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This paper orders option prices under various well known martingale
measures in an incomplete stochastic volatility model. The central result
is a comparison theorem which proves convex option prices are decreasing
in the market price of volatility risk, the parameter governing the choice
of pricing measure. The theorem is applied to order option prices under
the minimal martingale, q-optimal and minimal entropy measures. This
ordering depends on the mean variance tradeoff process whilst the specifics
of the volatility dynamics are not important. We illustrate our results by
analyzing the Hull and White [15], Heston [13] and Stein and Stein [26]
models.
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1 Introduction

Despite the growing number of papers on various approaches to option pricing
under stochastic volatility, there are very few concerning comparisons between
the many approaches. The aim of this paper is to order option prices under
different well known martingale measures in an incomplete stochastic volatility
model. We prove a general comparison theorem which says option prices are
decreasing in the market price of volatility risk, the parameter which governs
the choice of pricing measure. Furthermore, we can identify this parameter un-
der the minimal martingale measure, the q-optimal measure and the minimal
entropy measure and apply the general result in these cases to obtain an or-
dering of the option prices under the alternative choices of martingale measure.
Our ordering results hold for stochastic volatility models where the correlation
between the asset and volatility is zero. The option price results are illustrated
by examples using the popular stochastic volatility models of Hull and White
[15], Heston [13] and Stein and Stein [26].
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Our results imply that the ordering of option prices under the minimal mar-
tingale measure, entropy and q-optimal measures hinges on the mean variance
tradeoff process. If this is deterministic, then we recover the well known results
of Schweizer [22], Pham et al [18] and Schweizer [23] that option prices under
variance optimal and minimal entropy are the same as those under the minimal
martingale measure. Such models are known in the literature as ‘almost com-
plete’. However, if this special case does not hold, then the ordering of option
prices depends on whether the mean variance tradeoff process is increasing or
decreasing in volatility. This is simple to establish in popular models and is
a surprisingly straightforward criteria for ordering option prices. It seems the
specific process for the volatility itself does not matter for the ordering. Pre-
sumably this feature arises from the assumption of zero correlation between the
stock and volatility process.

As an interesting aside, consider the dependence of the market price of
volatility risk under the q-optimal measure on the parameter q. We show this
relationship depends on the mean variance tradeoff process. Combining this
with the fact that q ↓ 1 gives the minimal entropy market price of volatility
risk, enables us to compare option prices under the q-optimal and minimal
entropy measures.

Although there are many papers on the topic of stochastic volatility, there
are not many which compare different pricing approaches. An exception to
this is the work of Heath et al [10]. They study quadratic approaches of local
risk minimization and mean-variance hedging and make numerical comparisons
between option prices and hedging strategies for models with zero correlation.
We discuss their results in a later section. The distinction between their paper
and this work is that we concentrate on obtaining option price comparisons
analytically.

The current paper can be viewed as contributing results on the various ap-
proaches to pricing in incomplete markets. Henderson and Hobson [12] examine
a similar question for jump diffusion models and order prices based on the jump
intensity. Earlier papers by El Karoui et al [4] and others prove convex option
prices are ordered in volatility for diffusion (or level dependent volatility) mod-
els and some extensions to path dependent payoffs are considered in Henderson
[11].

Stochastic volatility models are widely used to overcome some of the defi-
ciencies of the Black Scholes framework. Excess kurtosis in financial time series,
leverage effects, and the smiles and skew patterns in implied volatilities all con-
tradict the assumption of constant volatility. The recent paper of Belledin and
Schlag [1] tests various stochastic volatility models empirically, and finds these
models superior in terms of pricing performance to the Black Scholes model.

Although models including those of Heston [13], Schöbel and Zhu [21] and
Scott [24] allow for ‘closed form’ solutions for option prices via inverse Fourier
transforms, these calculations are usually done under the assumption of zero
market price of risk, and hence implicitly use the minimal martingale measure.
In certain special cases discussed earlier, the option prices under various mea-
sures will coincide with the price under the minimal martingale measure, and
hence its use is justified. However, this situation is rare, and is not the case
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under most of the original specifications of the models. This simplification to
the minimal martingale measure does mean that the incorporation of non-zero
correlation is relatively straightforward.

Since stochastic volatility models are incomplete, the direction in mathemat-
ical finance has been to use various measures for pricing, see Biagini et al [2],
Grandits and Rheinländer [9], Laurent and Pham [17], Heath et al [10], Pham
et al [18] in the zero correlation framework and Rheinländer [19] and Hobson
[14] with non-zero correlation. The drawback to incorporating a market price
of risk is that it is more difficult to calculate explicit forms for the change of
measure, particularly for non-zero correlation, although some progress has been
made by the last two papers in this area.

The remainder of the paper is structured as follows. Section 2 outlines the
form of the stochastic volatility models considered in the paper. The following
section describes the three pricing approaches to be considered: minimal mar-
tingale measure, q-optimal measure and minimal entropy measure and charac-
terizes their market price of volatility risk processes. Section 4 states and proves
the main result of the paper, valid for models with correlation zero, relating
option price ordering to ordering on the market price of risk. Comparisons of
the various market prices of risk are presented in Section 5, including a proof
of the result stating the relationship between the q-optimal market price of risk
and parameter q itself. These comparisons are then combined with the machin-
ery of the main theorem of Section 4 to give the option price result. A further
section illustrates these results under three popular stochastic volatility models
and a conclusion follows.

2 Stochastic Volatility models

This section outlines the form of the stochastic volatility models considered in
the paper and will follow Frey [6]. We consider diffusion models of the form:

dSt

St
= vt (µ(t, vt)dt+ dBt) dvt = a(t, vt)dt+ b(t, vt)dWt (1)

where B,W are independent Brownian motions on some probability space
(Ω,F ,P). The filtration (Ft)t≥0 is the augmented filtration generated by the
Brownian motions. We assume the coefficients of the SDE in (1) satisfy suffi-
cient regularity conditions to ensure the existence of a unique strong solution
with the Strong Markov Property, see for example, Karatzas and Shreve [5.2B,
5.4C ][16].

In the model above, we assume zero interest rates for simplicity, so S rep-
resents the discounted price of the asset and v models the volatility of S, but
is not traded. By convention, we take b(t, vt) ≥ 0 throughout.

Most of the popular models in the literature fit into this class, including the
Stein and Stein [26], Heston [13] and Hull and White [15] models. We consider
only the correlation zero case in our analysis, which is a common restriction
made by papers on the topic of optimal martingale measures.

To preclude arbitrage, we assume S admits an equivalent local martingale
measure Q. Mild conditions on the coefficients guarantee existence of such a
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measure. If Q denotes the set of such measures then we assume Q 6= ∅ and we
must choose one of these possible measures to price with. Since v is not traded,
the market is incomplete.

A probability measure Q ∈ Q equivalent to P on FT is a local martingale
measure for S on FT if and only if there is a progressively measurable pro-
cess λ = (λt)0≤t≤T with

∫ T

0 λ2
sds < ∞ P a.s. such that the local martingale

(Zt)0≤t≤T with

Zt = exp

(

−
∫ t

0
µ(u, vu)dBu −

1

2

∫ t

0
µ(u, vu)

2du−
∫ t

0
λudWu −

1

2

∫ t

0
λ2
udu

)

(2)
satisfies EZT = 1 and ZT = dQ

dP on FT . Thus if Zt is of form (2), S is a Q-local
martingale, and if Z is a true P-martingale, Q is a probability measure.

Note the process Kt =
∫ t

0 µ(u, vu)
2du is often called the mean variance

tradeoff process in the literature.
Girsanov’s theorem gives two independent Q-Brownian motions BQ and WQ

defined by

BQ
t = Bt +

∫ t

0
µ(u, vu)du

and

WQ
t = Wt +

∫ t

0
λudu.

Under Q ∈ Q, S and v satisfy

dSt

St
= vtdB

Q
t dvt = [a(t, vt)− λt b(t, vt)]dt+ b(t, vt)dW

Q
t . (3)

Sin [25] gives conditions for the solution S in (3) to be a true martingale.
An option with payoff h(ST ) (we consider h convex) is priced in this model

by taking the expectation under any Q ∈ Q, ie

EQh(ST )

Selecting a particular Q is equivalent to choosing a market price of volatility
risk λt. We examine various choices in the next section of the paper.

3 Some Particular Choices of Martingale measure

and characterizing the market price of risk

In this paper we will compare option prices under three different measures
Q ∈ Q: the minimal martingale measure of Follmer and Schweizer [5] (also
known as local risk minimization), the q-optimal measure (of which the variance
optimal measure is a special case, see Laurent and Pham [17]) and the minimal
entropy measure, see Frittelli [7].

Each method has its advantages and disadvantages. The quadratic ap-
proaches of the minimal martingale measure and variance optimal measure are
tractable, but are symmetric criterion and treat profits and losses equivalently.
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Heath et al [10] point out that for some models, there is a critical time hori-
zon T0 such that the minimal martingale measure exists before this time, but
its density is not p-integrable after T0. A justification for using the minimal
entropy measure is its link to some asymptotic exponential utility indifference
price, see Frittelli [7].

This section outlines each of these measures and identifies the market price
of volatility risk λ in each case.

3.1 Minimal Martingale Measure

Under the minimal martingale measure, Q(m), S is a Q(m)-martingale and every
P martingale orthogonal to the martingale part of S remains a martingale under
Q(m). This results in the market price of risk, λ(m) being set to zero and WQ

equals W . Thus Q(m) is minimal in the sense that it preserves the martingale
structure as much as possible, whilst making S a martingale.

From (2) we get

Zt = exp

(

−
∫ t

0
µ(u, vu)dBu −

1

2

∫ t

0
µ(u, vu)

2du

)

.

For ZT be a true P-martingale, the Novikov condition E exp( 1
2KT ) < ∞ is

sufficient, where we recall KT =
∫ T

0 µ(u, vu)
2du. This is straightforward if KT

is deterministic. In other models, this may hold for a sufficiently short time
horizon, see Heath et al [10].

Under Q(m) the model in (3) becomes:

dSt

St
= vtdB

Q(m)

t dvt = a(t, vt)dt+ b(t, vt)dW
Q(m)

t (4)

with BQ(m)

t = Bt +
∫ t

0 µ(u, vu)du and WQ(m)

t = Wt.

3.2 The q-optimal measure

The q-optimal measure Q(q) (for q > 1) corresponds to the minimum over λ of

E
[(

dQ
dP

)q]

. (5)

The variance-optimal measure Q(2) corresponds to the choice q = 2, and is
the unique measure in those with square integrable density minimizing (5).
Existence is dealt with in Delbaen and Schachermayer [3], Gourieroux et al [8]
and Rheinländer and Schweizer [20] for continuous processes.

Hobson [14] characterizes the q-optimal measure Q(q) for models of the form
(1). The market price of risk for the q-optimal measure is given by

λ(q)(t, vt) = b(t, vt)g
′(t, vt) (6)

where g(u, vu) solves

q

2
µ(u, vu)

2 − 1

2
b(u, vu)

2(g′)2 + a(u, vu)g
′ +

1

2
b(u, vu)

2g′′ + ġ = 0 (7)
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with g(T, v) = 0. Using Feynman-Kac gives

g(t, v) = − logE
[

exp

(

−q

2

∫ T

t

µ(u, vu)
2du

)∣

∣

∣

∣

vt = v

]

(8)

where under the original measure P, dvt = a(t, vt)dt + b(t, vt)dWt. We assume
sufficient regularity conditions on the coefficients so Itô’s formula can be applied
to g, see for example Laurent and Pham [17]. For the special case q = 2, the
variance-optimal measure, this Feynman-Kac representation is given in Laurent
and Pham [17].

Under Q(q), the dynamics in (3) become

dSt

St
= vtdB

Q(q)

t dvt = [a(t, vt)− b(t, vt)
2 g′(t, vt)]dt+ b(t, vt)dW

Q(q)

t (9)

with BQ(q)

t = Bt +
∫ t

0 µ(u, vu)du and WQ(q)

t = Wt +
∫ t

0 b(u, vu)g
′(u, vu)du.

3.3 Minimal Entropy Measure

Our third choice of measure Q is the minimal relative entropy measure, see
Frittelli [7]. The relative entropy is defined by

IP(Q) = E
(

dQ
dP

ln
dQ
dP

)

= EQ
(

ln
dQ
dP

)

(10)

and the minimal entropy measure Q(E) is found by minimizing IP(Q) over the
space of equivalent martingale measures for S. Rheinländer [19] gives a nec-
essary and sufficient condition for the existence of an equivalent measure with
finite relative entropy. A result of Frittelli [7] then guarantees the minimal
entropy measure exists.

Recently, Rheinländer [19] outlined a method to find the minimal entropy
measure Q(E) in a stochastic volatility model. Hobson [14] extended and de-
veloped this approach to give an explicit characterization. The market price of
risk for the entropy measure is given as

λ(E)(t, vt) = b(t, vt)f
′(t, vt) (11)

where f(t, v) is given by

f(t, v) = − logE
[

exp

(

−1

2

∫ T

t

µ(u, vu)
2du

)∣

∣

∣

∣

vt = v

]

(12)

Remark 1 We can immediately see that f(t, v) can be obtained by setting q = 1
in (8) so λ(E)(t, vt) = limq↓1 λ

(q)(t, vt).

Under Q(E), the dynamics in (3) become

dSt

St
= vtdB

Q(E)

t dvt = [a(t, vt)− b(t, vt)
2f ′(t, vt)]dt+ b(t, vt)dW

Q(E)
(13)

with BQ(E)

t = Bt +
∫ t

0 µ(u, vu)du and WQ(E)

t = Wt +
∫ t

0 b(u, vu)f
′(u, vu)du.
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Remark 2 Before continuing, it is worth noting that in a continuous model
where KT , the mean variance tradeoff process, is deterministic it is well known
that the variance optimal and minimal entropy measures collapse to the min-
imal martingale measure. In the variance optimal case, this can be found in
Schweizer [22] and Pham et al [18]. We recover and extend this result later
for q-optimal measures, see Corollary 12. The entropy result can be found in
Schweizer [23]. Thus in this case, there is no need for comparison, as option
prices will be equal under the three regimes. However, if this condition does not
hold, there are no systematic methods to order the prices. This is the question
we address.

4 The General Option Price Ordering Result

We now prove our main general ordering result which says that convex option
prices are decreasing in the market price of risk parameter λ. This result is
proved via coupling. It is here that we need to assume zero correlation between
the asset price and volatility process.

Theorem 3 Consider stochastic volatility models of the form (1). Now con-
sider two market price of risk processes λ(t, v) and γ(t, v) corresponding to
measures Qλ and Qγ. The volatility processes under these two measures are
given by

dvλt = [a(t, vλt )− λ(t, vλt )b(t, v
λ
t )]dt+ b(t, vλt )dW

Qλ

t (14)

where WQλ
is a Qλ-Brownian motion and

dvγt = [a(t, vγt )− γ(t, vγt )b(t, v
γ
t )]dt+ b(t, vγt )dW

Qγ

t (15)

where WQγ
is a Qγ-Brownian motion. Suppose that in each case v is a non-

negative process. The stock price processes are given by
dSλt
Sλt

= vλt dB
Qλ

t and

dS
γ
t

S
γ
t

= vγt dB
Qγ

t where BQλ
and BQγ

are Qλ, Qγ-Brownian motions respectively.

Then given λ(t, v) ≥ γ(t, v) ∀t, v ∈ R+;

EQλ

h(Sλ
T ) ≤ EQγ

h(Sγ
T )

for convex h.

Remark 4 We obtain an ordering on the option prices under two alternative
stochastic volatility models, from an ordering on the market price of volatility
risk. Option prices are higher in the model with the lower market price of risk
parameter.

Remark 5 Note the Theorem as stated only holds for non-negative volatility
processes v.

Proof: We have measures Qλ and Qγ with volatility processes given by vλ

and vγ defined in (14) and (15). We define a new probability space Q̂ under
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which B̂, Ŵ are independent Brownian motions. Denote by Ê expectation under
measure Q̂.

Under Q̂ we may write

dv̂λt = [a(t, v̂λt )− λ(t, v̂λt )b(t, v̂
λ
t )]dt+ b(t, v̂λt )dŴt

where the law of v̂λ under Q̂ is the same as the law of vλ under Qλ. Also write
under Q̂

dv̂γt = [a(t, v̂γt )− γ(t, v̂γt )b(t, v̂
γ
t )]dt+ b(t, v̂γt )dŴt

and set v̂λ0 = v̂γ0 . Now introduce time changes Aλ
t =

∫ t

0 (v̂
λ
u)

2du and Aγ
t =

∫ t

0 (v̂
γ
u)2du.
We first show that there is an ordering Aλ

T ≤ Aγ
T . A sufficient condition for

this is v̂λt ≤ v̂γt , since v is non-negative. Given λ(t, v) ≥ γ(t, v) : ∀t, v ∈ R+,
a standard stochastic comparison theorem of Karatzas and Shreve [16, 5.2,
Proposition 2.18] can be applied here to give v̂λ

t ≤ v̂γt .
We now show that this ordering on the time changes is sufficient to prove the

ordering on option prices. Given a Q̂-Brownian motion B̂, define two Brownian
motions under Q̂ via

B̄λ
t =

∫ t

0

1

v̂λu
dB̂Aλu

and

B̄γ
t =

∫ t

0

1

v̂γu
dB̂A

γ
u
.

Now note that EQλ
h(Sλ

T ) = Êh(Ŝλ
T ) where Ŝλ solves

dŜλ
t

Ŝλ
t

= v̂λt dB̄
λ
t Ŝλ

0 = s0 (16)

and similarly for Ŝγ , driven by B̄γ . For the result of the theorem to hold, we
require Êh(Ŝλ

T ) ≤ Êh(Ŝγ
T ).

Using (16) and the definition of B̄λ we can rewrite Ŝλ
T as

Ŝλ
T = s0 exp

(
∫ T

0
v̂λudB̄

λ
u −

1

2

∫ T

0
(v̂λu)

2du

)

= s0 exp

(

B̂Aλ
T
− 1

2
Aλ

T

)

and Ŝγ
T as

Ŝγ
T = s0 exp

(

B̂A
γ
T
− 1

2
Aγ

T

)

.

By construction, both are functions of the same Q̂-Brownian motion B̂. Note
that given Aλ

T ≤ Aγ
T , Ê(Ŝγ

T |Aλ
T ) = Ŝλ

T . Then for convex h, Jensen’s inequality
gives

Ê[h(Ŝγ
T )|Aλ

T ] ≥ h(Ê(Ŝγ
T |Aλ

T )) = h(Ŝλ
T )

giving
Êh(Ŝγ

T ) = Ê[Ê[h(Ŝγ
T )|Aλ

T ]] ≥ Êh(Ŝλ
T )

as required. ¤
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5 Comparisons between the q-optimal, minimal en-

tropy and minimal martingale measures

In order to apply our main result Theorem 3 we need to establish relationships
between the market price of volatility risk process for each of the measures,
given in Section 3. This section will describe such orderings, which depend
crucially on the mean variance tradeoff process. We first prove a lemma which
we use in our results.

Lemma 6 Let X satisfy

dX = α(t,Xt)dt+ β(t,Xt)dZ
† (17)

where Z† is a P†-Brownian motion. Suppose (17) has a weak solution which
is unique in law and has the Strong Markov Property. Take two realizations
starting at X0 = x(1), X0 = x(2), with x(2) > x(1). For all functions m(f),
m : C[0, T ]→ R, if

(i) m(f) non-increasing in f , E‡m(X
(2)
t ) ≤ E‡m(X

(1)
t ),

(ii) m(f) non-decreasing in f , E‡m(X
(2)
t ) ≥ E‡m(X

(1)
t ), where the expectation

is taken with respect to measure P‡, possibly different from P†.

Proof: Let x(2) > x(1) and take two independent realizations of X starting

at x(1), x(2) and denoted X(1), X(2). Define τ = infu≥t{u : X
(2)
u = X

(1)
u } and

define

X̃t =

{

X
(1)
t t ≤ τ

X
(2)
t t > τ

So X
(2)
t ≥ X̃t by construction and X̃t

law
= X

(1)
t since the processes are strong

Markov. Then for all functions m(f) : C[0, T ] → R, m(f) non-increasing in

f , m(X
(2)
t ) ≤ m(X̃t) and E‡m(X

(2)
t ) ≤ E‡m(X̃t) = E‡m(X

(1)
t ) where P‡ can

be different to P†. A similar argument is followed if m is non-decreasing in f . ¤

We can now prove a new observation concerning the dependence of the q-
optimal measure on the parameter q. Taken together, these results enable us to
compare market prices of risks for various q and minimal entropy. Recall that
we are assuming g in (8) has sufficient continuity properties.

Theorem 7 Under stochastic volatility dynamics in (1), λ(q)(t, v) is
(i) non-decreasing in q if µ(t, v) is non-decreasing in v,
(ii) non-increasing in q if µ(t, v) is non-increasing in v

Proof: Since λ(q)(t, v) = b(t, v)g′(t, v), we only need consider the q depen-
dence of g′(t, v) = ∂g

∂v
(t, v). Consider

2
∂g

∂q
(t, vt) =

E[
∫ T

t
µ(u, vu)

2du e−
q
2

∫ T
t

µ(u,vu)2du]

E
[

exp(− q
2

∫ T

t
µ(u, vu)2du)

]
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It is equivalent to examine the dependence of ∂g
∂q

on v. To simplify notation,
fix t = 0 for the remainder of the proof.

The above expression may be rewritten using the mean variance tradeoff
process KT =

∫ T

0 µ(u, vu)
2du as

2
∂g

∂q
(0, v0) =

EKT e
− q

2
KT

Ee−
q
2
KT

. (18)

We now try to recharacterize KT using ideas from Hobson [14], see his equation
(17). Suppose we can find a process ξ, and finite constant c such that

q

2
KT =

∫ T

0
ξ(u, vu)dWu +

1

2

∫ T

0
ξ2(u, vu)du+ c. (19)

Now consider G(t, v) such that G(T, v) = 0. From Itô’s formula,

−G(0, v0) =

∫ T

0
dG(t, vt)

=

∫ T

0
G′b(t, vt)dW +

∫ T

0
G′a(t, vt)dt+

1

2

∫ T

0
G′′b(t, vt)

2dt+

∫ T

0
Ġdt

and rearranging gives

−
∫ T

0
G′b(t, vt)dW − c

= −c+

(

G(0, v0) +

∫ T

0
G′a(t, vt)dt+

1

2

∫ T

0
G′′b(t, vt)

2dt+

∫ T

0
Ġdt

)

.

If we take ξ(u, vu) = G′b(u, vu) then we have an equation of the form (19)
provided

G(0, v0)−c =

∫ T

0

[

−q

2
µ(t, vt)

2 +
1

2
(G′)2b(t, vt)

2 −G′a(t, vt)−
1

2
G′′b(t, vt)

2 − Ġ

]

dt.

Thus there is a solution to (19) if we can solve

q

2
µ(t, vt)

2 − 1

2
(G′)2b(t, vt)

2 +G′a(t, vt) +
1

2
G′′b(t, vt)

2 + Ġ = 0 (20)

and c = G(0, v0). Using the transformation F (t, v) = e−G(t,v), we obtain

q

2
µ(t, vt)

2F = a(t, vt)F
′ +

1

2
F ′′b(t, vt)

2 + Ḟ

which is equivalent to (20). By Feynman-Kac, this has solution

F (t, v) = E
[

exp

(

−q

2

∫ T

t

µ(u, vu)
2du

)
∣

∣

∣

∣

vt = v

]

so G(t, v) = g(t, v) where g is given in (8).
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Now returning to the analysis of (18). Using (19) we can write

e−
q
2
KT = e−

∫ T
0 ξ(u,vu)dW− 1

2

∫ T
0 ξ(u,vu)2due−c

which can be written as

e−
q
2
KT =

dP̃
dP

e−c (21)

for a new measure P̃ defined by

dP̃
dP

∣

∣

∣

∣

∣

Ft

= e−
∫ t
0 ξ(u,vu)dW− 1

2

∫ t
0 ξ(u,vu)2du. (22)

Note dP̃
dP < ec and thus the right hand side of (22) is a true P-martingale and P̃

is a probability measure.
By Girsanov’s theorem, under P̃, W̃t = Wt +

∫ t

0 ξ(u, vu)du is a Brownian
motion and v follows the SDE

dvt = [a(t, vt)− b(t, vt)ξ(t, vt)]dt+ b(t, vt)dW̃t.

From (21), the density can also be expressed in terms of KT and c as

dP̃
dP

=
e−

q
2
KT

e−c

giving e−c = Ee−
q
2
KT . This can also be obtained directly from (19).

Returning now to the expression we are interested in (18), we can use the
above expression for the new density to write

2
∂g

∂q
(0, v) = EKT

dP̃
dP

= ẼKT = Ẽ
∫ T

0
µ(u, v)2du.

At this point, we invoke Lemma 6 with m(f) =
∫ T

0 µ(u, f)2du. ¤

Corollary 8 If µ(t, v) does not depend on v, (so is both non-decreasing and
non-increasing) then λ(q) is independent of q.

The following result allows us to compare minimal entropy and q-optimal
market prices of risk to that of the minimal martingale measure.

Theorem 9 For a model of form (1)
(i) if µ(t, v) is non-decreasing in v, then g′ ≥ 0, f ′ ≥ 0 and λ(q) = b(t, v)g′ ≥ 0,
λ(E) = b(t, v)f ′ ≥ 0;
(ii) if µ(t, v) is non-increasing in v, then g′ ≤ 0, f ′ ≤ 0 and λ(q) = b(t, v)g′ ≤ 0,
λ(E) = b(t, v)f ′ ≤ 0.

Proof: (i) Apply Lemma 6 with m(f) = exp(− q
2

∫ T

t
µ(s, f)2ds) to show

with two starting points v(2) > v(1) for two processes v
(1)
t , v

(2)
t ,

g(t, v(2)) = − lnEm(v
(2)
t ) ≥ − lnEm(v

(1)
t ) = g(t, v(1))

so g′ ≥ 0 if µ(t, x) is non-decreasing in x. Since entropy is a limiting case of the
q-optimal, it follows that f ′ ≥ 0 also. (ii) is similar. ¤

11



Corollary 10 If µ(t, v) does not depend on v, then g′ = 0, f ′ = 0 and λ(q) = 0,
λ(E) = 0.

These results classify the market price of volatility risks depending on the
mean variance tradeoff process. The specific form for the process v follows has
not entered the results. Also note that for the these orderings on the market
prices of volatility risks, we do not need to assume the volatility process is
non-negative, this is only required for the conclusions on the option prices.

6 Option Price Comparison under minimal martin-

gale, q-optimal and minimal entropy measures

We can now combine the results of the previous section with Theorem 3 to
give some comparison results between option prices under the three methods
for choosing a measure.

Theorem 11 For convex payoffs and models of the form (1) with non-negative
volatility process v:
(i) if µ(t, v) is non-decreasing in v, the minimal martingale measure option
price is at least as large as q-optimal option prices (for q ≥ 1), and q-optimal
option prices are decreasing in q. In particular, option prices under the minimal
martingale measure are at least as large as option prices under minimal entropy,
which in turn are at least as large as option prices under the variance optimal
measure.
(ii) if µ(t, v) is non-increasing in v, all inequalities in (i) are reversed.

Proof: Direct application of Theorems 7 and 9 along with the main Theo-
rem 3. ¤

Corollary 12 If µ(t, v) does not depend on v, option prices under the minimal
martingale measure, minimal entropy measure, variance optimal measure and
q-optimal measure (for q > 1) are all equal.

This special case is a known result for the variance optimal and entropy
measures, see Remark 2. However, our result also extends this to prices under
the q-optimal measure.

7 Comparisons under specific models of Hull-White,

Heston and Stein and Stein

Our comparison results can be used to compare option prices under different
stochastic volatility models in the class (1). Popular models that we concentrate
on are the Hull and White model [15], Heston model [13] and the Stein and
Stein model [15].

Consider the Hull White and Heston models first. These have non-negative
volatility processes, and thus fit nicely into our setup. The Hull White model

12



is the simplest of the three models as it has constant coefficients. The Hes-
ton model is more complex, but despite this, we are able to do some explicit
calculations with this model, illustrating some of the theoretical results.

The Hull and White model [15] specifies the square of volatility follows
exponential Brownian motion. For constant b̄, δ, the stock S and volatility

√
Y

follow

dS

S
= µ(t,

√
Y )
√
Y dt+

√
Y dB

dY

Y
= b̄dt+ δdW

where B and W are independent Brownian motions. This is in the form (1) if
we write v =

√
Y so

dSt

St
= vt (µ(t, vt)dt+ dBt) dvt =

(

1

2
b̄− 1

8
δ2

)

vtdt+
1

2
δvtdWt. (23)

This model is equivalent to the choice a(t, vt) = (1
2 b̄− 1

8δ
2)vt and b(t, vt) =

1
2δvt

in (1). Now volatility v follows an exponential Brownian motion and hence
vt ≥ 0 ∀t. The original Hull White model [15] takes µ(t, vt) = µ/vt, for constant
µ. If µ(t, vt) = µ, then Remark 2 applies and option prices under the considered
measures are identical. Another possible choice would be µ(t, vt) = µvt.

In the Heston model [13] the squared volatility Z is given by a squared
Bessel process

dS

S
= µ(t,

√
Z)
√
Zdt+

√
ZdB

dZ = 2κ(m− Z)dt+ 2β
√
ZdW

with B and W independent Brownian motions. Of course, the original paper
of Heston [13] allows for non-zero correlation, but this is beyond the scope of
our current results. Writing Z = v2 and m̄ = m− β2/2κ we get

dSt

St
= vt (µ(t, vt)dt+ dBt) dvt = κ(m̄/vt − vt)dt+ βdWt. (24)

This model is equivalent to taking a(t, vt) = κ(m̄/vt − vt), b(t, vt) = β in (1).
We assume m > β2/κ to guarantee non-negative v. If we take µ(t, vt) = µvt,
this is equivalent to model (H2) in Heath et al [10]. The original paper of
Heston [13] takes constant drift on S, µ(t, vt) = µ/vt and if a linear drift were
used µ(t, vt) = µ, Remark 2 would apply and option prices under the relevant
measures would be equal. Each of these drift specifications will imply different
relationships between option prices under various measures.

We now consider a model that has received attention in the literature, taking
the Heston model with specification µ(t, vt) = µvt. We are first interested in
the q-optimal measure. It is straightforward to solve (7) in this example, the
solution is of the form g(t, vt) = v2

t h
(q)(t)/2 with h(q)(T ) = 0. This gives

λ(q)(t, v) = βvth
(q)(t)
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with

h(q)(t) =
Γ(q)

β2
tanh

(

Γ(q)(T − t) + tanh−1
( κ

Γ(q)

))

− κ

β2
(25)

and Γ(q) =
√

κ2 + µ2β2q. This is also given in Heath et al [10] for the special
case of q = 2.

The minimal entropy market price of risk can be found similarly, and is
given by

λ(E)(t, v) = βvth
(1)(t)

with

h(1)(t) =
Γ(1)

β2
tanh

(

Γ(1)(T − t) + tanh−1
( κ

Γ(1)

))

− κ

β2

and Γ(1) =
√

κ2 + µ2β2. We can differentiate λ(q)(t, v) with respect to q, and
we find it is positive. In particular, as promised by Theorem 7, λ(q) is non-
decreasing in q. A calculation also shows h(q) ≥ 0, confirming the result of
Theorem 9.

In general however, these calculations are difficult and must be repeated for
each specification of drift µ(t, v). For instance, they are not straightforward in
the Hull and White model. In contrast, Theorem 11 gives us general ordering
results.

Curiously, the ordering implied in this example (and by the general theorem)
seems at odds with the numerical result exhibited in the paper of Heath et al
[10]. They compare numerically put option prices under the minimal martingale
and variance optimal measures for the Heston model with the specification
µ(t, vt) = µvt. They find the variance optimal price to be the higher one. They
also claim this relationship is reversed for call options. Both of these results are
at odds with Theorem 11 and the computations in the Heston model above. Our
result says the option price under the minimal martingale measure is greater
than that under the variance optimal measure in this model and the relationship
depends only on the convexity of the payoff function, giving the same ordering
for puts and calls.

We now consider our third example, the model of Stein and Stein [26]. The
volatility follows an Ornstein Uhlenbeck process with

dS

S
= µ(t, σ)σdt+ σdB (26)

dσ = −κσdt+ βdW (27)

where κ, β are non-negative constants and B,W are independent Brownian
motions. This is a special case of the more general model which has a non-
zero mean reversion level. Note the volatility process σ can be negative. This
is an example of a model which does not satisfy the conditions we require for
our ordering results, however, we can rewrite this model so that we may apply
them, subject to some small changes to the proof of Theorem 3. Putting v = |σ|
gives the equivalent model

dSt

St
= vt (µ(t, vt)dt+ dBt) dvt = −κvtdt+ βdWt + dL (28)

14



where L is the local time of v at level zero. If µ(t, σ) = µσ, this is a special
case of model (S2) in Heath et al [10]. The original model of Stein and Stein
took a constant drift µ(t, σ) = µ/σ. We cannot deal with the remaining case
of a linear drift, as the transformation to a non-negative process does not allow
this. This is also the reason that we have restricted to a zero mean reversion
level.

Under any Q ∈ Q, these dynamics become

dSt

St
= vtdB

Q
t (29)

dvt = [−κvt − λ(t, vt)β]dt+ βdWQ
t + dL. (30)

Although these dynamics no longer correspond to the volatility dynamics nec-
essary for Theorem 3 (as there is an additional local time term) to obtain the
result, either a more general stochastic comparison theorem could be used,
or the square of the volatility processes could be compared to order the time
changes. We take the second approach and show the main result on option
price ordering still applies to the restricted Stein and Stein model in (28).

Corollary 13 Under the Stein and Stein model in (28) the result of Theorem
3 holds with v taking the role of the non-negative volatility process. Hence if
λ(t, v) ≥ γ(t, v) for all t, v, then

EQλ

h(Sλ
T ) ≤ EQγ

h(Sγ
T )

for convex h.

Proof: Under two market price of risk processes λ(t, v) and γ(t, v) corre-
sponding to two measures Qλ and Qγ , the volatility processes are

dvλt = [−κvλt − λ(t, vλt )β]dt+ βdWQλ

t + dLvλt

and
dvγt = [−κvγt − γ(t, vγt )β]dt+ βdWQγ

t + dLv
γ
t .

Define Q̂ as in Theorem 3, and we have

dv̂λt = (−κv̂λt − βλ(t, v̂λt ))dt+ βdŴt + dLv̂λt

and the corresponding process v̂γ . Introduce time changes Aλ
t =

∫ t

0 (v̂
λ
u)

2du and

Aγ
t =

∫ t

0 (v̂
γ
u)2du as before. As in Theorem 3, we show if λ(t, v) ≥ γ(t, v) ∀t, v ∈

R+, then Aλ
T ≤ Aγ

T . The time change ordering is then sufficient for the option
price ordering result, following the remainder of the proof of Theorem 3. This
time we show (v̂λ)2 ≤ (v̂γ)2 which is sufficient for the time change ordering.

Now

d(v̂λt )
2 = [β2 − 2κ(v̂λt )

2 − 2βλ(t, v̂λt )v̂
λ
t ]dt+ 2βv̂λt dŴ + 2v̂λt dL

v̂λt

where the final term is zero as local time grows only when v̂λ = 0. Again, there
is a corresponding process for (v̂λ)2.
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We can apply a standard comparison theorem as before to give the condi-
tion λ(t, v) ≥ γ(t, v) for all t and v ∈ R+. ¤

The option price ordering result of Theorem 11 now holds for the Stein and
Stein class of models provided the dynamics of v in (28) are Markov, necessary
for the coupling in Lemma 6. This is the case.

Consider the restricted Stein and Stein model (28) with µ(t, vt) = µvt. We
can solve (7) to give

λ(q)(t, v) = βvth
(q)(t)

with h(q)(t) defined in (25). Again, we can verify λ(q) is non-decreasing in q
and we know h(q) ≥ 0, confirming Theorems 7 and 9. Taking q = 1 gives the
minimal entropy market price of risk.

The original papers of Hull and White [15] and Stein and Stein [26] take
constant drifts on the stock price, µ(t, v) = µ/v. Their analysis essentially uses
the minimal martingale measure by assigning market price of volatility risk
zero and option prices are calculated under these assumptions. Under such a
specification, the results of Theorem 11 imply the minimal martingale measure
option price is the lowest of the option prices under different measures. Thus we
can obtain insights into the original models and the implications of the choice
of measure on option prices.

8 Conclusion

This paper has provided a comparison of option prices in a stochastic volatility
model under the minimal martingale measure, q-optimal measure and minimal
entropy. The results depend on a general theorem which proved option prices
are decreasing in the market price of volatility risk. In the case of ‘almost
complete’ models, we recover the well known result that option prices under
each of these measures are identical. In general, the ordering of option prices
under these martingale measures depends on the mean variance tradeoff, rather
than the specific dynamics of the volatility process.

The stochastic volatility models in this paper have been restricted to have
correlation of zero between the driving Brownian motions of the price and
volatility processes. This simplification has enabled us to obtain a general
ordering result on option prices and base conclusions solely on the mean vari-
ance tradeoff process. It is unlikely such a general result could be true once
correlation between the stock and volatility is incorporated. However, recently
some difficulties in identifying the market price of risk for these measures with
non-zero correlation were overcome, so there is some hope for some progress,
possibly on a case by case basis. A numerical comparison would also be possible
in the general case.

Of course this analysis has concentrated on the option prices, without dis-
cussion of the hedging strategies under each approach. This is left for future
research.
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[21] Schöbel R. and J. Zhu (1999): ”Stochastic Volatility with an Ornstein-
Uhlenbeck process: An extension”. European Finance Review, 3, 23-46.

[22] Schweizer M. (1995): ”On the minimal martingale measure and the
Follmer-Schweizer decomposition”. Stochastic Anal Appl, 13, 573-599.

[23] Schweizer M. (1999): ”A minimality property of the minimal martingale
measure”. Statistics and Probability Letters, 42, 27-31.

[24] Scott L.O. (1997): ”Pricing stock options in a jump diffusion model with
stochastic volatility and interest rates: Application of fourier inversion
methods.” Mathematical Finance, 7, 413-426.

[25] Sin C. (1996): ”Strictly local martingales and hedge ratios in stochastic
volatility models”. PhD thesis, Cornell University.

[26] Stein E.M. and J.C. Stein (1991): ”Stock price distributions with stochas-
tic volatility: an analytic approach”. Review of Financial Studies, 4, 727-
752.

18


