinct points in state space.

Example 2.1 We consider the three period economy with the trading times ft0; t1; t2; t3g, the set
of states 
 = f!uuu; !uud; : : : ; !dddg and the information revelation6 Ft0 = f
g, Ft1 = f!u =

f!uuu; : : : ; !uddg; !dg, Ft2 = f!uu; : : : ; !ddg and Ft3 = ff!uuug; : : : ; f!dddgg. Then the asset's

dynamics are

t0 : St0 ! St0(1 + sign(Ht1 �H0))
(1��)e�(1��)(Ht1

�H0)

t1 :

�
uSt0(1 + sign(Ht1 �H0))

(1��)e�(1��)(Ht1
�H0)

dSt0(1 + sign(Ht1 �H0))
(1��)e�(1��)(Ht1

�H0)

! uSt0�
2
i=1(1 + sign(Hti(!)�Hti�1))

(1��)e�(1��)(Ht2
(!u)�H0)

! dSt0�
2
i=1(1 + sign(Hti(!)�Hti�1))

(1��)e�(1��)(Ht2
(!d)�H0)

t2 :

8>><
>>:

u2St0�
2
i=1(1 + sign(Hti(!)�Hti�1))

(1��)e�(1��)(Ht2
(!u)�H0)

udSt0�
2
i=1(1 + sign(Hti(!)�Hti�1))

(1��)e�(1��)(Ht2
(!u)�H0)

duSt0�
2
i=1(1 + sign(Hti(!)�Hti�1))

(1��)e�(1��)(Ht2
(!d)�H0)

d2St0�
2
i=1(1 + sign(Hti(!)�Hti�1))

(1��)e�(1��)(Ht1
(!d)�H0)

! u2St0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!uu)�H0)

! udSt0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!ud)�H0)

! duSt0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!du)�H0)

! d2St0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!uu)�H0)

6Strictly speaking Ft is the symbol for the �-algebra of a given partition at every ti, i.e. all the unions and

complements of its elements. Nonetheless we abuse the notation.
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Figure 5: Payo� replication of a Call option when using the Black-Scholes Delta in comparison to

the liquidity adjusted hedge. Here T = 1, St0 = K = 50, � = 0:2, r = 0:05,  = 0:01, � = 1,

� = 0:01, H0 = 0 and 50 timesteps.

t3 :

8>>>>>>>>>><
>>>>>>>>>>:

u3St0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!uu)�H0)

u2dSt0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!uu)�H0)

u2dSt0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!ud)�H0)

ud2St0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!ud)�H0)

u2dSt0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!du)�H0)

ud2St0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!du)�H0)

ud2St0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!dd)�H0)

d3St0�
3
i=1(1 + sign(Hti(!)�Hti�1(!)))

(1��)e�(1��)(Ht3
(!dd)�H0)

It becomes apparent that when solving the problem in proposition 2.2 a one-period model has two

possible states, a two period model four and an n-period model 2n. The controlled process makes the

asset tree 'bushy' and thus causes exponential growth of the number of variables/constraints. But

for suÆciently simple7 contingent claims CT (!), with single-signed Delta8 two distinct trajectories

with identical number of up and down moves at a time ti will result in identical holdings in stock

and bond, e.g. Ht3(!ud) = Ht3(!du). This can be demonstrated backwards step by step. Firstly, at

nodes of number of upsteps nu and downsteps nd

nu+ndY
i=1

(1 + sign(Hti(!)�Hti�1(!)))
(1��) = ((1 + )nu(1� )nd)

(1��)

for positive Delta, and with nu and nd swapped for negative Delta. Secondly, if in example 2.1

(H 0
t3
(!ud); Ĥ

0
t3
(!ud)) is a solution to the replication constraint (21) at its point in state space, then

so is (Ht3(!du); Ĥt3(!du)) = (H 0
t3
(!ud); Ĥ

0
t3
(!ud)), due to uniqueness. This can be generalised for n

time-steps. Then the tree becomes recombining and thus feasible to implement as the number of vari-

ables/constraints will be of O(n2). Still, it represents a possibly large-scale nonlinear optimisation

problem (see appendix A). The asset's dynamics are visualised in �gure 4.

Table 1 represents a numerical example of proposition 2.2 and corollary 2.1 for a call option,

i.e. where CT (!) = max(ST (!) �K; 0), 8!. It becomes apparent that, as  and � become bigger,

i.e. as the liquidity of the market for the underlying decreases, the option's own bid-ask spreads

7Claims for which there exists a unique solution holding strategy (H0

t(!); Ĥ
0

t(!))8t;! . In general, due to the highly

nonlinear setup of the model, it is impossible to show analytically that the claim is unique. We will later present a

dynamical programming algorithm that drops this requirement.
8This requirement can be dropped when  = 0.
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European Calls
risk-free rate 5% volatility 20% expiry 12 months initial holding 0 strike 50

ASK PRICES BID PRICES
40 time steps
alpha 1 moneyness lambda 0.01 0.001 0.0001 0 exact B-S 0 0.0001 0.001 0.01
gamma 0 0.9 1.073 1.007 1.001 1.000 2.546 1.000 0.999 0.993 0.923

1 1.059 1.006 1.001 1.000 5.225 1.000 0.999 0.994 0.938
1.1 1.047 1.005 1.000 1.000 8.831 1.000 1.000 0.995 0.952

gamma 0.001 0.9 1.124 1.060 1.053 1.052 0.947 0.946 0.939 0.866
1 1.086 1.034 1.029 1.028 0.972 0.971 0.966 0.909

1.1 1.061 1.020 1.015 1.015 0.985 0.985 0.980 0.936

gamma 0.01 0.9 1.542 1.486 1.480 1.480 0.399 0.398 0.388 0.282
1 1.309 1.263 1.259 1.258 0.690 0.689 0.681 0.604

1.1 1.184 1.147 1.143 1.143 0.847 0.846 0.841 0.789

alpha 0 moneyness lambda 0.01 0.001 0.0001 0 0 0.0001 0.001 0.01
gamma 0 0.9 1.281 1.029 1.003 1.000 1.000 0.997 0.971 0.688

1 1.180 1.019 1.002 1.000 1.000 0.998 0.982 0.797
1.1 1.109 1.012 1.001 1.000 1.000 0.999 0.988 0.874

gamma 0.001 0.9 1.374 1.126 1.100 1.097 0.901 0.898 0.871 0.580
1 1.228 1.070 1.053 1.051 0.949 0.947 0.930 0.737

1.1 1.135 1.038 1.027 1.026 0.974 0.973 0.962 0.846

gamma 0.01 0.9 2.191 1.962 1.938 1.936 0.019 0.018 0.005 0.000
1 1.651 1.509 1.495 1.493 0.467 0.464 0.440 0.278

1.1 1.372 1.280 1.270 1.269 0.784 0.783 0.776 0.717

alpha -1 moneyness lambda 0.01 0.001 0.0001 0 0 0.0001 0.001 0.01
gamma 0 0.9 1.472 1.051 1.005 1.000 1.000 0.995 0.948 0.434

1 1.289 1.032 1.003 1.000 1.000 0.997 0.969 0.610
1.1 1.165 1.018 1.002 1.000 1.000 0.998 0.981 0.797

gamma 0.001 0.9 1.608 1.192 1.147 1.142 0.856 0.850 0.803 0.277
1 1.359 1.105 1.077 1.073 0.927 0.924 0.895 0.509

1.1 1.205 1.056 1.040 1.038 0.963 0.961 0.945 0.777

gamma 0.01 0.9 2.845 2.422 2.380 2.375 0.000 0.000 0.000 0.000
1 1.995 1.754 1.730 1.727 0.373 0.372 0.245 0.000

1.1 1.567 1.419 1.404 1.402 0.778 0.778 0.761 0.538

60 time steps
alpha 1 moneyness lambda 0.01 0.001 0.0001 0 0 0.0001 0.001 0.01
gamma 0 0.9 1.066 0.998 0.991 0.990 0.990 0.989 0.982 0.911

1 1.061 1.008 1.002 1.002 1.002 1.001 0.996 0.939
1.1 1.045 1.003 0.998 0.998 0.998 0.998 0.993 0.949

gamma 0.001 0.9 1.126 1.060 1.053 1.052 0.926 0.925 0.918 0.843
1 1.093 1.041 1.035 1.035 0.968 0.967 0.962 0.903

1.1 1.062 1.020 1.016 1.015 0.981 0.980 0.976 0.930

gamma 0.01 0.9 1.614 1.557 1.552 1.551 0.242 0.241 0.230 0.111
1 1.350 1.306 1.301 1.301 0.618 0.617 0.609 0.521

1.1 1.204 1.167 1.163 1.163 0.821 0.820 0.815 0.760

Table 1: Call option premia under �nite liquidity relative to their perfect liquidity Black-Scholes

equivalents.
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Figure 6: Hedging shortfall at expiry of �gure 5 under Black-Scholes Delta hedging.

become wider;  has a signi�cantly larger e�ect in this process, especially as the number of time-

steps increases. Also, as � decreases the option prices increase, in particular when  is positive.

This is because the slippage of the asset price causes an increase in realised volatility of the asset

beyond it's exogenous �. On the bid side, when both  and absolute � are large, the lower bound

for the option comes into e�ect. This means that when going long the option the cost of hedging

it would always exceed its value, so that a market maker, who cannot accept the possibility of a

shortfall, would only take it for free. Furthermore, �gures 5 and 6 show the hedging error for a Call

option payo�, when the Black-Scholes Delta is used instead of the liquidity-adjusted one. It becomes

apparent that this leads to a signi�cant hedging shortfall risk at-the-money and deep in-the-money.

For the former the reason is that asset price changes may be magni�ed by hedging activity, which is

especially crucial at expiry as the Delta often becomes discontinuous. The latter is due to the fact

that hedging activity in an illiquid underlying leads to an overall increase in realised volatility.

Certain assumptions of proposition 2.2 and corollary 2.1 can be relaxed, for both programs, to

make the optimisation problems less restrictive.

Observation 2.1 (Independence of initial holding)

If the liquidity at the initiation of the portfolio is perfect, thus � =  = 0, then the objective function

(18) collapses to

min
(Ht;Ĥt)8t;!

Ht1St0 + Ĥt1Bt0 :

Then the initial holding condition (19) is non-binding and we denote the optimal Delta of the option

by H�
t1
. The solutions of the two programs are identical, if H0 = H�

t1
.

Hence, if if there are no frictions in the setting up of the initial position H�
t1

(the Delta) in the

stock, then Ct0 is independent of the initial endowment in the risky asset H0. However, if it is not,

then the value of Ct0 is crucially dependent upon H0. If the latter is a large positive or negative

amount, then C, theoretically, could be manipulated arbitrarily. But, due to the non-existence of

arbitrage, by selling or buying a large quantity of stock, the loss on transaction costs will overweigh

any potential market manipulation bene�ts. Therefore the last term in (18) represents an implicit

mark-to-market value of the allocated initial holding in the risky asset. It is easy to observe that

the optimal initial holding H0 would be the Delta H�
t1
under the conditions of observation 2.1. For

the trader it would be preferable to scale the payo� CT of the written option, so that H0 = H�
t1
,

rather than setting it up by trading the underlying in the market. This demonstrates that a trader

with diversi�ed holdings in both underlying and contingent claims, enjoys economies of scale when

allocating capital and hedging a book. Figure 7 shows the value of Ct0 under various H0 and denotes

H�
t1
.
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Figure 7: The left axis refers to the option value under di�erent contract Delta and initial holding

combinations, as given by the right axis. The minimum contract value is given when H0 = H�
t1
, i.e.

where the initial holding and Delta lines cross. Here T = 0:5, St0 = K = 10, � = 0:25, r = 0:05,

 = � = 0, � = 0:01 and 30 timesteps.

Observation 2.2 The optimal solution Ct0 of the program in proposition 2.2 stays unchanged if

(20) is relaxed into the inequality

(Ĥti(!)� Ĥti�1(!))Bti�1 + (Hti(!)�Hti�1(!))
�Sti�1(!) � 0: (22)

Proof: Denoting the solution of the program under condition (22) by �Ct0 , because the solution space

under (22) contains the one under (20) we have that Ct0 � �Ct0 . Also suppose that (Ht(!); Ĥt(!))8t;!
is optimal with

(Ĥti(!)� Ĥti�1(!))Bti�1 + (Hti(!)�Hti�1(!))
�Sti�1(!) = �d < 0;

for at least one (ti; !j). Then de�ning a new strategy (H�
t (!); Ĥ

�
t (!))8t;! with H�

t (!) = Ht(!);8t; !
and Ĥ�

t (!) = Ĥt(!);8t; ! except for (ti; !j), where H�
ti
(!) = H�

ti
(!) + d=Bti�1 . This will turn

condition (22) into (20), while still satisfying condition (21). Thus since d is positive but arbitrary

Ct0 � �Ct0 . �

Observation 2.2 states the intuitive assumption that it is not optimal to withdraw funds, while

engaging in a replication strategy. But as the next proposition states, the same intuition does not

necessarily hold for the tightening of the terminal condition.

Proposition 2.3 (Existence of optimal super-replication strategies)

If the replication condition (21) is turned into a super-replication constraint

VT (!) = HT (!)ST (!) + ĤT (!)BT � CT (!); 8!; (23)

then the optimal solution may change.

Proof: A numerical example similar to that of [BLPS] would demonstrate the validity of the propo-

sition. But it is easy to see that if � = 1, � = 0 and H0 = H�
t1
then our model collapses to a standard

proportional transaction cost model for which the conditions of existence of super-replication strate-

gies are derived by [Rut].�

Therefore, if the replication condition (21) is turned into an inequality constraint, the optimal

solution may change and the contract may actually become cheaper. This is due to the fact that
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as rehedging is costly, it may be a cheaper strategy to keep a certain hedge quantity constant and

eventually super-replicate a payo�, instead of liquidating it and thus incurring transaction costs.

The property that it may be sub-optimal to rebalance portfolios with proportional transaction costs

has been discovered by [Con] for consumption-investment problems. For the hedging of contingent

claims [W&W] categorise transaction cost models that allow super-replication like e.g. [BLPS] or

[ENU] as \global-in-time", whereas exact replication models like those of [Lel], [B&V] or [HWW]

are referred to as \local-in-time", also referring to the respective solution methods.

[Rut] terms the solution of the super-replication formulation of proposition 2.3 as \perfect hedg-

ing" and notes that while the cheapest strategy that super-replicates the payo� is preference-free, it

does not represent an arbitrage price as such, because the writer would be able to make a riskless

pro�t. Nonetheless due to the nonlinearity of short and long positions, it would not be arbitrage,

but competition that would force a lower price. The latter would depend on the respective market

participants' risk appetite, because for lower selling prices there would exist a positive probability

of a hedging shortfall.

Moreover, as [BLPS], [Rut] and [W&W] found, super-replication strategies exist if, �rstly, trans-

action costs are large enough and, secondly, if claims can be settled in cash or at the discretion of

the writer, or equivalently, when it is costless to perform the �nal portfolio liquidation. In each case,

there will exist so-called no-transaction bands around the hedge quantity that determine a region

where the marginal costs of rehedging are greater than the marginal bene�t of exactly meeting a

future claim. [ENU] provide a solution method consisting of a two-stage dynamical program that

determines both the solution and the hedging strategy. Instead of a unique strategy that satis�es

the constraints of the program, there may now exist a compact set. To solve for the cheapest of

the super-replicating strategies, they discretise the space of trading strategies, which is otherwise

continuous, and calculate the expected hedging shortfall under an arbitrary but positive probability

measure. Solving backwards they eventually choose the cheapest strategy that results in a zero

shortfall. This method also automatically takes care of limited divisibility of traded assets and lot

sizes of the underlying.

Proposition 2.4 (Super-replication ask price)

If the replication condition (21) is turned into a super-replication constraint

HT (!)ST (!) + ĤT (!)BT � CT (!); 8!; (24)

then the solution Ct0 of the program of proposition 2.2 is equivalent to

Dt0 = min c

subject to

Wt0(c) = 0;

where

Wt0(c) = min
(Ht(!);Ĥt(!))8t;!

EP

h
max

�
CT �HTST � ĤBT ; 0

�i
(25)

subject to

Ht1
�St0 + Ĥt1Bt0 = c

as well as (19), (21) and the super-replication (24). The expectation is taken with respect to an

arbitrary probability measure P (!) > 0.

Proof: (See [ENU]) It is easy to see that the solution Ct0 of proposition 2.2 satis�es the constraints

of the program of proposition 2.4, thus

Ct0 � Dt0 :
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But at the same time Dt0 satis�es the constraints in proposition 2.2 as well, hence

Ct0 � Dt0

and they are equal.�

The implementation and backward solution of the dynamical programming algorithm is shown

in the appendix B.

3 The continuous-time limit

As the frequency of rebalancings of a portfolio is increased, the trader has to transact ever-smaller

amounts more frequently. In the limit small amounts are traded continuously. In general, as is the

case in the standard transaction cost models, if transaction costs as fraction of value traded are

of O(1), as in the models of e.g. [B&V], [Lel] or [HWW], then Vt0 approaches its zero-di�usion

solution as the rehedging interval Æt ! 0. In fact as [SSC] found, for all proportional transaction

cost models, in the continuous-time limit, the sole optimal solution for the hedging of contingent

cash ows that guarantees that VT (!) � CT (!), 8! is to take a 100% Delta position (Ht1 = 1), i.e. a

static hedge up-front. Nonetheless as [Lel], if the rehedging interval Æt is small, but non-in�nitesimal,

and the Delta is appropriately adjusted, the probability of a large hedging error becomes small. In

our model liquidity has an impact which is a combination of orders of magnitude O(Æt), O(
p
Æt)

and O(1), depending on the parameters �; ; �, which themselves are all assumed to be O(1). We

commence by considering  > 0. Also, for notational simplicity we will drop the time subscript.

Theorem 3.1 Under the price dynamics and the self-�nancing conditions of proposition 2.2, as

rehedging takes place after intervals Æt, if � < 1 the cost of a generic replicating portfolio V (S; t), to

leading order of its Gamma and provided that its Delta is single-signed, is governed by the PDE

@V

@t
+
1

2
�̂2S2 @

2V

@S2
+ rS

@V

@S
� rV = 0; (26)

where the variance is given by

�̂2 =

 
1 + 1

2

�
(1 + )2(1��) + (1� )2(1��)

�� (1 + )(1��) � (1� )(1��)

Æt

!
; (27)

subject to contract-speci�c boundary conditions.

Proof: See appendix C.�

We see that the Black-Scholes formula still applies, but with a modi�ed volatility. Moreover, to

leading order of the Gamma term,9 the asset's exogenous volatility has vanished, because the large

trader's rehedging activity entirely dominates the asset price's di�usion, the latter representing the

asset dynamics due to other market participants. Also the bid-ask spread e�ect dominates the price

elasticity e�ect, as � doesn't appear either. However, as mentioned before, once � = 1, i.e. the

absence of asset price slippage, the dominance of the market manipulation e�ect vanishes and the

Gamma coeÆcient becomes smaller. Now if we allow a term of second Gamma order, then we obtain

the transaction costs model of [HWW].

9Here we assume that the rehedging intervals Æt are suÆciently small so that �̂ � �.

16



Corollary 3.1 In theorem 3.1, if  > 0 and � = 1, then, to second Gamma order, V (S; t) satis�es

@V

@t
+
1

2
�2S2@

2V

@S2
+
1

2
~�2S2

����@2V@S2

����+ rS
@V

@S
� rV = 0; (28)

with the variance

~�2 = �

r
2

�Æt
: (29)

Proof: See appendix C.�

Furthermore if Gamma is positive throughout, as is the case for long calls and puts, then (28)

becomes the transaction costs model of [Lel],10 which has a Black-Scholes solution with modi�ed

variance

��2 = �2 + �

r
2

�Æt
:

So if � = 1, to leading order, there is no increase in e�ective volatility due to market manipulation,

but only due to transaction costs; still as Æt! 0 the Gamma term vanishes and the portfolio value

approaches the cost of the static hedge solution.

But under the circumstances where the bid-ask spreads are tight enough so that we can set  = 0,

there exists a true continuous-time hedging limit. Then, because transaction costs only appear

implicitly through an increasing price impact, in the limit the quantity that needs to be traded

is small enough11, so that transaction costs will stay �nite for appropriate structures of C. The

Gamma terms remain O(1) and, moreover, there are no longer restrictions on the single-signedness

of the Delta.

Theorem 3.2 Under the price dynamics and the self-�nancing conditions of proposition 2.2, if

 = 0, in the continuous-time limit, the value of a generic replicating portfolio V (S; t) is governed

by the PDE

@V

@t
+
1

2
�2S2 @

2V

@S2
+ ��2S3

�
@2V

@S2

�2

+
1

2
�2(1� �)2�2S4

�
@2V

@S2

�3

+ rS
@V

@S
� rV = 0; (30)

subject to contract-speci�c boundary conditions.

Proof: See appendix C.�

Corollary 3.2 Under the assumptions of theorem 3.2 the hedge quantity � = @V=@S is governed

by the PDE

@�

@t
+
1

2
�2S2

 
1 + 4�S

@�

@S
+ 3�2(1� �)2S2

�
@�

@S

�2
!
@2�

@S2

+(r + �2)S
@�

@S
+ 3��2S2

�
@�

@S

�2

+ 2�2(1� �)2�2S3

�
@�

@S

�3

= 0: (31)

10For reason's of consistency we also have to note that, allowing a second-order Gamma term we implicitly assumed

that the drift of the process of the underlying was 0, as otherwise it would be of the same order and thus non-negligible.

In the original derivation of [Lel] this point was not addressed clearly.
11It turns out to be of O(

p
dt)
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Proof: Taking the partial derivative of (30) with respect to S completes the proof.�

Equation (30) is a fully nonlinear PDE and (31) is a quasi-linear PDE, i.e. the coeÆcient of its

highest order partial derivative is a function of a lower order one. The former PDE thus structurally

resembles the ones derived by [Sch�o], [F&S], [S&P] and the latter the one of [Frey]. The fact that

both PDEs collapse to their Black-Scholes equivalents

LBSV =
@V

@t
+ rS

@V

@S
+
1

2
�2S2 @

2V

@S2
� rV = 0; (32)

and
@LBSV
@S

=
@�

@t
+ (r + �2)S

@�

@S
+
1

2
�2S2@

2�

@S2
= 0

when � = 0, i.e. when the market is perfectly liquid, can be exploited to �nd approximations of V

and � for small �. Denoting by VBS and �BS the Black-Scholes values, we expand V in a regular

perturbation series

V � VBS + �V1 + �2V2 (33)

and substitute it into (30). By matching the corresponding orders of magnitude we obtain equations

for the �rst- and second-order terms of the value:

LBSV1 = ��2S3

�
@2VBS

@S2

�2

;

LBSV2 = ��2S3

�
@V1

@S

�2

� 1

2
(1� �)2�2S4

�
@2VBS

@S2

�3

;

and by di�erentiating � with respect to S also

@LBSV1
@S

= �3�2S2

�
@�BS

@S

�2

� 2�2S3 @�BS

@S

@2�BS

@S2
t

;

@LBSV2
@S

= �3�2S2

�
@�1

@S

�2

� 2�2S3 @�1

@S

@2�1

@S
� 2(1� �)2�2S3

�
@�BS

@S

�3

�3

2
(1� �)2�2S4

�
@�BS

@S

�2
@2�BS

@S2
;

whose solutions depend on the boundary conditions and can be written in integral form,12 but, in

general, direct numerical solutions of the PDEs are easier to compute.

3.1 The pricing and hedging of contingent claims in continuous time

As the models in theorem 3.1 and corollary 3.1 are similar or even identical to existing ones on

transaction costs, we will henceforth focus on the genuinely liquidity-oriented model in theorem

3.2. The latter also has the advantage that a true continues-time limit exists and that there are no

restrictions on the Delta of the payo�. Nonetheless, for most type of payo�s C(S; T ) care has to

be taken because at expiry they are usually non-smooth or even discontinuous. For instance, the

payo� of a call option has a discontinuous gradient at S = K at expiry, hence its Gamma is a Dirac

delta-function. But the square of this delta-function is not well-de�ned in the classical distributional

sense and therefore (30) at expiry would be ill-posed in the absence of further constraints. Another

12[S&P] derive an integral expression of the �rst-order term for the case when V is a vanilla call option.
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condition that has to be imposed is that V (S; t) � 0. Because the square of the Gamma term is

always positive, therefore e.g. short positions with negative Gamma may lead to negative prices.13

The latter would, economically, not be realistic since the buyer of an option would never face any

obligations. Finally, the initial holding of the asset has to be taken into account, because the set-up

costs of the initial Delta is signi�cant.

Proposition 3.1 (Ask price of a contingent claim)

The ask price of a contingent claim C(S; t) at time is

C(S; t) = min
(V (S;T ))

8S

V

�
(1 + sign(�� �H))(1��)Se�(1��)(�

�

�H); t

�
+(�� �H)

�
(1 + sign(�� �H))e�(�

�

�H) � 1
�
S (34)

subject to

V (S; T ) � C(S; T ); 8S; (35)

where H is the initial holdings and �� is such that

�� =
@V

@S

����
((1+sign(���H))(1��)Se�(1��)(�

�
�H);t)

: (36)

Moreover V (S; T ) follows (30), with the free boundary V (S; t) � 0 everywhere.

The second term of the objective function represents an initial set-up cost, which is incurred if

the current asset holding H are di�erent from the required delta. As in the discrete-time case it

becomes apparent that it is cheapest initially to hold an amount as close to the position's Delta

as possible in order to save on transaction costs. The super-replication condition (35) ensures that

payo� discontinuities will be smoothed out. In general, �nding the optimal solution, which can for

instance be done through the discrete time model, would be computationally expensive. Instead, in

order to �nd a close approximation [S&P] suggest that e.g. for European call and put options (30)

is valid only up to a small time before expiry: T � �. Another possibility that [Frey] proposes is to

approximate the payo� by a smooth function, as for example by

C(S; T ) =
1

2

�
S �K +

p
(S �K)2 + �

�
for a Call option.

Figure 8 demonstrates the liquidity e�ects on a Call option. It becomes apparent that our model

produces a volatility frown, instead of the regularly observed skew and smile pattern. But as for

instance [Con2] noted, in general, transaction costs and liquidity e�ects cannot explain the smile.

This is because both are directly positively related to the Gamma of an option, which is largest

at-the-money for vanillas. So if, as most of the time in equity markets, a skew persisted, that

would make out-of-the-money Puts more expensive, our model would explain the shape of the skew

in-the-money. But, clearly, there must be other reasons for the out-of-the-money part of the skew

or smile, as the replication argument states that transaction cost will be lowest for deeply in- and

out-of-the-money options.

13This fully corresponds to the discrete-time results of table 1.
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Figure 8: Long and short Call options with T = 0:5, � = 0:2, K = 100, r = 0:05, � = 0:01, � = 0,

H = ��, � = 1=800, the latter applied to the modi�cation of T .
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4 Parameterisation and calibration of the model

4.1 A proxy measure for liquidity

The de�nition of liquidity has, so far, not converged to a level of standardisation as that of, say,

volatility. For instance economists may have a di�erent notion of liquidity than �nancial mathe-

maticians. In an empirical analysis under the former concept [Per] suggests asset ows as a proxy.

In a trading and investment context [CRS] provide measures of liquidity based on bid-ask spreads

of assets. Finally, from an option pricing perspective, a market depth approach is taken by [Krak],

who explicitly de�nes liquidity as the reciprocal of �H=�S, i.e. the sensitivity of the stock price to

the quantity traded. However in this form the parameter is not dimensionless and depends on the

absolute size of both the quantity and nominal stock price. Our model is a combination of the last

two. The parameter  is a direct measure of the bid-ask spreads between the best layers in an order

book, whereas � scales the slope of the average transaction price i.e. measures the market depth.

Finally � transforms the average transaction price into either the new last price traded, which will

appear on the screens of all market participants or, if applicable, the new mid-market price derived

therefrom.

Ideally one would like to have an intuitive and observable measure of liquidity, that is both

dimensionless and comparable across assets or markets. For this purpose the product �dH and

(1 + sign(dH)) are dimensionless variables, where � is approximately the marginal degree of price

change per unit number of assets traded dH that the trader faces in a transaction beyond the initial

relative bid-ask spread 1� , so that

% change in average transaction price =
(1 + sign(dH))St0e

�dH � St0

St0

� sign(dH) + �dH + sign(dH)�dH:

Across assets this can further be made comparable by de�ning

�̂ = ��Total no. of assets outstanding;

so that �̂ could be a universal de�nition of liquidity for e.g. equity as

% acquisition (disposal) premium (discount) � � + �̂(1� )�% market cap traded: (37)

A second de�nition of liquidity could be given in terms of degree of market slippage, i.e. movement

of asset price due to the trade itself, in which case

% asset price slippage � (1� )(1��) � (1 + �̂(1� �)�% market cap traded)� 1;

which simpli�es to

% asset price slippage � �̂(1� �)�% market cap traded

when  is set to zero. All three parameters can be directly observed through the order book of

various stocks, which then under their respective combinations give a proxy for liquidity. A similar

de�nition to (37) with  = 0 was proposed by [Kyle] and tested for by [BHK] on stocks traded

on the NYSE, which however is a specialist market so that the full order book is only available to

one market maker. Therefore the average transaction price change and slippage are not directly

determined and have elements of randomness. More recently, [DFIS] simulated the price dynamics
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Figure 9: Average acquisition premia �̂ and bid-ask spreads  for various large stocks and their

trend lines.

of an order book in a non-specialist market and came up with a similar parameterisation for liquidity

in terms of bid-ask spreads and slope.

Under our parameterisation �gure 9 shows the ranking of average  and �̂, as de�ned by (37) for

various stocks against free-oat market capitalisation. It becomes apparent, that bid-ask spreads

seem to be approximately negatively related to the market value of a company but, at �rst glance

counter-intuitively, the marginal change in average transaction price is clearly positively related.

This may be due to the fact that, at least for blue chip stocks, at any one moment the market depth

of the smaller ones is relatively larger than for the bigger ones. This means, when extrapolating, if

at one point in time a market order for a 1% free-oat stake of a large stock like Telekom is placed,

the acquisition premium will amount to about 90%. On the other a smaller cap like Preussag would

only commmand a 20% premium. Another reason may be that the larger stocks are more volatile

and therefore the opportunity cost of holding inventory in an order book is higher.

4.2 Estimation of the liquidity parameters

Our data set consisted of about four and a half hours of �ve layers of market depth data for �ve large

cap stocks traded on the Xetra system of the German stock exchange. The latter is a fully electronic

market that matches quotes automatically. Even though this set seems relatively small, still each

stock had between 300 and 1000 ticks per hour, where at least one of the layers was updated in price

or quantity o�ered. We assumed that a potential hedger would require the immediate execution

of an order and would thus �ll one of the limit orders in the book. This assumption would not

necessarily be invalidated if on top of the order book another broker market existed, as it may be

reasonable to assume that the liquidity supplied by brokers is related to the observable part of the

order book.

To estimate the parameters we employed ordinary least squares minimisation because our model

setup �ts well into a linear regression framework, which further provides the R2 measure of goodness-

of-�t. We also let the �tted parameters be time-dependent, i.e. �t and t to subsequently test
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Figure 10: � for the time series of �gure 3.

stability. Depending on the a priori assumptions of which parameters to include, we added them

step-by-step thus increasing complexity and observed how the �t of the model developed. Initially

we commenced by setting t = 0 and ignored the market slippage, then �t and St could be directly

estimated through the simple linear regression with log-transform of the response:

ln( �St) = ln(St) + �dHt + �t: (38)

Here �St represents the exact average transaction price under a speci�c traded quantity dHt and

St the estimated mid-market price. The choice of intervals of dHt proved to have relatively little

inuence on the results, so that we took the same equi-distant quantities for each stock, i.e. batches

of 400 shares, which typically provided 40-100 data points for each regression. The results of the

analysis are given in table 2. The time-weighted arithmetic average R2 statistic shows that the

functional form of the controlled process seems to be able to provide a good �t at most time points.

But as can be observed from the corresponding graph there is a signi�cant discontinuity due to

bid-ask spreads, so to further improve the �t the next extension was to include t in the estimation.

The extended regression model, again under log-transform of the response is

ln( �St) = ln(St) + ln(1 + sign(dHt)t) + �tdHt + �t: (39)

Then a good approximation of t could be obtained by conjecturing it is small, so that

ln(1 + sign(dHt)t) � sign(dHt)t;

which �ts into a multiple linear regression framework. As the result table shows, the inclusion of

t further improved the R2 value. But, as the section on stochastic liquidity will demonstrate,

the values of �t and t across time were far from constant. One problem that estimation method

(39) causes is that as the slope of the market depth becomes steeper, the intercepts come closer

together and it is even possible, albeit rare, that the estimated best �tting  may become slightly

negative. This could be prevented by restricting  to represent the exact bid-ask spread at any

time, thus requiring one fewer parameter to be estimated through least-squares. But this additional

restriction is at the expense of estimation accuracy as the results demonstrate. The least-squares

linear regression model is

ln( �St)� I[x>0](dHt) ln(S
+
t )� I[x<0](dHt) ln(S

�
t ) = �tdHt + �t; (40)

where I[A](x) is the indicator function and S�
t
, S+

t
the best bid and ask prices at any time respec-

tively, so that  = (S+
t + S�t )=2. This model could then again be improved in terms of accuracy by

allowing for two di�erent di�erent slopes, i.e. a separate � for bid and ask depth:

ln( �St)�I[x>0](dHt) ln(S
+
t
)�I[x<0](dHt) ln(S

�
t
) = �+

t
dHtI[x>0](dHt)+��

t
dHtI[x<0](dHt)+�t; (41)
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gamma=0
lambda R^2

BASF 2.53E-07 87.31%
Telekom 1.64E-07 84.09%
Thy.Krupp 1.56E-07 82.63%
VW 2.47E-07 88.31%
Preussag 3.36E-07 87.82%

gamma>0
lambda gamma R^2

BASF 1.16E-07 0.00108 98.33%
Telekom 7.48E-08 0.00103 98.09%
Thy.Krupp 6.90E-08 0.00145 98.33%
VW 1.30E-07 0.00085 98.07%
Preussag 1.65E-07 0.00123 98.53%

exact gamma
lambda gamma R^2

BASF 1.18E-07 0.00099 94.29%
Telekom 7.41E-08 0.00095 89.04%
Thy.Krupp 7.54E-08 0.00120 81.80%
VW 1.23E-07 0.00081 89.49%
Preussag 1.67E-07 0.00115 92.78%

exact gamma, 2 lambda
lambda_bid lambda_ask gamma R^2

BASF 1.29E-07 1.50E-07 0.00099 96.65%
Telekom 8.80E-08 9.49E-08 0.00095 95.15%
Thy.Krupp 1.23E-07 9.92E-08 0.00120 97.65%
VW 1.34E-07 1.65E-07 0.00081 94.99%
Preussag 2.37E-07 1.55E-07 0.00115 96.49%

slippage to exact next last price traded
alpha lambda gamma R^2 (2nd)

BASF -0.53 1.18E-07 0.00099 93.95%
Telekom -0.54 7.41E-08 0.00095 91.99%
Thy.Krupp -0.59 7.54E-08 0.00120 93.76%
VW -0.66 1.23E-07 0.00081 92.11%
Preussag -0.54 1.67E-07 0.00115 93.86%

slippage to next last mid-price
alpha lambda gamma R^2 (2nd)

BASF 0.51 1.18E-07 0.00099 81.53%
Telekom 0.52 7.41E-08 0.00095 76.36%
Thy.Krupp 0.48 7.54E-08 0.00120 82.39%
VW 0.42 1.23E-07 0.00081 80.31%
Preussag 0.50 1.67E-07 0.00115 81.07%
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Table 2: Time weighted arithmetic average estimates of �,  and � for various stocks and their

goodness-of-�t. Top to bottom the regression models refer to (38), (39), (40), (41), (42), (43).

Graphs represent the various �ts for a particular snapshot of the order book of BASF at 12:14:41pm

on 13 Jan 2000.
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The modelling implications of this will be discussed in a subsequent section. When additionally

�tting the slippage parameter �, because it can be calculated exactly, a second equation is given for

the slipped price Ŝt, namely

ln(Ŝt) = ln(St) + (1� �t)(ln(1 + sign(dHt)t) + �tdHt) + �t; (42)

where � and  are taken from the initial �tting of the average transaction price. But as mentioned in

section 2, for reasons of consistency it may be more appropriate to calibrate the slippage parameter

to the slipped mid-price instead of the next last traded price Ŝt. The former could be estimated by

the geometric average q
Ŝt
�
S�t I[x>0](dHt) + S+

t I[x<0](dHt)
�
;

so that the left-hand side of (42) is replaced by

1

2

�
ln(Ŝt) + ln

�
S�t I[x>0](dHt) + S+

t I[x<0](dHt)
��

: (43)

But as �gure 10 shows, in general, care has to be taken with � because it is usually a function of

dHt. Nonetheless, the dynamical programming formulation of appendix B is able to cope with both

time- and trade quantity-dependent �, so that a generic funtion �(S; t; dH) could be introduced.

5 Extensions and applications

5.1 Multiple underlying assets

The basic model with  = 0 easily generalises if the economy has m risky assets (S
(l)
t (!))8t;!,

l = 1 : : :m. In continuous time they follow respective geometric Brownian motions

dS
(l)
t

= �lS
(l)
t
dt+ �lS

(l)
t
dX

(l)
t
;

which in discrete time gives the price di�usion and impact dynamics 8l as

S
(l)
ti�1

! �S
(l)
ti�1

= S
(l)
ti�1

e
�l

�
H
(l)
ti
�H

(l)
ti�1

�

!

8><
>:

ul

�
S
(l)
ti�1

��l �
�S
(l)
ti�1

�1��l
= ulS

(l)
ti�1

e
�l(1��l)

�
H
(l)
ti
�H

(l)
ti�1

�

dl

�
S
(l)
ti�1

��l �
�S
(l)
ti�1

�1��l
= dlS

(l)
ti�1

e
�l(1��l)

�
H
(l)

ti
�H

(l)

ti�1

�
:

(44)

Firstly, the economy still doesn't allow arbitrage.

Proposition 5.1 (Non-existence of arbitrage opportunities)

If the risky and riskless assets (S
(l)
t (!); Bt)8t;!;l follow the processes (44) and (2) respectively, there

does not exist a particular holding strategy (H
(l)
t

0(!); Ĥ 0
t
(!))8t;!;l, with H

(l)
t0

0 = H 0
T
(!), 8!; l, which

is self-�nancing and value-conserving i.e.�
Ĥ 0
ti
(!)� Ĥ 0

ti�1
(!)
�
Bti�1 +

mX
l=1

�
H

(l)
ti

0(!)�H
(l)
ti�1

0(!)
�
�S
(l)
ti�1

(!) = 0; 8t; !; l;

which results in a positive expected gain

E[VT � Vt0 jFt0 ] > 0;

where Vti(!) =
Pm

l=1H
(l)
ti
(!)S

(l)
ti
(!)+ Ĥ

(l)
ti
(!)Bti , 8t; ! is the mark to market value of the portfolio.
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Proof: Analogous to proposition 2.1.�

Secondly, the nonlinear optimisation program for a contingent claim Ct(S
(1)
t ; : : : ; Smt ) is given

by:

Proposition 5.2 (Replication ask price of a contingent claim)

The ask price of a contingent claim Ct(!) at time t0 is

Ct0 = min
(Ht(!)(l);Ĥ

(l)
t (!))

8t;!;l

Vt0 =

mX
l=1

�
H

(l)�
t1

�H
(l)
0

�
�S
(l)
t0

+ Ĥ�
t1
Bt0 +

mX
l=1

H
(l)
0 S

(l)
t0
; (45)

where the optimal controls (H
(l)�
t (!); Ĥ

(l)�
t (!))8t;!;l satisfy the initial holdings (46)

H
(l)
t0

= H
(l)
0 ; (46)

the self-�nancing conditions (47)

(Ĥti(!)� Ĥti�1(!))Bti�1 +

mX
l=1

�
H

(l)
ti
(!)�H

(l)
ti�1

(!)
�
�S
(l)
ti�1

(!) = 0; (47)

the payo� replication constraint (48)

VT (!) =

mX
l=1

H
(l)

T
(!)S

(l)

T
(!) + ĤT (!)BT = CT (!); (48)

and the processes (Bt(!); S
(l)
t (!); �S

(l)
t (!))8t;!;l are given by (2) and (44).

If, as in the univariate case, CT has a suÆciently simple structure, then there exists a unique optimal

solution, but now since a permutation of m binomial trees has a number of nodes that grows like

(n+1)m with timesteps n, the order of magnitude of the number of constraints variables is O(nm+1)

and it becomes apparent that the discrete-time method will be impractical. Again we can derive a

PDE as its continuous-time limit, which can be used by �nite di�erence methods and may make it

more feasible to compute solutions.

Theorem 5.1 Under the price dynamics and the replication conditions of proposition 5.2, in the

continuous-time limit the value of a self-�nancing replicating portfolio V (S(1); : : : ; S(m); t) is gov-

erned by the PDE

@V

@t
+ r

mX
l=1

S(l) @V

@S(l)
+
1

2

mX
i=1

mX
j=1

�i�j�ijS
(i)S(j) @2V

@S(i)@S(j)
+

mX
l=1

�l�
2
l

�
S(l)

�3 @2V

@
�
S(l)

�2
!2

+
1

2

mX
i=1

mX
j=1

�i�j(1� �i)(1� �j)�i�j�ij

�
S(i)

�2 �
S(j)

�2 @2V

@
�
S(i)

�2 @2V

@
�
S(j)

�2 @2V

@S(i)@S(j)
� rV = 0;

subject to contract-speci�c boundary conditions.

Proof: A straightforward multivariate extension of theorem 3.2, noting that dX
(i)
t dX

(j)
t = �ijdt,

�ii = 1 and dX
(i)
t dX

(j)

t�dt
= 0 are the respective correlation coeÆcients between the Brownian

motions.�
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5.2 Distinct bid and ask liquidity

Typically, as �gure 2 demonstrates, the market depth on the bid and ask side is not symmetric . If

there are large imbalances, intuitively, this leads to price movements and to an increase in volatility.

But by buying when everybody wants to sell and vice versa, the liquidity for the transaction will

be good. The converse will probably hold if one follows all other market participants. The reaction

function (5) o�ers only one scaling parameter for the slope of the average transaction price on the

bid and ask side. It is a linear, thus symmetric, approximation for small � or quantity traded. As the

empirical results in table 2 have shown, additional exibility can be added by using two parameters

for the slope of the average transaction price function �+, �� to account for distinct bid and ask

liquidity. Then process (6) can be extended to

Sti�1

! �Sti�1 = Sti�1

�
e
�
+(Hti

�Hti�1
)
IR+(Hti �Hti�1) + e

�
�(Hti

�Hti�1
)
IR

�

(Hti �Hti�1)
�

!
8<
:

uSti�1

�
e
�
+(1��+)(Hti

�Hti�1
)
IR+(Hti �Hti�1) + e

�
�(1���)(Hti

�Hti�1
)
IR

�

(Hti �Hti�1)
�

dSti�1

�
e
�
+(1��+)(Hti

�Hti�1
)
IR+(Hti �Hti�1) + e

�
�(1���)(Hti

�Hti�1
)
IR

�

(Hti �Hti�1)
�
:

where �+, ��, �+ and �� are the bid and ask liquidity parameters, respectively, and for simplicity

we set  = 0.

However the increase in calibration exibility is at the cost of computational requirements. Now,

when valuing derivatives, even under exact replication, St becomes path-dependent and the resulting

tree bushy. But again the two-stage dynamical program of appendix B can be applied and it will

approximate the solution in �nite time. For this purpose the self-�nancing condition (59) has to be

replaced by

(Hti �Hti�1)
�
e
�
+((Hti

�H0)��
+(Hti�1

�H0))IR+(Hti �Hti�1)

+e�
�((Hti

�H0)��
�(Hti�1

�H0))IR
�

(Hti �Hti�1)
�
un�jdj ~Sti�1 + (Ĥti � Ĥti�1)Bti�1 � 0; 8i; j:

5.3 Stochastic liquidity

As is the case with Black-Scholes volatility, in practice, treating liquidity as a constant parameter is

a convenient modelling assumption that, sometimes, admits tractable solutions. But in reality our

empirical analysis has shown that both � and  are highly stochastic as �gure 11 indicates. However,

their dynamics seem to be reasonably stationary, at least over the short-term, so that a mean-

reverting, non-negative di�usive process, as is standardly used for stochastic volatility modelling,

could be appropriate. An easy model for, say, �t(!) would be a mean-reverting Ornstein-Uhlenbeck

process:

d�t = a(b� �t)dt+ cdW�t ; (49)

where a, b and c are constants. It is however well-known that following this process � could become

negative with positive probability. Another alternative that would keep � positive would be a process

similar to the one used in the [CIR] interest rate model:

d�t = a(b� �t)dt+ c
p
�tdW�t : (50)

Again, to estimate the parameters a; b; c, representing the reversion speed, mean and volatility

scalar, respectively, from our data set, we resort to ordinary least squares. For that purpose we took
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Figure 11: � and  tick time series for BASF over a speci�c time period.

minutely averages of the data and for (49) estimated the linear regression model

�t+1 = abÆt+ (1� aÆt)�t + c
p
Æt�t+1

= �+ ��t + ~�t+1;

where �t+1 � N(0; 1) and ~�t+1 � N(0; �2
�
), 8t. Performing the least-squares �tting the best param-

eter estimates are then given by

a =
1� �

Æt
; b =

�

1� �
; c =

��p
Æt
:

To estimate the parameters of (50) we �rst invoke Itô's formula and obtain

d
p
�t =

1

2
p
�t

�
d�t � 1

4
c2dt

�
=

�
1

2
ab� 1

8
c2
�
�
� 1

2

t dt� 1

2
a
p
�tdt+ cdW�t ;

whose parameters we estimate through the linear regression model

p
�t+1 =

�
1� 1

2
aÆt

�p
�t +

�
1

2
ab� 1

2
c2
�
Æt�

� 1
2

t + c
p
Æt�t+1

= �1
p
�t + �2�

� 1
2

t + ~�t+1;

with the distribution of the errors as before, so that subsequently

a =
2(1� �1)

Æt
; b =

�2 +
1
8
�2
�

1� �1
; c =

��p
Æt
:

Table 3 gives the results of the least-squares �tting for both � and  as estimated through (39).

The second model seems to �t marginally better for � and vice versa for .

In general, when employing a di�usive process of type

d�t = u(�t; t)dt+ v(�t; t)dW�t

for a generic parameter � and functions u; v a one-factor Black-Scholes type PDE would be extended

by partial derivatives with respect to the new factor:

LBSV = �(u�mv)
@V

@�
� 1

2
v2
@2V

@�2
� ��vS

@2V

@S@�
(51)
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lambda BASF Telekom ThyKrupp VW Preussag
mr-OU a 3489.13 5801.76 3729.64 2318.44 2851.14

b 1.15E-07 7.45E-08 6.77E-08 1.33E-07 1.65E-07
c 0.000636 0.000560 0.000292 0.000630 0.000634
R^2 59.10% 37.56% 56.15% 71.53% 65.21%

CIR a 3089.23 2758.61 2562.14 1941.02 2642.41
b 1.03E-07 5.32E-08 6.08E-08 1.14E-07 1.53E-07
c 0.81 1.02 0.55 0.84 0.75
R^2 61.60% 37.80% 61.71% 72.77% 66.18%

gamma BASF Telekom ThyKrupp VW Preussag
mr-OU a 4498.49 8150.87 4257.65 4281.21 3002.14

b 0.0011 0.0010 0.0014 0.0008 0.0012
c 5.81 6.24 6.26 5.43 5.08
R^2 49.26% 20.98% 51.29% 51.91% 63.75%

CIR a 4833.58 7382.95 2712.53 2255.26 3438.60
b 0.0010 0.0009 0.0013 0.0006 0.0011
c 87.57 100.06 88.41 99.31 73.86
R^2 47.21% 20.34% 46.47% 54.42% 61.23%

Table 3: Parameter estimates a; b; c for the respective processes of � and , estimated on minutely

data.

BASF Telekom ThyKrupp VW Preussag
dS dlam dgam dS dlam dgam dS dlam dgam dS dlam dgam dS dlam dgam

dS(BASF) 1.00
dlam(BASF) -0.21 1.00
dgam(BASF) -0.19 -0.30 1.00
dS(Telekom) 0.40 0.01 -0.18 1.00
dlam(Telekom) -0.03 -0.02 0.07 0.04 1.00
dgam(Telekom) 0.12 -0.02 0.05 0.02 -0.16 1.00
dS(ThyKrupp) 0.15 -0.04 -0.11 0.18 0.07 -0.03 1.00
dlam(ThyKrupp) -0.08 -0.08 -0.11 0.00 -0.05 -0.17 0.11 1.00
dgam(ThyKrupp) 0.01 0.06 0.01 -0.02 -0.04 0.13 -0.21 -0.33 1.00
dS(VW) 0.01 0.01 -0.02 0.01 0.00 0.03 0.05 0.01 -0.07 1.00
dlam(VW) -0.14 0.07 -0.01 -0.07 -0.03 0.08 -0.01 -0.12 0.03 0.25 1.00
dgam(VW) 0.10 0.06 0.05 0.03 0.01 -0.02 0.08 -0.03 0.13 0.11 -0.31 1.00
dS(Preussag) 0.01 0.02 -0.02 0.01 0.00 0.03 0.06 0.01 -0.07 1.00 0.25 0.12 1.00
dlam(Preussag) -0.01 0.02 -0.01 -0.05 -0.07 0.06 0.08 -0.09 -0.03 0.08 0.13 -0.01 0.09 1.00
dgam(Preussag) -0.05 -0.04 0.01 0.05 0.05 0.06 -0.04 0.17 0.11 0.33 0.09 0.08 0.34 -0.40 1.00

Table 4: Correlation matrix of dS, d� and d for the stocks in our sample.
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Figure 12: Minutely averaged � (left axis) and spot mid-price of BASF over the reference time

period.

where � = E[dStd�t] is the correlation between spot and parameter changes and m(�t; t) the

market price of risk of the particular parameter. When including more than one additional stochastic

parameter and/or more than one underlying, then (51) is extended by further cross-partial derivatives

with their respective market prices of risk and correlation coeÆcients. Table 4 gives the estimated

correlation matrix for our universe of underlyings and their respective processes of � and . There

seems to exist a signi�cant negative correlation between a stock's  and �. This may be explained,

that as orders are usually �lled around the best quotes where, as already �gure 3 indicated, the

average transaction price function may be convex on the bid-side and concave on the ask-side, so

that a widening of the bid-ask spreads leads to a attening of the slope. The other correlations

seem to be relatively low and with changing signs. A reason for it might be our relatively small

dataset in terms of number of underlyings and time period. Overall this suggests that the cross-

terms in the eventual PDE would be less signi�cant. Additionally, by observing the magnitude of

the a parameters, i.e. the time-scale of the reversion to the mean, it is obvious that it seems to

be fast in comparison to either implied volatilities, standard option maturities or spot movements

of the underlying, as �gure 12 shows. For this type of process [FPS] show that this will allow

asymptotic approximations when solving a PDE of type (51). However, the latter assumes that

the liquidity parameter can be hedged. In theory, for this purpose, as is done by [Jar2], traded

options can be introduced into the market, which also depend on the liquidity of the underlying

and thus complete it. But the problematic part of this approach, which is often ignored, is that

traded options themselves have �nite liquidity and in practice it is usually far lower than that of

the underlying. Therefore the transaction costs incurred when hedging liquidity will have a much

larger e�ect than either leaving the position unhedged or, if possible, taking a static hedge up-front.

Hence, realistically, the value of derivatives on an illiquid underlying may have to be given in terms of

physical expectations, instead of risk-neutrality. It may thus prove useful if the employed stochastic

model will be tractable in some form, as for instance our two chosen processes. In the next section

we describe a class of derivatives that will isolate liquidity risk and propose a valuation approach

under these assumptions.

5.4 A framework for liquidity derivatives

In general, liquidity derivatives isolate the risk exposure due to the unavailability of suÆcient quan-

tities of assets. [Scho] de�nes liquidity options as conferring the right to buy or sell a certain amount

H of an asset at the quoted spot price St, exercisable within a prespeci�ed time window T � t0.

Under perfect liquidity, this amounts to a Call or Put option with a strike price which is always

exactly equal to the spot. Hence in a Black-Scholes world it would have no value. However when
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liquidity is �nite this contract represents a direct insurance against or bet on the liquidity of an

asset in the future. Under our liquidity model the payo� from the writer's point of view would be

given by

C� = �HS�

�
(1 + sign(H �H� ))e

�(H�H� ) � 1
�
; t0 � � � T; (52)

where H� represents the accumulated amount of the asset up to time � . On the other hand the

mark to market value of what the holder would obtain upon exercise is

C� = HS�

�
(1 + sign(H �H� ))

(1��)e�(1��)(H�H� ) � 1
�
; t0 � � � T: (53)

This asymmetry under physical delivery suggests that the holder would, most likely, exercise the

option because of requirements other than selling the stock back to the market. This means that

early exercise may be entirely random from the writer's point of view or might not occur at all and

thus no dynamic hedging strategy may exist.

Instead, one possible static super-replication strategy would be for the writer to take a position

of H in the asset immediately, in which case the upper bound for the contract premium would be

given by the future value of the capital employed for the initial hedge, namely

Ct0 � H(1 + sign(H))St0e
�HBT : (54)

This premium could then be further lowered by subtracting the physical expected value of the cash

ow return, i.e.

Ct0 = P (exercise)HE

h
(1 + sign(H))St0e

�HB� � S�e
�r(��t0)

i
�(1� P (exercise))HE

�
(1 + sign(�H)T )ST e

��TH
�
e�r(T�t0)

where, given no information about the holder's strategy, the exercise time � and the probability of

exercise P (�) would have to be guessed through for example a Bayesian prior. In this case uniform

distributions for both would represent uninformative priors. Also the premium would be further

lowered if the writer already held a surplus in the asset. A second hedging strategy would be to buy

all of the position at once if exercised. Then, again under physical expectations, the value of this

strategy is given by

Ct0 = P (exercise)HE
�
S�
�
(1 + sign(H)� )e

��H � 1
��
:

To calculate Ct0 under both hedging strategies requires solving an expectation of the form

E
�
Stte

�t
�
:

Under the assumption that S is log-normally distributed explicit solutions will only exist if � is

non-stochastic or normally distributed, e.g. of Ornstein-Uhlenbeck type, and  non-stochastic or

log-normal. But even if these conditions are not met it would be straightforward to calculate it

by Monte-Carlo simulation. Instead, however, if the writer of this contract knew more about the

holder's purpose in holding the asset, he could use a more-informative distribution for both exercise

time and exercise probability and, possibly, there would be ways of dynamically replicating the

contract. In general, this type of liquidity derivatives is closely related to portfolio or program

trading and the next section discusses it as a further application.

Another class of liquidity derivatives has been proposed by [B&H], namely options on their own

Greeks or on those of other options. In particular, options on the Delta or Gamma of another

option represent liquidity derivatives in the sense that for the writer of the underlying option they
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e�ectively cap the required hedging quantity. When the latter, which is directly related to Delta

and Gamma, becomes large then the writer transfers the exposure to the liquidity of the market to

a third party. Another type of contract that was suggested were options with their own Gamma

capped, i.e. they settle early when its theoretical Gamma �V hits a boundary �0 and hence protect

the hedger against having to make large transactions in the market. In practice it would be diÆcult

to agree on the true �V of the contract, since the liquidity or transaction costs faced by various

participants are di�erent. But if instead the Black-Scholes �BS and value VBS were taken as the

proxy for the barrier and early settlement value, respectively, then the cap is easier to verify. It also

would make a contingent claim cheaper, because by (30) �BS � �V (St; t;�; �).

5.5 Applications to portfolio trading

Portfolio or program trading is usually understood to be the liquidation or rebalancing of a large

equity portfolio containing one or more stocks. In general the portfolio is assumed to be large enough

to exceed the market depth at a particular time, so that trading all of it would substantially inuence

the stock price. It therefore, usually, has to be broken up into smaller chunks. This is done by an

agent trader who will try to execute a trade (for the client) as advantageously as possible and may

guarantee a price up-front. In this case, depending on the agreement, any surpluses or shortfalls are

then either borne by the agent or by the client. If we resort to our liquidity model then the problem

of �nding an optimal guaranteed price is given by the following formulation.

Proposition 5.3 (Risk-neutral portfolio trade quote)

Under risk-neutrality the portofolio trade quote is the solution of the program

max
(Ht(!))8t;!

K (55)

subject to the pre-and post-position constraints

H
(l)
t0

= H
(l)
0 ; H

(l)

T
= H(l); 8l;

the conservation of funds constraints (47) and risk-neutral super-replication condition

EQ

�
WT

BT

�
� 0; (56)

where

WT (!) = ĤT (!)BT �K; 8! (57)

is the terminal net wealth. The processes (Bt; S
(l)
t (!); �S

(l)
t (!))8t;!;l follow (2) and (44), respectively.

Here (57) implies that both surpluses and shortfalls are borne by the agent and K is set such

that it is costless to enter the deal. Instead if surpluses are returned to the client, then the objective

function changes to

Ct0 = min
(Ht(!))8t;!

EQ

�
WT

BT

�

and the wealth function (57) is replaced by

WT (!) = max(K � ĤT (!); 0); 8!:
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Thus the agent is short an option in the liquidation value of the portfolio and requires a premium

from the client up-front.

Also, the liquidation price is often guaranteed in advance in terms of a spread around the volume

weighted average price (vwap) of the portfolio over a period of time. Then K in the wealth function

(57) would be replaced by

K +
X
l

�
H

(l)
0 �H(l)

�
vwap(l);

where

vwap(l) =

P
i

��
H

(l)
ti
(!)�H

(l)
ti�1

(!)
�
�S
(l)
ti�1

(!) + f

�
�l
ti�1

(!); S
(l)
ti�1

(!)
��

H
(l)
0 �H(l) +

P
i
f

�
�l
ti�1

(!); S
(l)
ti�1

(!)
� ;

where f is a function giving the volume due to other market participants, that would need to be

estimated and calibrated.

There exists a trivial solution for the the program in proposition 5.3, when � is constant and

 = 0. For simplicity we will assume that l = 1 and r = 0. By lemma 2.1 it is cheaper in terms of

transaction costs to trade many small quantities instead of a large bulk. We thus conjecture that the

optimal solution must require the trader to break up the order into equal chunks, that are traded

in equal time periods, so that

arg max
(Ht(!))8t;!

K =
(H0 �H)(n� i)

n
; (58)

where n is the number of discrete time periods. Expanding (56) and substitution of (47) and (58)

gives

EQ[WT ] = EQ

h
ĤT

i
�K =

nX
i=1

(H0 �H)

n
EQ[Sti�1 ]e

�(H0�H)=n = n
(H0 �H)

n
St0e

�(H0�H)=n;

which in the continuous time limit as n!1 converges to the perfect liquidity forward price. Since

the latter represents an upper bound for K the solution is indeed optimal. It becomes apparent that

if trading is continuous the liquidity e�ect is of a lower order.

In general, portfolio trading problems under this liquidity model will need to be solved numer-

ically with bushy trees and dynamical programming and would thus be computationally intensive.

But, in practice, since the quotes were not derived from non-arbitrage relationships, they would

rather serve as a point of orientation for a price that would eventually be determined competitively.

In fact, instead of the risk-neutrality condition (56) the papers by amongst other [B&L], [A&C1],

[A&C2], [H&S2] suggest a framework of utility functions, where the variance of ĤT is incorporated.

Moreover, as mentioned in an earlier section, they employ arithmetic Brownian motion as the asset

price processes, which allows for analytic solutions.

6 Summary and proposals for further research

In this paper we have presented a parametric market model featuring an observable proxy measure

of liquidity for assets. We derived a risk-neutral model for derivatives valuation based upon it, both

in discrete time and for the continuous-time limit. The liquidity impact function contained three
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parameters:  measuring the relative width of the bid-ask spread, � as a proxy for the slope of

the average price as a function of quantity, and � giving the eventual market price slippage. All

of these parameters are directly observable in a non-specialists market order book of layered best

bid and ask quotes. As an example of the latter we empirically analysed German equity market

data estimating the order of magnitude of the parameters and observing their stability. The model

proved to �t the real world data very accurately and it allowed us to systematically rank the liquidity

of a stock, de�ned as the coeÆcient of the relative market capitalisation traded leading to relative

price slippage. Somewhat surprisingly we concluded that market cap and the elasticity of liquidity

under this proxy seem to be negatively related. Also, as the parameters proved to be non-constant

we presented some extensions to the model in the form of stochastic liquidity, multiple underlying

assets and distinct bid and ask liqudity. The liquidity parameters appeared to be fast mean-reverting

and were well explained by some standard types of these processes.

As a direct application we incorporated this liquidity impact function in an option pricing frame-

work, we appended the CRR binomial model by a controlled process and formulated the price as

the solution of a constrained nonlinear optimisation program. Depending on the type of option and

whether the position was long or short the model generated unique, hence risk-neutral, bid and ask

prices. Furthermore, by allowing for super-replication strategies for many types of contracts, as is

the case for most transaction cost models, there existed parameter ranges where the solution was

superior to exact replication. For this case we formulated a dynamical program that solved for the

cheapest super-replication strategy. In the continuous time limit we derived three PDEs, each valid

for a certain order of magnitude of the parameterisation. If the bid-ask spread was assumed to be

a signi�cant factor, then it dominated the elasticity e�ect and hedging would need to be done in

discrete time. But if in this case there existed no price slippage then it reduced to the Hoggard-

Whalley-Wilmott transaction costs model. Most signi�cantly, when bid-ask spreads were assumed

to be negligible and only the slope of the impact function was considered, then the option hedging

strategy could be implemented in continuous time. The only care that needed to be taken was how

to deal with non-smooth option payo�s. Also at least numerically, it should be straightforward to

extend the model by a stochastic volatility framework, which is part of future research.

Furthermore we proposed the model as a framework for the valuation of liquidity options and

portfolio trades and gave some examples. Another application, which creates a link to market

microstructure theory models as e.g. [Kyle] and [F&J] would be to employ the model for strike,

barrier, position detection after observing sequences of large trades. This would represent the inverse

problem of the hedging options. Essentially this would entail trying to decompose observed volatility

into predictable parts, as is for instance done by [L&W] or [P&D], through techniques like maximum

likelihood analysis to �lter out the Delta and Gamma of the large market participant. Finally, in

general, we believe that liquidity represents an additional dimension in most markets. As �gure 1

has shown a price time series can be extended by an additional axis to account for limited availability

of quantities at particular prices. This idea can also be applied to, say, a interest rate yield curve

or an implied volatility smile/skew. We are con�dent that this paper is an initial step in to this

direction.

A Solving nonlinear systems of equations

For a generic terminal condition we have to solve the system of implicit nonlinear functions

g1(H; Ĥ; !2j�1; T ) = HTj ~u
n�j+1dj�1 ~STj + ĤTjBT � C(~un�j ~dj ~STj ) = 0;

g2(H; Ĥ; !2j ; T ) = HTj ~u
n�j ~dj ~STj + ĤTjBT � C(~un�j ~dj ~STj ) = 0;
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j = 1; : : : ; n, where j and n are the number of down and time steps, respectively,

~Sti = St0e
�(1��)(Hti

(!)�H0);

~u = u(1� )(1��);

~d = d(1� )(1��);

the sign chosen depending whether Delta is positive or negative, and HT (!2j) = HT (!2j�1) =

HTj ;8j. The intermediate self-�nancing conditions span the system:

g1(H; Ĥ; !2j�1; ti) = (Hti �Hti�1)e
�(Hti

�Hti�1
)
�
1 + sign

�
Hti �Hti�1

�

�
~ui�j�1 ~dj ~Sti�1

+(Ĥti � Ĥti+1)Bti�1 = 0;

g2(H; Ĥ; !2j ; ti) = (Hti �Hti�1)e
�((Hti

�Hti�1
)
�
1 + sign

�
Hti �Hti�1

�

�
~ui�j�2 ~dj+1 ~Sti�1

+(Ĥti � Ĥti�1)Bti�1 = 0;

i = 1; : : : ; n; j = 1; : : : ; i � 1. In both cases to solve for the holding process (Ht(!); Ĥt(!))8t;! we

need an algorithm that will converge to the roots. One standard possibility is the Newton method

J

�
[H(l+1) Ĥ(l+1)]T � [H(l) Ĥ(l)]T

�
= �[g1 g2]T ;

where

J =

� rHg1 r
Ĥ
g1

rHg2 r
Ĥ
g2

�

is the Jacobian matrix, which, after rearrangement, results in

H(l+1) =
ar

Ĥ
g2 � br

Ĥ
g1

rHg1rĤ
g2 �rHg2rĤ

g1
;

Ĥ(l+1) =
arHg2 � brHg1

r
Ĥ
g1rHg2 �rĤ

g2rHg1
;

where

a = Ĥ(l)r
Ĥ
g1 +H(l)rHg1 � g1; b = Ĥ(l)r

Ĥ
g2 +H(l)rHg2 � g2;

and l = 0; 1; : : : is the number of iterations, which is chosen so that the di�erence between the

parameter values is smaller than a arbitrary small constant �, i.e.���H(l) �H(l�1)
��� � �:

B Solving the dynamical program

Firstly, the space of feasible trading strategies (Hti(!j); Ĥti(!j))8i;j needs to be discretised into a

matrix of possible stock and bond holdings at every node of the tree. Because the fundamental

asset price tree is recombining and the observed price tree Markovian when Hti(!j) is known, the

number of matrices will only grow quadratically in time. Arbitrarily choosing the probability of up

and downsteps as 0.5, gives the following backward recursion equation:

Wti(!j) = min
(Hti

(!j);Ĥti
(!j))

1

2

X
j

Wti+1(!j);
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subject to the terminal conditions

WT (!j) = max
�
CT (!j)�HT (!j)ST (!j)� ĤT (!j)BT ; 0

�
; j = 1; : : : ; n;

and the self-�nancing constraints

(Hti �Hti�1)e
�(Hti

�Hti�1
)
�
1 + sign

�
Hti �Hti�1

�

�
~ui�j�1 ~dj ~Sti�1

+(Ĥti � Ĥti�1)Bti�1 � 0; j = 0; : : : ; i� 1; i = 1; : : : ; n: (59)

C Various proofs

Proof: (of theorems 3.1, 3.2 and corollary 3.1)

For (30) to hold, it must be invariant under the choice of starting point within a time interval.

In turn we will commence with an already hedged portfolio that will need to be rehedged after

observing the asset price di�usion and then derive the same result for a portfolio, which still needs

to be rehedged before an asset price di�usion. As before, for notational convenience, we will drop

the time subscript.

1. If, initially, we assume that H is already the correct hedge quantity, then we start with a

position

� = V (S; t;H)�HS = ĤB; (60)

where we observe that the right-hand side cash position equals exactly the value of the left-hand side

contract and stock portfolio. Also we explicitly show the dependence of the contract value V on the

quantity of stock held H to distinguish the change in V due to one's own trading, i.e. a change in H ,

from the exogenous di�usion of the asset, which is assumed to follow geometric Brownian Motion.

Then, the left-hand side of (60), i.e. the mark-to-market value of the contract and the stock, over

the small but not in�nitesimal time interval Æt, evolve as

� + Æ� = V (S + ÆS; t+ Æt;H)�H(S + ÆS)

due to the exogenous di�usion of the asset. Subsequently the portfolio is rehedged to

�� + Æ ��

= V (S + ÆS; t+ Æt;H + ÆH)� (H + ÆH)(S + ÆS)(1 + sign(ÆH))(1��)e�(1��)ÆH

= V

�
(S + ÆS)(1 + sign(ÆH))(1��)e�(1��)ÆH ; t+ Æt;H

�
�(H + ÆH)(S + ÆS)(1 + sign(ÆH))(1��)e�(1��)ÆH ; (61)

where in the last line we use the relationship

V (S; t;H + ÆH) = V

�
S(1 + sign(ÆH))(1��)e�(1��)ÆH ; t;H

�
; (62)

incorporating the dependence of V on the current holding H of S under the chosen form of the price

impact function. Now, we conjecture that

H =
@V

@S
; (63)

and ÆH is small so that for a generic constant c we can expand the exponential term

ec�(1��)ÆH = 1 + c�(1� �)ÆH +
c2

2
(�(1� �)ÆH)

2
+ : : : : (64)
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in a Taylor series. Substituting (63) into (61), and invoking both (64) and Itô's formula, gives

�� + Æ ��

= V � S
@V

@S
� ÆH(S + ÆS)(1 + sign(ÆH))(1��)

�
1 + �(1� �)ÆH +

1

2
�2(1� �)2ÆH2

�
+
@V

@t
Æt

+
1

2

@2V

@S2

�
(S + ÆS)(1 + sign(ÆH))(1��)

�
1 + �(1� �)ÆH +

1

2
�2(1� �)2ÆH2

�
� S

�2

: (65)

The leading order term in the brackets in equation (65) is

S(1 + sign(ÆH))(1��) � S = O(1);

thus at least one order of magnitude larger than the other terms, which we thus initially choose to

ignore. Also, the rehedging quantity to leading order is

ÆH = Æ

�
@V

@S

�
=

@2V

@S2
ÆS: (66)

If we conjecture that
@2V

@S2
� O(Æt);

then ÆH as a coeÆcient becomes negligible and substitution into (65) results in

�� + Æ �� = V � S
@V

@S
+
@V

@t
Æt+

1

2

@2V

@S2

�
S(1 + sign(ÆH))(1��) � S

�2
: (67)

Now the right-hand side of (60), i.e. the cash portion, after asset price di�usion and rehedging

changes to
�� + Æ �� = (1 + rÆt)(V �HS)� ÆH(S + ÆS)(1 + sign(ÆH))e�ÆH ; (68)

where again we choose to ignore the term multiplied by ÆH , so that

�� + Æ �� = (1 + rÆt)(V �HS): (69)

Now, because (67) still has a random term due to ÆS we need to take expectations. By noting that

the drift terms of the Brownian Motion are of a lower order, we do not need to worry about the

probability measure and thus to leading order

E

"�
1 + sign

�
@2V

@S2
ÆS

�


�(1��)
#

=

Z 1

0

�
1 + sign

�
@2V

@S2
ÆS

�


�(1��)

�(S)dS (70)

=
1

2

�
(1 + )(1��) + (1� )(1��)

�
; (71)

where �(S) is the log-normal density. Thus equating the expectations of (67) and (68) and substi-

tuting (71) yields the required result (26) of theorem 3.1. It can be checked that @2V=@S2 turns out

to be O(
p
Æt exp(�1=pÆt)).

But now if � = 1 the only term remaining in the brackets of equation (65) is ÆS, so that the new

left-hand side to leading order Gamma is

�� + d�� = V � S
@V

@S
+

�
@V

@t
� 1

2
�2S2 @

2V

@S2

�
Æt (72)
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On the right-hand side however, if we allow for a second-order Gamma term we obtain

�� + Æ �� = (1 + rÆt)(V �HS)� 

����@2V@S2
ÆS

���� ; (73)

by observing that

sign

�
@2V

@S2
ÆS

�
@2V

@S2
ÆS =

����@2V@S2
ÆS

���� :
Taking expectations of (73) and equating it to (83), yields the required result (28) of corollary 3.1,

noting that

E[jÆSj] =
r
2Æt

�
�S

and also now
@2V

@S2
= O

�
Æt

1
4 exp

�
�Æt� 1

4

��
:

Finally if  = 0 then we can take the continuous time limit, so that Æt! dt. Then the left-hand

side keeps all the terms with � and we obtain

�� + d�� = V � S
@V

@S
� S

@2V

@S2
dS +

 
@V

@t
� 1

2
�2S2 @

2V

@S2
+
1

2
�2(1� �)2�2S4

�
@2V

@S2

�3
!
dt: (74)

Now the right-hand side of (60), i.e. the cash portion, after asset price di�usion and rehedging

changes to
�� + d�� = (1 + rdt)(V �HS)� dH(S + dS)e�dH :

Substituting (63), (66) and expanding the exponential term in a Taylor series yields

�� + d�� = (1 + rdt)

�
V � S

@V

@S

�
� S

@2V

@S2
dS � �2S2 @

2V

@S2
dt� ��2S3

�
@2V

@S2

�2

dt: (75)

Finally, equating (74) and (75), after rearrangement, gives the desired result (30) of theorem 3.2.

2. If, instead, we assume that we hold an amount H which does not, yet, represent the correct

hedge quantity, but is close, then we obtain the same result. We demonstrate it only for the case

where  = 0, but therefore in more detail. By the standard hedged portfolio argument, we hold

� = V (S; t;H)�HS = ĤB; (76)

Since, as assumed, we still need to rehedge at time t, the newly balanced �� is composed of

�� = V (S; t;H + dH)� (H + dH)Se�(1��)dH : (77)

Subsequently, the fundamental risky asset price will change by dS. Hence (77) evolves into

�� + d�� = V (S + dS; t+ dt;H + dH)� (H + dH)(S + dS)e�(1��)dH : (78)

Therefore, applying (62) to (78) and invoking Itô's formula gives:

�� + d�� = V

�
(S + dS)e�(1��)dH ; t+ dt;H

�
� (H + dH)(S + dS)e�(1��)dH

= V +
@V

@t
dt+

@V

@S

�
(S + dS)e�(1��)dH � S

�
+
1

2

@2V

@S2

�
(S + dS)e�(1��)dH � S

�2
� (H + dH)(S + dS)e�(1��)dH : (79)
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It becomes apparent that by choosing the rebalancing quantity as

dH =
@V

@S
�H (80)

results in

�� + d�� = V � S
@V

@S
+
@V

@t
dt+

1

2

@2V

@S2

�
(S2 + 2SdS + �2S2dt)e2�(1��)(

@V
@S

�H)

�2(S2 + SdS)e�(1��)(
@V
@S

�Ht) + S2
�
: (81)

If we now assume that the trading process started at a time t0 < t, then

@V

@S
�H � d

�
@V

@S

�
� @2V

@S2
dS� = O(

p
dt); (82)

where dS� is the continuous-time equivalent of the di�usion at the preceding timestep. Substituting

(82) as well as (64) for c = 1 and c = 2 into (81), noting that due to the independence of the

increments of Brownian motion

dSdS� = 0;

after rearrangement results in

�� + d�� = V � S
@V

@S
+

 
@V

@t
+
1

2
�2S2 @

2V

@S2
+
1

2
�2(1� �)2�2S4

�
@2V

@S2

�3
!
dt: (83)

As the change in the contract and stock portfolio turns out to be entirely risk-free, it must be equal

to the predictable change in the cash, i.e. the right-hand side of (76). Subtracting transaction costs

from the latter the new cash position is

(Ĥ + dĤ)B = V (S; t;H)�HS � dHSe�dH ;

which after the time-interval dt changes to

(Ĥ + dĤ)(B + dB) = (1 + rdt)V (S; t;H)�HS � dHSe�dH :

Expanding the transaction cost term in a Taylor series, substituting (82) and rearranging, we arrive

at

(Ĥ + dĤ)(B + dB)

= (1 + rdt)

 
V �HS �

�
@V

@S
�H

�
S

 
1 + �

�
@V

@S
�H

�
+
1

2
�2
�
@V

@S
�H

�2
!!

= (1 + rdt)

 
V � S

@V

@S
� �S

�
@V

@S
�H

�2

+
1

2
�2S

�
@V

@S
�H

�3
!

= V � S
@V

@S
� ��2S3

�
@2V

@S2

�2

dt+ r

�
V � S

@V

@S

�
dt: (84)

Thus equating (83) and (84), after rearrangement, leads to the governing PDE (30) for the contract

value V and completes the proof of theorem 3.2.�
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