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Abstract

In the framework of general semimartingale models we provide
limit theorems for variational sums including the p-th power variation,
i.e. the sum of p-th absolute powers of increments of a process. This
gives new insight in the use of quadratic and realised power variation
as an estimate for the integrated volatility in finance. It also provides
a criterion to decide from high frequency data, whether a jump com-
ponent should be included in the model. Furthermore, results on the
asymptotic behaviour of integrals with respect to Lévy processes, esti-
mates for integrals with respect to Lévy measures and non-parametric
estimation for Lévy processes will be derived and viewed in the frame-
work of variational sums.

key words and phrases: limit theorem, Lévy process, model selection, power
variation, non-parametric estimation, quadratic variation, semimartingale

1 Introduction

The concept of power variation, i.e. examining
∑

i |Xti−Xti−1
|p as maxi |ti−

ti−1| → 0 and its implications for estimating integrated volatility became in-
creasingly popular in the last years, since on the one hand stochastic volatil-
ity models play an important role, and the link between the mathemati-
cal concept of quadratic variation and actual (i.e. integrated) volatility was
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made. Contributions include Barndorff-Nielsen and Shephard ( 2001a, 2001b,
2002a), Corsi, Zumbach, Muller, and Dacorogna (2001), Andersen, Boller-
slev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and Ebens
(2001), Andreou and Ghysels (2001), Bai, Russell, and Tiao (2000), Maheu
and McCurdy (2001), Areal and Taylor (2001), Galbraith and Zinde-Walsh
(2000), Bollerslev and Zhou (2001) and Bollerslev and Forsberg (2001). How-
ever, empirically it seemed to be more attractive to use absolute values of the
returns than squares, see e.g. Andersen and Bollerslev (1997, 1998), Taylor
(1986, Ch.2), Cao and Tsay (1992), Ding, Granger, and Engle (1993), West
and Cho (1995), Granger and Ding (1995), Jorion (1995), Shiryaev (1999, Ch.
IV) and Granger and Sin (1999). Barndorff-Nielsen and Shephard (2001a)
provided the theoretical background to this work in terms of limit theorems
for power variations when the underlying data is obtained from a continu-
ous semimartingale of the form α(t) +

∫ t
0
σ(s)dWs, where σ > 0 and α are

assumed to be stochastically independent of the Brownian motion W . They
also considered the same model when the Brownian motion is replaced by a
stable process, cf. Barndorff-Nielsen and Shephard (2002b).

We now examine the general framework of semimartingales, also allowing
jumps. Furthermore, we derive results for more general variational sums,
where the p-th power function is replaces by a function, decreasing suffi-
ciently fast to zero at the origin. This allows more flexibility in weighting
large increments, i.e. possible outliers of the data. Different from most cur-
rent financial literature, equally spaced data, which is hardly available, is not
required for our results. Some theoretical results may already be found in
the probability literature back in the sixties and seventies. Berman (1965),
Hudson and Tucker (1974) and Hudson and Mason (1976) studied variational
sums for additive processes, however only allowing either power functions or
bounded functions. Lepingle (1976) derived results for power variation of
semimartingales, when p > 1. Becker (1998) considered variational sums
of random functions. However, this research does not include norming se-
quences, as introduced in Barndorff-Nielsen and Shephard (2001a) to deal
with the continuous part when the power exponent is less than two. We ex-
tend the results in this direction, which has deep implications for modelling,
and also provide results allowing a more flexible class of functions in the
variational sums. Our results not only provide the theoretical background
for estimation based on high frequency data, but also to decide which model
is appropriate for the underlying data. Namely to decide, if the underly-
ing data is from a continuous semimartingale or if it has jumps, and when
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jumps are involved even to decide, how much activity the Lévy process should
have, e.g. finite activity as a compound Poisson process, bounded variation
as e.g. subordinators or infinite activity as e.g. the hyperbolic Lévy motion.
Hence we provide a different approach as in Ait-Sahalia (2002) to tackle the
question, telling from discrete data whether the underlying process is con-
tinuous. He used transitions functions of diffusions and crossing arguments
of trajectories.

Furthermore, our results give a different explanation, why empirically
stochastic volatility estimates perform better, when using absolute values of
returns than quadratic variation. Namely, when we assume a continuous
semimartingale model, but the data involves some jump component, then
the quadratic variation possesses an additional unexpected term coming from
the jumps. Hence we not only get an estimate for the integrated volatility,
but for the integrated volatility plus some extra term. Whereas when using
absolute values and the correct norming as for a continuous semimartingale
model, the continuous part is dominating the jumps and we get an estimate
of the realised volatility, even when our model assumption was not correct.
However, taking absolute values, only works when the jump component has
at least slightly less activity than a bounded variation process. If this fails to
hold, an alternative is to choose some exponent of the variation lying between
one and two, since for values strictly less than two, the continuous part is
still dominating and the jump part is negligible.

Since the calculation of power variation only involves high frequency data
in some finite time interval, the concept of checking for jump components and
analyzing the activity of jump components may also be used to observe how
modelling should change over periods of time and how the correlation is to
the economical situation. Hence power variation could give a flexible tool to
adjust underlying stochastic models.

Looking at variational sums of the form
∑
E(g(Xtn,i −Xtn,i−1

)) for Lévy
processes, where we sum up expectations, we can both infer the quantities of
the Lévy triplet in a non-parametric setting and infer integrals with respect
to Lévy processes. These asymptotic relations of integrals are e.g. needed
in the context of proving local asymptotic normality for discretely observed
Lévy processes, cf. Woerner (2001). We generalize results by Hudson and
Tucker (1974) and Rüschendorf and Woerner (2002). Taking a sampling
scheme where also the observed time interval tends to infinity, estimation
of of integrals with respect to the Lévy measure, including as a special case
non-parametric estimation of the jump measure and the drift in Lévy pro-
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cesses can be established in the context of variational sums, even without
expectations. For the latter one cf. Rubin and Tucker (1959) and Basawa
and Brockwell (1982).

The paper is organized as follows, first we give the basic notation and
definitions, then look at variational sums of general semimartingale models,
with a special emphasis on power variation, then consider asymptotics of
integrals with respect to Lévy processes and finally look at non-parametric
inference for Lévy processes.

2 Models and Notation

The concept of variational sums and power variation was introduced in the
context of studying the path behaviour of stochastic processes in the 1960ties.
Assume that we are given a stochastic process X on some finite time interval
[0, t]. Let n be a positive integer and denote by Sn = {0 = tn,0, tn,1, · · · , tn,n =
t} a partition of [0, t], such that max1≤k≤n{tn,k−tn,k−1} → 0 as n→∞. Now
the p-th power variation is defined to be∑

i

|Xtn,i −Xtn,i−1
|p = Vp(X,Sn).

Assume that g is a continuous non-negative function, then the variational
sum with respect to g is defined to be∑

i

g(|Xtn,i −Xtn,i−1
|) = Vg(X,Sn).

We are interested in the limit as n→∞. Well established are for convergence
in probability the cases for p = 1, where finiteness of the limit means that
the processes has bounded variation, and p = 2, called quadratic variation,
which is finite for all semimartingale processes. An extension of the concept
of power variation is to introduce an appropriate norming sequence, as it
was done in Barndorff-Nielsen and Shephard (2001a), which allows to find
non-trivial limits even in the cases where the non-normed power variation
limit would be zero or infinity.

Let us now introduce our models. We start with a general semimartingale
processes Xt, which is widely used in finance. For an overview both under
financial and theoretical aspects see Shiryaev (1999). A semimartingale is
a process right continuous with left limits of the form Xt = X0 + Mt + At,
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where X0 is finite-valued and F0-measurable, M is a local martingale and A
some process of finite variation.

In its canonical representation a semimartingale may be written as

Xt = X0 +B(h) +Xc + h ∗ (µ− ν) + (x− h(x)) ∗ µ,

or for short with the predictable characteristic triplet (B(h), < Xc >, ν),
where Xc denotes the continuous local martingale component, B(h) is pre-
dictable of bounded variation and h is a truncation function, behaving like x
around the origin. Furthermore, µ((0, t]×A;ω) =

∑
(IA(J(Xs)), 0 < s ≤ t),

where J(Xs) = Xs − Xs− and A ∈ B(IR − {0}) is a random measure, the
jump measure, and ν denotes its compensator, satisfying (x2 ∧ 1) ∗ ν ∈ Aloc,
i.e. the process (

∫
(0,t]×IR(x2 ∧ 1)dν)t≥0 is locally integrable. Semimartingale

models include the well-established continuous diffusions, jump-diffusions,
hence stochastic volatility models, as well as Lévy processes and most addi-
tive processes.

Additive processes Xt, in most cases a special form of a semimartingale,
are processes with independent increments, in general given by their charac-
teristic function

E[eiuXt ] = exp{iα(t)u− σ2(t)u2

2
+

∫
(eiux − 1− iuh(x))νt(dx)},

or for short by their characteristic triplet (α(t), σ2(t), νt). In contrast to the
general semimartingale all quantities are deterministic, α is continuous, σ2

continuous, non-negative, non-decreasing, and νt denotes the compensator
of the jump measure, satisfying

∫
(x2 ∧ 1)νt(dx) < ∞. Here h denotes a

truncation function, such that the integrability is insured, common functions
are h(x) = x/(1 + x2) or x1|x|≤1(x). Hence σ determines the Gaussian part
and ν the jump part, which are independent. When α is of bounded variation,
then the additive process is a semimartingale, which we shall assume in the
following.

Lévy processes are a special class of additive processes where we not only
have independent but also stationary increments. They are given by the
characteristic function via the Lévy-Khichin formula

E[eiuXt ] = exp{t(iαu− σ2u2

2
+

∫
(eiux − 1− iuh(x))ν(dx))},

where α denotes the drift, σ2 the Gaussian part and ν the Lévy measure.
Hence σ2 determines the continuous part and the Lévy measure the frequency
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and size of jumps. If
∫

(1∧|x|)ν(dx) <∞ the process has bounded variation,
if
∫
ν(dx) <∞ the process jumps only finitely many times in any finite time-

interval, called finite activity, it is a compound Poisson process. Furthermore
the support of ν determines the size and direction of jumps. A popular
example in finance are subordinators, where the the support of the Lévy
measure is restricted to the positive half line, hence the process does not
have negative jumps and the process is of bounded variation in addition. For
more details see Sato (1999).

A measure for the activity of the jump component of an additive process
is the Blumenthal-Getoor index β, defined by

β = inf{δ > 0 :

∫
(1 ∧ |x|δ)νt(dx) <∞}.

This index also determines, that for p > β the sum of the p-th power of
jumps will be finite. We can extend this index to general semimartingales
replacing finiteness by being a locally integrable process,

β = inf{δ > 0 : (|x|δ ∧ 1) ∗ ν ∈ Aloc}.

3 Variational Sums and Power Variation

Semimartingales build a large class of models including different directions of
more realistic modelling in finance by improving the major problems of the
geometric Brownian motion in the Black-Scholes framework. Namely both,
stochastic volatility models, which allow the spot rate to be random and
serial dependent, but the underlying log-price process still being continuous,
or pure jump stochastic differential equations, where the Brownian motion
is replaced by some purely discontinuous Lévy process, are semimartingales.
Both capture the empirical facts of excess kurtosis, skewness and fat tails.
But of course the question occurs if the appropriate model is a continuous or
a jump model. Ait-Sahalia (2002) provides a method based on the transition
density for diffusion processes to decide on the basis of discrete samples if
the underlying process is a continuous diffusion. We provide results based
on variational sums and power variation, which allow to decide, whether the
underlying process is purely continuous, purely discontinuous or a mixture,
when over a fixed time interval the number of high frequency increments
tends to infinity.
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The existing literature only provides results for power variation, when p >
1 and X is a general semimartingale (cf. Lepingle (1976)) or general p, when
X is an additive process (cf. Bermann (1965) and Hudson and Mason (1976)).
Variational sums, except for theses power functions, were only considered for
additive processes X and bounded functions g, which may be dominated by
a power function with p > 1 (cf. Hudson and Tucker (1974)).

We generalize these results to general semimartingales X and variational
sums, where g only has to decay sufficiently fast at the origin. This also
provides results for power variation for general semimartingales with p ≤ 1.
Furthermore, we derive results, under which conditions with an appropriate
chosen norming sequence, the limit of the continuous semimartingale compo-
nent dominates the jump component, which is a new approach to variational
sums.

Theorem 1 Let Xt be a semimartingale, Sn be a partition of [0, t], β be the
generalized Blumenthal-Getoor index and g a nonnegative continuous func-
tion, satisfying the condition, that there exist η > 0, C > 0 and γ > β such
that for |x| ≤ η, g(x) ≤ C|x|γ, then we obtain for n→∞

Vg(X,Sn)→
∑

(g(|J(Xs)|) : 0 < s ≤ t) (1)

a.s. under the conditions:
a) If γ > 2.
b) If 1 < γ ≤ 2, β = 1 and < Xc >t= 0.
c) If γ ≤ 1, < Xc >t= 0, B(h) + (x − h) ∗ ν = 0 and the jump times of Xt

are previsible.
And in probability under the conditions:
a’) If γ > 2.
b’) If 1 < γ ≤ 2 and < Xc >t= 0.
c’) If γ ≤ 1, < Xc >t= 0, B(h) + (x− h) ∗ ν = 0 and the jump times of Xt

are previsible.
d) Denote by Y the continuous part of X. Assume β < γ < 2 and X − Y
either satisfies b’) or c’). Moreover assume that there exist a continuous f ,
such that f−1 exists and is continuous, satisfying for c > 0

f(cVg(A+B, Sn)) ≤ f(cVg(A, Sn)) + f(cVg(B, Sn)) (2)

and

∆nVg(Y, Sn)
p→ C <∞, (3)
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then also

∆nVg(X,Sn)
p→ C, (4)

where ∆n denotes some norming sequence tending to zero as n→∞.

Proof. For a) to c) and a’) to c’) we proceed similarly as in Hudson and
Mason (1976) for power variation of additive processes. DenoteXnk = Xtn,k−
Xtn,k−1

, then we wish to show

lim
n→∞

∑
k

g(|Xnk|) =
∑

(g(|J(Xs)|) : 0 < s ≤ t).

The idea is to decompose the process in a process with jumps less than or
equal to ε and one only possessing finitely many jumps of size bigger than ε,
analyze both components and finally let epsilon tend to zero.

Let ε < η/4 and define Inj(ε) to be 1 if there are no jumps of absolute
value greater than ε in (tn,j−1, tn,j] and 0 otherwise. First we show that

lim
ε→0

lim sup
n→∞

∑
k

g(|Xnk|)Ink(ε) = 0 (5)

Let
Y ε
t = Xt −

∑
(J(Xs) : |J(Xs)| > ε, 0 < s ≤ t).

Since g is nonnegative and Xnk = Y ε
nk whenever Ink(ε) = 1, we have for every

n and k
g(|Xnk|)Ink(ε) ≤ g(|Y ε

nk|).

Furthermore, since Y ε
t has right and left limits and no jumps of absolute

value greater than ε, a Heine-Borel argument shows that supk |Y ε
nk| ≤ 2ε for

sufficiently large n. This implies that for δ ∈ (β, γ) we obtain

lim sup
n→∞

∑
k

g(|Y ε
nk|) ≤ C lim sup

n→∞

∑
k

|Y ε
nk|γ

≤ C(2ε)γ−δ lim sup
n→∞

∑
k

|Y ε
nk|δ

≤ C(2ε)γ−δ(
∑

(|J(Xs)|δ : |J(Xs)| < η, 0 < s ≤ t)

+ lim sup
n→∞

∑
k

|Y η
nk|

δ).
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The first sum is finite since δ > β. For the second we have to consider the
different cases. For a) and b) the conditions in Lepingle (1976, Thm. 1) are
satisfied and we obtain finiteness a.s., hence letting ε→ 0 yields (5) a.s.. For
a’) and b’) the conditions in Lepingle (1976, Thm. 2) are satisfied and we
obtain finiteness in probability. Hence letting ε→ 0 yields (5) in probability.
Under the conditions of c) and c’), namely 1 > δ > β > 0, < Xc >t= 0,
B(h) + (x − h) ∗ ν = 0 and the jump times are previsible we have finite-
ness a.s. by Lepingle (1976, Thm. 1), noting that since Y η

t has bounded
jumps it is a special semimartingale and the condition on B ensures that it is
a local martingale. Hence letting ε→ 0 yields (5) a.s. and also in probability.

The second part of the proof is to look at the component with big jumps.
Since g is continuous, we only have a finite number of jumps and the sample
paths are right continuous with left limits, we obtain a.s.

lim
n→∞

∑
k

g(|Xnk|)(1− Ink(ε)) =
∑

(g(|J(Xs)|) : |J(Xs)| > ε, 0 < s ≤ t).

Furthermore, we have that

lim
ε→0

lim
n→∞

∑
k

g(|Xnk|)(1− Ink(ε)) ≤ lim inf
n→∞

∑
k

g(|Xnk|).

Hence under the appropriate conditions for (5), we obtain

lim sup
n→∞

∑
k

g(|Xnk|) ≤ lim
ε→0

lim sup
n→∞

∑
k

g(|Xnk|)Ink(ε)

+ lim
ε→0

lim sup
n→∞

∑
k

g(|Xnk|)(1− Ink(ε))

≤ lim inf
n→∞

∑
k

g(|Xnk|)

This yields under the appropriate conditions for (5)

lim
n→∞

∑
k

g(|Xnk|) =
∑

(g(|J(Xs)|) : 0 < s ≤ t),

which is a) to c) and a’) to c’).
Finally we have to prove d). Let us decompose Xt = Yt + Zt where Yt

denotes the continuous part of Xt and Zt either satisfies b’) or c’), then using
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the subadditivity property of f we obtain

P (|f(∆nVg(X,Sn))− f(C)| > λ)

≤ P (|f(∆nVg(X,Sn))− f(∆nVg(Y, Sn))| > λ/2)

+P (|f(∆nVg(Y, Sn))− f(C)| > λ/2)

≤ P (|f(∆nVg(Z, Sn))| > λ/2)

+P (|f(∆nVg(Y, Sn))− f(C)| > λ/2)

≤ P (|f(∆nVg(Z, Sn))− f(∆n

∑
(g(|J(Xs)|) : 0 < s ≤ t))| > λ/4)

+P (f(∆n

∑
(g(|J(Xs)|) : 0 < s ≤ t)) > λ/4)

+P (|f(∆nVg(Y, Sn))− f(C)| > λ/2) < ε,

since by the assumptions ∆n

∑
(g(|J(Xs)|) : 0 < s ≤ t)→ 0, ∆nVg(Y, Sn)

p→
C and by b’) and c’) Vg(Z, Sn)

p→
∑

(g(|J(Xs)|) : 0 < s ≤ t). This implies
convergence in probability of ∆nVp(X,Sn) to C, as f and f−1 are continuous.
2

Remark.
i) Taking g(x) = xp, we obtain the special case of power variation. For p > 1
the results are already known from Lepingle (1976). However, p ≤ 1 and d)
are new results. In the framework of power variation the conditions in d)
simplify a lot. Namely, when p > 1 we have to take f(x) = x1/p, then (2)
follows by Minkowski’s inequality, when p ≤ 1 (2) is satisfied for f(x)=x.
ii) Note that p = 2 without any further restriction on the process is not
covered by our Theorem. But it is the quadratic variation result and well-
known, namely, if p = 2, then in probability

V2(X,Sn)
p→ [X]t
p→ [Xc]t +

∑
(|J(Xs)|2 : 0 < s ≤ t). (6)

iii) For the previous Theorem our assumptions are very general. We do not
have to impose any further structure on our model and the observations need
not be equidistant.
iv) For additive processes the condition of previsible jump times is always
satisfies, cf. Sato (1999, Lemma 2.9).
v) For subordinators, i.e. Lévy processes with only positive jumps, or Lévy
processes of bounded variation in their usual representation with h(x) = x,
the condition B(h) + (x− h) ∗ ν = 0 reduces to no drift.
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Let us now discuss the implications of this theorem for our applications.
For checking the presence and structure of jumps, considering power variation
is sufficient. Whereas the general concept of variational sums gives more
flexibility for weighting large values.

• If we are in a situation, where for p > 2

Vp(X,Sn)
p→ 0,

we know that our process is purely continuous. Furthermore, this im-
plies that in the framework of stochastic volatility models the quadratic
variation may be used as an estimate for the integrated volatility. How-
ever, in practice, when the distance between the observations does not
tend to zero, one might prefer to construct a function satisfying the
assumptions of Theorem 1 in that way that around zero it behaves like
x2 whereas it does not give much weight to large values of x.

• If we are in a situation, where for p > 2

Vp(X,Sn)
p→ L > 0,

we know that our process possesses a jump component. Furthermore,
this implies that the quadratic variation is not a good estimate for the
integrated volatility since it possesses an additional term coming from
the jump component, as we can see in (6).

• If we are in the situation that for some 1 < p < 2 and some appropriate
norming sequence ∆n

∆nVp(X,Sn)
p→ L,

with 0 < L <∞, we know that we have a continuous part and that for
this p, for a previously identified jump part with

∑
(|J(Xs)|p : 0 < s ≤

t) < ∞, the p-th power variation may be taken as an estimate for the
integrated volatility, since the jump component has no influence. Of
course, in practice when we do not know the structure of the jumps,
we do not know β. Hence in general values close to two are more likely
to satisfy the condition.

• If we are in the situation that for some 1 < p < 2, we have

Vp(X,Sn)
p→ L > 0,
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and for all norming sequences ∆n

∆nVp(X,Sn)
p→ 0,

we have a purely discontinuous process.

• If we are in the framework of Lévy processes without drift and diffusion
we can also examine the activity of the process, i.e. how the Lévy
measure of our process should behave around the origin. If we have a
purely discontinuous Lévy process, we obtain that the process must be
a compound Poisson process, when for all p > 0

Vp(X,Sn)
p→ L,

with 0 < L <∞. When the smallest number for which this is true, is
less than one, our process has bounded variation, hence a subordinator
may be appropriate for modelling, as it is e.g. suggested to include
leverage effects in Barndorff-Nielsen and Shephard (2001b).

Example (Stochastic volatility model)
Let us start with the assumption that our data is derived from a stochastic
volatility model as discussed in Barndorff-Nielsen and Shephard (2001a)

Xt = α(t) +

∫ t

0

σ(s)dWs,

where σ > 0, the spot volatility process, and α, the mean or risk premium,
are stochastically independent of the Brownian motion W . For simplicity we
assume that our partition of [0, t] is equally spaced with distance ∆n, ∆n → 0
as n→∞, and ∆nM = t. Furthermore, we have to assume some regularity
conditions. The volatility process τ = σ2 is (pathwise) locally bounded away
from zero and has the property as δ → 0

∆n
1/2

M∑
j=1

|τ p(ηj)− τ p(χj)|
p→ 0

for some p > 0 and for any χj and ηj such that

0 ≤ χ1 ≤ η1 ≤ ∆n ≤ χ2 ≤ η2 ≤ 2∆n ≤ · · · ≤ χj ≤ ηj ≤M∆n = t.
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The mean process α satisfies

lim sup
∆n→0

max
1≤j≤M

∆−1
n |α(j∆n)− α((j − 1)∆n)| <∞.

When we calculate power variations with p > 2 without norming sequence
and the limit is zero, our data indeed should be from a semimartingale with-
out jump component and we can use the limits and its implication on esti-
mation as provided in Barndorff-Nielsen and Shephard (2001a), namely for
p ≥ 1/2

µ−1
p ∆1−p/2

n Vp(X,S)
p→
∫ t

0

σp(s)ds, (7)

and

µ−1
p ∆

1−p/2
n Vp(X,S)−

∫ t
0
σp(s)ds

µ−1
p ∆

1−p/2
n

√
µ−1

2p vp
∫ t

0
σ2p(s)ds

D→ N(0, 1), (8)

where µp = E[|u|p] and vp = V ar[|u|p] with u ∼ N(0, 1). The second limit
can be made feasible by applying the first limit and Slutzky’s Lemma, which
gives.

µ−1
p ∆

1−p/2
n Vp(X,S)−

∫ t
0
σp(s)ds

µ−1
p ∆

1−p/2
n

√
µ−1

2p vpV2p(X,S)

D→ N(0, 1). (9)

If we get some positive limit for Vp(X,S), p > 2, this indicates that
our data does not match the continuous model and there should be some
jump part, e.g. as introduced in the leverage case by Barndorff-Nielsen and
Shephard (2001b). Nevertheless, in this case when the jumps are from a
subordinator, in the calculation of the power variation with 1 < p < 2 the
jump component does not effect the result of (7) which can be used as an
estimate for the integrated volatility. It is not clear if (8) is still valid, but
(9) would certainly not be valid since 2p > 2. If we want to take p ≤ 1, we
need a jump component which satisfies the conditions of Lemma 1 d) with
β < 1, e.g. a compound Poisson process.

Summarizing, to choose our exponent p we have to consider a trade of
between choosing p close to 2 or small. If p is close to 2 then it is more
likely that our conditions on the jumps are satisfied, but on the other hand
outliers a weighted quite strongly. Taking p ≤ 1 we are more restrictive to
our structure of jumps, we even need a stronger condition as being derived
from a subordinator, on the other hand outliers are less strongly weighted.

13



4 Variational Sums of Expectations for Lévy

Processes

In the previous section we examined variational sums for general semimartin-
gales, where the function of the increments considered was a continuous func-
tion with appropriate decay at the origin. Now we consider sums of expecta-
tions of some functions of the increments of Lévy processes. In this case not
only the behaviour around the origin is important, but also the behaviour as
x → ∞, namely to ensure the existence of the expectation. In Rüschendorf
and Woerner (2002) it was derived that a appropriate class of functions g
is the one that can be decomposed into a submultiplicative and subadditive
component, which means that g does not increase faster than xk exp{cx}.

Definition 1

S = {g(x) = h(x)k(x)|∃H,Ks.t. ∀x, y ∈ IR :

g(x+ y) = h(x+ y)k(x+ y) ≤ HK(h(x) + h(y))k(x)k(y)}.

Taking expectations instead of deterministic functions g in the variational
sums, we can infer all quantities of the Lévy triplet and besides obtain results
on the asymptotic behaviour of integrals with respect to Lévy processes when
the time or the distance between the observations tends to zero. These
integral occur when looking at parametric estimation, e.g. local asymptotic
normality and martingale estimating functions, cf. Woerner (2001), for Lévy
processes observed under the sampling scheme n∆n → ∞ and ∆n → 0, as
n→∞. Here ∆n denotes the distance of observations and n the number of
observations.

The following theorem is a generalization of theorems in Hudson and
Tucker (1974, Thm. 1) and Rüschendorf and Woerner (2002, Thm. 5), allow-
ing a wider range of functions and the Lévy process to possess a drift and
diffusion component as well.

Theorem 2 Let Xt be a Lévy process with Blumenthal-Getoor index β, ob-
served at the time points 0,∆n, 2∆n, · · · , n∆n = t, let P∆n be the distribution
of Xnk = Xk∆n −X(k−1)∆n and g a function satisfying
1)
∫
|x|≥1

g(x)ν(dx) <∞, |g(x)| ≤ g1 for g1 ∈ S,

2) There exists η, C > 0 and γ > β such that for all |x| ≤ η |g(x)| ≤ C|x|γ
and for all |x| > η g is continuously differentiable with |g′| ≤ g2, g2 ∈ S
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3) |
∫
g(x+ y)νε(dy)| ≤ g3, | ∂

∂x

∫
g(x+ y)νε(dy)| ≤ g4 for g3, g4 ∈ S

where νε = 1|x|>εν, then we obtain

lim
n→∞

1

t

∑
k

E(g(Xnk)) = lim
n→∞

1

∆n

∫
g(x)dP∆n(x) =

∫
g(x)ν(dx),

a) for a process with (α, σ2, ν) and γ > 2,
b) for a process with (α, 0, ν) and γ > 1 ≥ β,
c) for a process with (0, 0, ν) and γ > β.
d) For a process with (α, σ2, ν) and under the additional condition that there
exists η > 0 such that g(x) = x2 for |x| ≤ η, we obtain

lim
n→∞

1

t

∑
k

E(g(Xnk)) = lim
n→∞

1

∆n

∫
g(x)dP∆n(x) = σ2 +

∫
g(x)ν(dx).

e) For a process with (α, 0, ν) and under the additional condition that there
exists η > 0 such that g(x) = x for |x| ≤ η, we obtain

lim
n→∞

1

t

∑
k

E(g(Xnk)) = lim
n→∞

1

∆n

∫
g(x)dP∆n(x) = α +

∫
g(x)ν(dx).

Proof. Let us first show that the representation as variational sum and as
integral is the same.

1

t

∑
k

E(g(Xnk)) =
1

t

∑
k

∫
g(x)dP∆n(x) =

n

n∆n

∫
g(x)dP∆n(x).

Let ε < η, now we proceed similarly as in Theorem 1 splitting the process in a
component only possessing small jumps, with distribution of the increments
P ε

∆n
, and one possessing big jumps namely a compound Poisson process with

distribution of the increments P c,ε
∆n

. Then

P∆n(x) = exp{−∆n

∫
dνε(x)}(P ε

∆n
(x) +

∞∑
i=1

∆i
n

i!
νi∗ε ∗ P ε

∆n
(x)),

where νε = 1|x|>εν and P ε
∆n

denotes the distribution belonging to the jumps
less than or equal ε, i.e Lévy measure 1|x|≤εdν(x). Then

lim
n→∞

1

∆n

∫
g(x)dP∆n

= lim
ε→0

lim
n→∞

(
1

∆n

∫
g(x)dP ε

∆n
(x) +

1

∆n

∫
g(x)d(

∞∑
i=1

∆i
n

i!
νi∗ε ∗ P ε

∆n
)(x)).
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Under condition 3) we know from Rüschendorf and Woerner (2002, Thm.5)
that

lim
n→∞

1

∆n

∫
g(x)d(

∞∑
i=1

∆i
n

i!
νi∗ε ∗ P ε

∆n
)(x) =

∫
|x|>ε

g(x)ν(dx).

Under condition 1) we can take the limit and obtain

lim
ε→0

lim
n→∞

1

∆n

∫
g(x)d(

∞∑
i=1

∆i
n

i!
νi∗ε ∗ P ε

∆n
)(x) =

∫
g(x)ν(dx). (10)

Now we have to look at the small jumps. Let

Y ε
t = Xt −

∑
(J(Xs) : |J(Xs)| > ε, 0 < s ≤ t),

which is the process corresponding to P ε
t . First we show that under the

conditions of a), b) and c)

lim
ε→0

lim
n→∞

1

t

∑
k

E(g(Y ε
nk)) = lim

ε→0
lim
n→∞

1

∆n

∫
g(x)dP ε

∆n
(x) = 0 (11)

By 2) we obtain

1

t

∑
k

E(g(Y ε
nk)) =

1

∆n

∫
g(x)dP ε

∆n
(x)

≤ C

∆n

∫
|x|γdP ε

∆n
(x)

+
1

∆n

∫
|x|>η

g(x)dP ε
∆n

(x)− C

∆n

∫
|x|>η
|x|γdP ε

∆n
(x)

To prove that the second and third term tend to zero as n→∞ we can use
the same technique as in Rüschendorf and Woerner (2002), we give the proof
for the second term, but the third can be proved analogous, noting that |x|γ
satisfies 1) and 2). Integration by parts yields∫
|x|>η

g(x)dP ε
∆n

(x) =

∫
x>η

g′(x)

∫ ∞
x

dP ε
∆n

(y)dx−
∫
x<−η

g′(x)

∫ x

−∞
dP ε

∆n
(y)dx.

We then obtain by Rüschendorf and Woerner (2002, Lemma 2)∣∣∣∣ 1

∆n

∫
x>η

g′(x)

∫ ∞
x

dP ε
∆n

(y)dx

∣∣∣∣
16



≤ 1

∆n

∫
x>η

|g′(x)|(1− P ε
∆n

(x))dx

≤
∫
x>η

|g′(x)| exp{−∆nax0 + ∆nax0 log x0 + ax− ax log x}∆ax−1
n dx

≤ exp{−∆nax0 + ∆nax0 log x0}
∫
x>η

|g′(x)| exp{ax− ax log x}dx <∞

for ∆n ≤ 1, x/∆n ≥ x0, a < 1/ε and aη > 1. Hence by dominated conver-
gence we may interchange limit and integration and obtain

lim
n→∞

1

∆n

∫
x>η

g′(x)

∫ ∞
x

dP ε
∆n

(y)dx = 0.

The same holds for the other part, which yields

lim
n→∞

1

∆n

∫
|x|>η

g(x)dP ε
∆n

(x) = 0. (12)

Finally we have to show

lim
ε→0

lim
n→∞

C

∆n

∫
|x|γdP ε

∆n
(x) = 0.

Under b) this term tends to zero as n → ∞ by Hudson and Tucker (1974,
Thm.1). Under a) this term tends to zero by Rüschendorf and Woerner (2002,
Thm. 5) noting that |x|γ for γ > 2 satisfies the condition of possessing a
derivative belonging to S except of the origin, which is not important since
ν({0}) = 0 anyway. Under c) we can use Lemma 5.2 and 5.3 of Berman
(1965). The only point where he uses his condition γ > 1 is to show by
applying Hölder’s inequality that

lim
n→∞

1

∆n

∫
|x|>ε
|x|γdP ε

∆n
(x) = 0,

However,

lim
n→∞

1

∆n

∫
|x|>ε
|x|γdP ε

∆n
(x) =

lim
n→∞

1

∆n

∫
ε<|x|≤η

|x|γdP ε
∆n

(x) + lim
n→∞

1

∆n

∫
|x|>η
|x|γdP ε

∆n
(x),
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where the first part is zero by Rüschendorf and Woerner (2002, Lemma 6)
and the second is again of the form of (12).

For d) and e) we use the same procedure. Under the additional assump-
tion on g we obtain that

lim
n→∞

1

∆n

∫
g(x)dP ε

∆n
(x)

= lim
n→∞

1

∆n

(

∫
x2dP ε

∆n
(x) +

∫
|x|>η

g(x)dP ε
∆n

(x)−
∫
|x|>η

x2dP ε
∆n

(x)

= σ2 +

∫ ε

−ε
x2ν(dx)

or respectively

lim
n→∞

1

∆n

∫
g(x)dP ε

∆n
(x)

= lim
n→∞

1

∆n

(

∫
xdP ε

∆n
(x) +

∫
|x|>η

g(x)dP ε
∆n

(x)−
∫
|x|>η

xdP ε
∆n

(x)

= α +

∫ ε

−ε
(x− h(x))ν(dx),

where for the first part of the integrals we use the moment representation for
Lévy processes and for the other two parts the same argument as for (12).
Finally we obtain for d) and e)

lim
ε→0

lim
n→∞

1

∆n

∫
g(x)dP ε

∆n
(x) = σ2 (13)

lim
ε→0

lim
n→∞

1

∆n

∫
g(x)dP ε

∆n
(x) = α (14)

Piecing together (10), (11), (13) and (14) we obtain the desired result. 2

5 Non-parametric Estimation for Lévy Pro-

cesses

The previous theorem gives us some possibilities to infer the quantities of
the Lévy triplet in a non-parametric setting. To estimate σ2 we can take
gε(x) = x21|x|≤ε(x) in b) and let ε → 0. Analogously for α we can take
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gε(x) = x1|x|≤ε(x) in d) and let ε → 0. To infer the Lévy measure, we can
take g(x) = 1x≤y(x), for y < 0 or g(x) = 1x≥y(x), for y > 0 and obtain
ν(−∞, y] or ν[y,∞) respectively. However, these estimators all involve ex-
pectations of our data. Allowing our sampling scheme to change, namely
now looking at an infinite time interval, we can also give estimates for inte-
grals with respect to the Lévy measure, and as a special case for ν itself, not
involving expectations, but still lying in the framework of variational sums.
The heuristics is easy, simply replacing the expectation by its consistent es-
timator and using the LLN as the number of replications tends to infinity.
The following Theorem makes this idea rigorous.

Theorem 3 Under the same conditions as in Theorem 2 and furthermore
assuming that the same conditions also hold for |g|, we obtain

1

n∆n

n∑
k=1

g(Xnk)→
∫
g(x)ν(dx), (15)

under the assumptions a) to c),

1

n∆n

n∑
k=1

g(Xnk)→ σ2 +

∫
g(x)ν(dx),

under the assumption d) and

1

n∆n

n∑
k=1

g(Xnk)→ α +

∫
g(x)ν(dx),

under the assumption e). The convergence is in probability as n→∞, using
the sampling scheme ∆n → 0 and n∆n →∞ as n→∞.

Proof. The main part of the proof is using a LLN for triangular schemes and
checking the conditions by the results from Theorem 2. We restrict ourselves
to prove (15) since the other two parts can be shown analogously.

Using the LLN for triangular schemes (cf. Gnedenko and Kolmogorov
(1968, p.134)), we obtain

1

n∆n

n∑
k=1

g(Xnk)−
1

∆n

∫
|g(x)|<n∆n

g(x)dP∆n(x)
p→ 0
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as n→∞ under the conditions

n

∫
|x|≥n∆n

dF∆n(x) → 0 (16)

1

n∆2
n

∫
|x|<n∆n

x2dF∆n(x) → 0 (17)

where g(Xnk) ∼ F∆n . However, as it was shown in Feller (1966, p.232) in
the framework for iid random variables (16) already implies (17). Namely
integration by parts for (17) leads to

1

n∆2
n

∫
|x|<n∆n

x2dF∆n(x)

=
1

n∆2
n

[x2F∆n(x)]n∆n
−n∆n

− 2

n∆2
n

∫ n∆n

−n∆n

xF∆n(x)dx

= nF∆n(n∆n)− nF∆n(−n∆n)− 2

n∆2
n

∫ n∆n

0

xF∆n(x)dx

− 2

n∆2
n

∫ 0

−n∆n

xF∆n(x)dx

= nF∆n(n∆n)− nF∆n(−n∆n)− 2

n∆2
n

∫ n∆n

0

xF∆n(x)dx

+
2

n∆2
n

∫ n∆n

0

xF∆n(−x)dx

= −n
∫
|x|≥n∆n

dF∆n(x) +
2

n∆2
n

∫ n∆n

0

z

∫
|x|≥z

dF∆n(x)dz

≤ n

∫
|x|≥n∆n

dF∆n(x).

To establish (16) we can use

n

∫
|x|≥n∆n

dF∆n(x) ≤ 1

∆n

∫
|x|≥n∆n

|x|dF∆n(x)

=
1

∆n

∫
|g(x)|≥n∆n

|g(x)|dP∆n(x). (18)

Hence it remains to show that

lim
n→∞

1

∆n

∫
|g(x)|<n∆n

g(x)dP∆n(x) =

∫
g(x)ν(dx) (19)
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lim
n→∞

1

∆n

∫
|g(x)|≥n∆n

|g(x)|dP∆n(x) = 0. (20)

(19) can be show as in Theorem 2, noting that g(x)1|g(x)|<n∆n ≤ g(x). For
(20) we can use Theorem 2 and (19) for |g|, namely∫
|g(x)|ν(dx)

= lim
n→∞

1

∆n

∫
|g(x)|dP∆n(x)

= lim
n→∞

1

∆n

∫
|g(x)|≥n∆n

|g(x)|dP∆n(x) + lim
n→∞

1

∆n

∫
|g(x)|<n∆n

|g(x)|dP∆n(x)

=

∫
|g(x)|ν(dx) + lim

n→∞

1

∆n

∫
|g(x)|<n∆n

|g(x)|dP∆n(x)

≥
∫
|g(x)|ν(dx),

which yields (20). Hence the assumptions for the LLN are satisfied and we
obtain the desired result. 2

For the special case, where g is the indicator function, a similar result
was proved by Rubin and Tucker (1959) for general Lévy processes and for
subordinators by Basawa and Brockwell (1982) under slightly different con-
ditions.

To avoid the problem with the singularity of ν at the origin, Rubin and
Tucker (1959) used a different notation of their Lévy process. They consid-
ered the process given by the characteristic function

exp{itαu + t

∫
(eiux − 1− iux

1 + x2
)
1 + x2

x2
dG(x)},

where G is bounded and non-decreasing with G(−∞) = 0 and G(+0) −
G(−0) = σ2, determining the diffusion component. Then they obtained that

G∗∆n,n(u) =
1

n∆n

n∑
k=1

X2
nk

1 +X2
nk

1Xnk≤u

is strongly consistent as n→∞ for all continuity points of G.
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