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1 Introduction

Stochastic volatility models were developed as it became apparent that the

Black Scholes option pricing formula exhibits pricing biases across moneyness

and maturity. In particular, the Black Scholes formula underprices deep out-

of-the-money puts and calls. Further, empirical evidence suggests that stock

return distributions are negatively skewed with higher kurtosis than the lognor-

mal distibution, see Bates [2] and Bakshi et al [1]. The evidence for negative

correlation between asset and volatility is particularly strong in the equity mar-

kets, see Nandi [35] and Belledin and Schlag [3]. Stochastic volatility models

provide a potential explanation of both the skew and kurtosis effects.

In an incomplete market model, such as a stochastic volatility model, there

are no unique preference-independent prices for options. In recent years there

has been much research in the area of characterising pricing measures in incom-

plete markets. Of particular interest is the special case of option prices under

stochastic volatility models, since such models exhibit incompleteness without

the additional complication of jumps. This paper adds to this literature by pre-

senting a comparison of option prices under various choices of pricing measures,

or equivalently, various market prices of volatility risk.

The contribution of this article is threefold. First, in a general setting of an

autonomous stochastic volatility model with correlation, we prove an ordering

result that the prices of options with convex payoff structures are decreasing

in the market price of volatility risk. This result should be compared with,

and is an extension of, the results of Bergman et al [4], El Karoui et al [12],

Hobson [25] and Romano and Touzi [40] which show that the option price is

increasing in the initial value of volatility.

Second, we apply these results to the class of q-optimal pricing measures

which have received much attention recently in the mathematical finance litera-

ture. The minimal entropy martingale measure [17], the variance-optimal mar-

tingale measure [14] and the minimal reverse entropy martingale measure [43]

are all special cases of q-optimal measures. Our goal is to prove comparison

theorems between option prices under these various pricing measures and un-

der the minimal martingale measure [13]. The analysis utilises recent results of

Hobson [26] on characterising q-optimal measures in stochastic volatility mod-

els. For example we find that if the Sharpe ratio is deterministic then in our

jump-free setting the q-optimal measures all collapse to the minimal martingale
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measure. This class of models is often described as being ‘almost complete’, see

Schweizer [42], [43] and Pham et al [36]. More importantly, our paper analyses

option price orderings outside this special ‘almost complete’ case.

Third, we undertake a numerical investigation of our results in the Heston

model [24]. In this model we can write down explicit forms for many of the

quantities of interest (including the market price of volatility risk, and the

form of the q-optimal measure). These numerical results support the theory by

illustrating the fact that option prices are monotonic in the parameter q, and

also provide evidence of the magnitude of the price changes with respect to q.

Our theoretical results can be seen as an extension of the results in Hen-

derson [23]. Henderson studies the special case when there is no correlation

between the asset and volatility. In her case, stronger ordering results are ob-

tained, but only under the restrictive assumption of zero correlation. As we

remarked above this is an unrealistic model in many markets. Our techniques

also differ from Henderson [23]. We use partial differential equation (pde) argu-

ments which generalise more simply to non-zero correlation than the coupling

methods of Henderson [23].

Similarly our numerical results can be seen as extensions of the results of

Heath et al [22]. These authors compare option prices under the variance-

optimal (q = 2) and minimal martingale measure (q = 0) in the Heston model

with zero correlation. Our paper extends their results to non-zero correlation

and to arbitrary values of q.

The remainder of the paper is organised as follows. Section 2 begins by

defining the class of stochastic volatility models under consideration in the paper

and describes the form of the equivalent martingale measures. The general

option price ordering result is stated and proved in Section 3. In the following

section, we specialise to the class of q-optimal measures and summarise their

properties. Section 5 employs the general ordering result together with the

characterisation of the q-optimal measures to compare option prices in a general

stochastic volatility model. We can obtain stronger results by specialising to

the Heston [24] stochastic volatility model, and this is the subject of Section

6. Option prices and implied volatility smiles are generated under the Heston

model and their dependence on the choice of q explained. The final section

concludes the paper.
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2 Stochastic Volatility models

Let S be the price of the traded asset (we will assume a zero interest rate

so S is actually a discounted price) and let V be the stochastic volatility. In

principle, S and V could be vector valued quantities, but in this paper we will

only consider the univariate case. Under the real world measure P let S and V

solve:

dSt

St
= Vt (α(t, Vt)dt+ dBt) dVt = a(t, Vt)dt+ b(t, Vt)dWt, (1)

where B,W are correlated Brownian motions with a constant correlation coef-

ficient ρ. We assume ρ takes a value in (-1,1) and we write ρ̄ =
√

1− ρ2 so that

W can be represented via dWt = ρdBt + ρ̄dZt where Z is a Brownian motion

which is independent of B.

We assume V is a non-negative process, this covers the main models in the

literature including Heston [24] and Hull and White [27], [28]. By convention,

we take b(t, Vt) > 0 throughout.

The model (1) is not the most general stochastic volatility model. For

example it is possible to let α, a and b be functions of S as well as V (or even

to let them be non-Markovian) and to let ρ depend on t, S or V . However the

framework (1) does include most of the standard stochastic volatility models in

the literature and has the feature that the volatility process is an autonomous

diffusion. It is this feature that will allow us to prove many of our results.

The price process S in (1) has drift α(t, Vt)Vt and volatility Vt. Such a

parameterisation gives an interpretation of α(t, Vt) as the Sharpe ratio or eq-

uity risk premium. The variable α(t, Vt) will play an important role in our

comparisons.

Our analysis takes place on a probability space (Ω,F , {Ft}t≤T+ ,P) which

supports the pair of independent Brownian motions B and Z, and is such that

these processes generate the filtration (Ft). P is the real world probability

measure. (Note that in many option pricing papers the role of P is merely to

determine the set of null events. In our case, a different choice of real world

measure will have an impact on pricing.) The time T+ is a finite horizon time

and we are interested in events up to the fixed time T < T+. We need to

assume that there exists a unique non-explosive strong solution to (1). Unfor-

tunately, in the parameterisation (S, V ) the standard conditions for existence

and uniqueness of solutions to SDE’s (e.g Rogers and Williams [39, Theorem V

11.1] or Duffie [10, Appendix E]) do not apply. Instead to prove the necessary
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properties it is convenient to find a reparameterisation S = eX and V = Υ(Y )

for some pair (X,Y ) and a suitable function Υ for which the standard con-

ditions apply. Once the existence and uniqueness of (X,Y ) has been proved,

these properties will carry over to S and V . We continue to work with S and

V since these are the economically significant variables.

Since S is the only traded asset in the model, and V is not traded, it is not

possible under the model in (1) to perfectly replicate a derivative on the stock

price S. The market is incomplete, and there are many probability measures

under which the traded asset is a (local) martingale. Denote the set of such

measures by Q. Under the assumption of no arbitrage, mild conditions on the

coefficients guarantee that Q is non-empty.

We follow Frey [15] to characterise the family of equivalent martingale mea-

sures. A probability measure Q ∈ Q equivalent to P on FT is a local martingale

measure for S on FT if and only if there is a progressively measurable process

λ = (λt)0≤t≤T and with
∫ T

0 λ2sds < ∞ P a.s. such that the local martingale

(Mt)0≤t≤T with

Mt = exp

(∫ t

0

[
−α(u, Vu)dBu −

1

2
α(u, Vu)

2du− λudZu −
1

2
λ2udu

])
(2)

satisfies EMT = 1 and MT = dQ
dP on FT . If Mt is of form (2), S is a Q-local

martingale. The condition EMT = 1 guarantees that M is a true P-martingale

and that Q is a probability measure.

The space of equivalent local martingale measures is parameterised by the

process λt which governs the change of drift of Z. By Girsanov’s theorem, under

the change of measure MT we have two independent Q-Brownian motions BQ

and ZQ defined by

dBQ
t = dBt + α(t, Vt)dt dZQ

t = dZt + λtdt

and then

dSt

St
= VtdB

Q
t

dVt = [a(t, Vt)− ρα(t, Vt)b(t, Vt)− ρ̄λt b(t, Vt)]dt+ b(t, Vt)dW
Q (3)

where dWQ = ρdBQ + ρ̄dZQ.

Under Q the change of drift on Z is λt, the associated change of drift on W

is ρα(t, Vt) + ρ̄λt and the change of drift on V is (ρα(t, Vt) + ρ̄λt)b(t, Vt). The

quantity ρα(t, Vt) + ρ̄λt is often termed the ‘market price of volatility risk’ or
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volatility risk premium. We sometimes call λt the market price of Z risk, also

known in Lewis [32] as the hedging portfolio risk premium. Note that since ρ̄

is positive, then for a given model under P, the market price of volatility risk

is positively related to the market price of Z risk.

One simple example of a candidate equivalent local martingale measure is

the minimal martingale of Föllmer and Schweizer [13]. This is the measure

which corresponds to the choice λ ≡ 0. (For this candidate to truly be an

element of Q we need to verify that EMT = 1. A necessary condition is that
∫ T

0 α(u, Vu)
2du <∞ almost surely.) Intuitively, under the minimal martingale

measure the drifts of Brownian motions which correspond to traded assets are

modified to make those assets into martingales, but the drifts of Brownian

motions which are orthogonal to the traded assets are left unchanged.

We now turn to the question of option pricing within this model. A Euro-

pean option with payoff h(ST ) can be priced by fixing Q in Q and then taking

expectation under Q. The time-t option price C(t, St, Vt) becomes

C(t, St, Vt) = EQ
t h(ST )

where the superscript Q refers to the fact that we are taking expectations with

respect to Q and the subscript t refers to the fact that we are conditioning on

information at time t.

The advantages of fixing a measure Q and using it for pricing are that

the pricing functional is linear and that it agrees with the arbitrage free price

for those options which can be replicated. Given the characterisation above,

selecting a particular Q is equivalent to choosing a market price of volatility

risk, and the key to identifying the price is understanding the dynamics in (3).

3 The General Option Price Ordering Result

This section proves our main ordering result which says that convex option

prices are decreasing in the market price of Z risk parameter λt, or equivalently

decreasing in the market price of volatility risk. The intuition is that an increase

in either λt or the market price of volatility risk corresponds to a decrease in

the drift of the volatility under the pricing measure.

The first assumption that we make is to only consider changes of drift λt for

the Brownian motion Z which are Markov functions of the volatility process.

Thus we suppose λt = λ(t, Vt). We show in Section 4 that the market price
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of Z risk for the q-optimal measure takes this form. Secondly, throughout

this section and in subsequent sections we will use the Feynman-Kac theorem

(see Karatzas and Shreve [29, Section 5.7 B] or Duffie [10, Appendix E]) to

convert the solution of a Cauchy problem expressed via a pde into a stochastic

representation. To use this result we need to know that the solution exists, and

is unique (at least among the class of solutions satisfying a polynomial growth

condition). Again the standard conditions for the existence and uniqueness of

a solution (see Friedman [16, p147], Karatzas and Shreve [29] or Duffie [10])

will not be satisfied in our parameterisation. However, if S = eX and V =

Υ(Y ), and if the pair (X,Y ) satisfy appropriate regularity conditions, then

the stochastic representation will hold. The appropriate conditions include the

fact that the coefficients of the SDE are differentiable and satisfy appropriate

continuity, boundedness and growth conditions (above and below) and that the

payoff function h satisfies a growth condition. See for example the discussion

in Romano and Touzi [40] and especially the conditions (i) to (iv) on p401.

Note that these conditions are not satisfied by the Heston model [24] but in

that case it is possible to justify the stochastic representations directly without

recourse to the pde approach: see (6) and (7) below. We will also assume that

the coefficients of the diffusion processes are sufficiently smooth so that we can

differentiate the related infinitesimal generators.

We begin this section by writing down a pair of stochastic volatility models

under a pricing measure. (Note that we began the previous section by writing

down a single model under the real world dynamics. The difference will be that

under the pricing measure S is a local martingale.) Let the price process S and

volatility V satisfy

dSt

St
= VtdBt dVt = η(t, Vt)dt+ b(t, Vt)dW (4)

where, as before, dB dW = ρdt. Suppose that the drift on the volatility either

takes the form η(t, v) = η+(t, v) or η(t, v) = η−(t, v) and let E+ (respectively

E−) denote expectation with respect to the model with drift η+ (respectively

η−.) For a function h define J+(t, s, v) = E+[h(ST )|St = s, Vt = v], and

similarly let J−(t, s, v) = E−[h(ST )|St = s, Vt = v].

Theorem 1 Consider the pair (S, V ) as defined in (4) and a convex function

h. If η+(t, v) ≥ η−(t, v) for all t and v, then

J+(t, s, v) ≥ J−(t, s, v).
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Proof: The function J+ solves L+J+ = 0 subject to J+(T, s, v) = h(s) where

L+ =
1

2
s2v2

∂2

∂s2
+ ρsvb(t, v)

∂2

∂s∂v
+

b(t, v)2

2

∂2

∂v2
+ η+(t, v)

∂

∂v
+

∂

∂t
.

Similarly, under the alternative dynamics the function J− solves L−J− = 0

subject to J−(T, s, v) = h(s) where L− is obtained from L+ by replacing η+

with η−.

As a consequence, for any function g(t, s, v) we have L+g − L−g = (η+ −
η−)gv. Here the subscript denotes a partial derivative. In general, a subscript

t or u denotes a time parameter, other subscripts are partial derivatives, and

the partial derivative with respect to time is denoted by a dot.

Consider J̃ = J+ − J− so that J̃(T, s, v) = 0. Then

L−J̃ = L−(J+ − J−) = L+J+ − L−J− − (L+ − L−)J+ = −(η+ − η−)J+
v .

By the Feynman-Kac representation

J̃(t, s, v) = E−
[∫ T

t

(η+ − η−)J+
v (u, Su, Vu)du

∣∣∣∣St = s, Vt = v

]
.

In particular J̃ = J+ − J− ≥ 0 provided that J+
v ≥ 0. (Alternatively the

conclusion follows from an application of the maximum principle to the pde

formulation.)

It remains to show that the prices of options with convex payoffs are in-

creasing in the initial value of the volatility, or equivalently that J+
v ≥ 0. In

fact, as Roger Lee has pointed out to us this result is already to be found in

the literature in an interesting paper by Romano and Touzi [40]. However, for

completeness we sketch a proof of this result.

We drop the superscript + from both the operator L and the function J .

Differentiating LJ = 0 with respect to volatility gives

0 = (LJ)v = LvJ + LJv. (5)

If we write g = Jv (so that g(T, s, v) = 0) we get

0 = s2vJss + ρsb(t, v)gs + ρsvbv(t, v)gs + b(t, v)bv(t, v)gv + ηv(t, v)g + Lg.

Now let

L† = L+ ρsb(t, v)
∂

∂s
+ ρsvbv(t, v)

∂

∂s
+ b(t, v)bv(t, v)

∂

∂v
.
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Then 0 = s2vJss + ηv(t, v)g + L†g and by the Feynman-Kac representation,

g(t, St, Vt) = E†t
[∫ T

t

S2
wVwJss(w, Sw, Vw) exp

(∫ w

t

ηv(u, v)du

)
dw

]

where E† denotes expectation with respect to the measure under which the pair

(S, V ) has generator L†. We conclude that g = Jv ≥ 0 provided that Jss ≥ 0.

The final part of the proof is to show that Jss ≥ 0. The result that the option

price J inherits a convexity property from the payoff function is standard in

the literature, see Bergman et al [4], El Karoui et al [12], Hobson [25], Romano

and Touzi [40] for a variety of proofs. Again for completeness we sketch a short

proof.

Differentiating LJ = 0 twice with respect to s we get

0 = (LJ)ss = LssJ + 2LsJs + LJss
= v2Jss + L̃Jss

where L̃ = L+ 2sv2 ∂
∂s

+ 2ρvb(t, v) ∂
∂v
. By assumption, Jss(T, s, v) = hss(s) ≥ 0

(in the sense of distributions if necessary, eg. for a call option where hss(s) =

δ(s−K)). Again, by the Feynman-Kac representation,

Jss(t, St, Vt) = Ẽt

[
hss(ST ) exp

(
−
∫ T

t

V 2
u du

)]
≥ 0

where Ẽ is the expectation operator associated with the generator L̃. ¤

The style of proof given above can easily be adapted to give simple and

direct arguments concerning the ‘comparative statics of option pricing’, namely

the ordering of option prices as model parameters change. In the above proof we

showed that the convexity of option prices is inherited from the payoff function.

It is also easy to show that if the payoff function is increasing then the ‘delta’ of

the option is positive, and that if the payoff function is convex then the ‘theta’

of the option is positive. Similarly in a model with interest rates and dividends

it is possible to derive results on relationships between the option price and

the parameters governing these variables, subject to the imposition of suitable

conditions on the payoff function.

There are two main ways in which Theorem 1 can be interpreted and applied.

In both cases the theorem compares the prices of European-style options with

convex payoffs. The first interpretation is to take the theorem literally and to

compare two different models (with the same volatility structure but a different
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drift on the volatility process), where both models are specified under the pricing

measure. The second interpretation, which we will use extensively later in the

paper, is to consider a single model under a real-world measure P and to consider

this model under two alternative specifications of martingale measure Q+ and

Q−.
In particular suppose the stochastic volatility model is as given in (1),

and there are two candidate pricing measures defined via (M+, λ+,Q+) and

(M−, λ−,Q−) respectively. Then if we set η± = a−ραb−ρλ±b and if λ+(t, v) ≤
λ−(t, v) then we have η+ ≥ η−. It follows from Theorem 1 that convex option

prices are higher under the pricing measure Q+.

4 The Class of q-optimal pricing measures

For the remainder of this paper, we focus on a class of equivalent martingale

measures, namely the q-optimal measures. For a given q the q-optimal measure

is the martingale measure which is closest to the original real world measure

P in the sense of the qth moment; see Grandits and Krawczyk [19], Delbaen et

al [8], Grandits and Rheinländer [20] and Hobson [26].

In later sections we will compare option prices under stochastic volatility

models of the form (1) where option prices are computed under various q-

optimal measures. Note that in order to calculate the q-optimal measure it is

necessary to know the real world dynamics and probability measure P.
The fundamental idea is to choose a martingale measure Q as close as pos-

sible to P. For q ∈ R \ {0, 1} define

Hq(P,Q) =

{
E[ q

q−1(MT )
q] if Q¿ P

∞ otherwise,

and for q ∈ {0, 1} define

Hq(P,Q) =

{
E[(−1)1+qM q

T ln(MT )] if Q¿ P
∞ otherwise.

For q ∈ R the q-optimal measure is the measure Q(q) which minimises Hq(P,Q).

A number of well studied martingale measures are special cases in the q-

optimal class and, as such, this class provides a unifying framework. When

q = 1, Q(1) is the minimal relative entropy measure, see Frittelli [17]. There

are strong links between this pricing measure and pricing under exponential
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utility, see Delbaen et al [7]. Taking q = 0 gives the minimal reverse entropy

measure Q(0). (The extra log terms when q = 0 and q = 1 can be related to

log terms which arise when we integrate xq−2 twice.) The case q = 2 gives

the variance-optimal measure, which is related to mean-variance hedging, see

Föllmer and Sondermann [14] and Duffie and Richardson [11]. In a stochastic

volatility context, the variance optimal measure has been studied extensively

by Laurent and Pham [31], Biagini et al [5] and Heath et al [22].

The case q = 0 has some special features. In a continuous setting such

as ours (and under certain regularity assumptions) Schweizer [43] has shown

that the measure which minimises the reverse relative entropy is precisely

the (Föllmer-Schweizer) minimal martingale measure. This corresponds to the

choice λ ≡ 0 and implies that the non-hedgeable risk is not priced. We will

recover this result in Corollary 4 below.

Although the cases q = 0, 1, 2 have special properties, the criterion of choos-

ing Q to minimise Hq makes sense for all q in R. Further, for q 6= 0, 1 there are

links between pricing under the q-optimal measure and utility indifference pric-

ing under a power-law utility. The cases q < 1 correspond to strictly increasing,

concave utility functions defined on R+.

Existence of the q-optimal measure has been dealt with by a number of

authors. When q = 1, Rheinländer [37] gives a necessary and sufficient condition

for the existence of an equivalent measure with finite relative entropy. A result

of Frittelli [17] then guarantees the minimal entropy measure exists. When q =

2, existence is dealt with in Delbaen and Schachermayer [9], Gourieroux et al [18]

and Rheinländer and Schweizer [38], and more generally for q > 1 related results

can be found in Grandits and Rheinländer [20]. In the particular setting of

our stochastic volatility model, and given certain smoothness and boundedness

conditions on the parameters, Hobson [26], shows that if q(1 − qρ2) > 0 then

the q-optimal measure always exists. If, on the other hand q(1− qρ2) ≤ 0 then

it may be the case that the q-optimal measure ceases to exist beyond a certain

q-dependent time horizon.

To investigate the dependence of option prices on the choice of q-optimal

measure, we need to be able to characterise such measures. Motivated by

results in Rheinländer [37] for the minimal entropy case, Hobson [26] derives

a representation equation which characterises the q-optimal measure. See also

Laurent and Pham [31] and Mania et al [33] for related approaches. It remains

to solve the representation equation and to find the form of the market price of

11



risk associated with the q-optimal measure. In the variance-optimal case with

zero correlation, this was achieved by Laurent and Pham [31] and Biagini et

al [5], and in the minimal entropy case within the Stein-Stein volatility model

(with non-zero correlation) by Rheinländer [37]. Instead we follow Hobson [26]

who shows how to solve the q-optimal representation equation for models with

correlation, at least for models of the form (1). In fact, he only considers

q ≥ 1 but his representation holds equally for q < 1 so we are able to treat all

the special cases of the general theory within the q-optimal setting. Defining

R = 1 − qρ2, the identification of the q-optimal measure Q(q) is given via the

market price of Z risk,

λ(q)(t, Vt) = ρ̄b(t, Vt)fv(t, Vt) (6)

where f = 0 if q = 0 and otherwise

f(t, v) = − 1

R
log Ê

[
exp

(
−q

2
R

∫ T

t

α(u, Vu)
2du

)∣∣∣∣Vt = v

]
(7)

or

f(t, v) = Ê
[
q

2

∫ T

t

α(u, Vu)
2du

∣∣∣∣Vt = v

]
(8)

in the special case of R = 0. Under P̂, V has dynamics

dVt = (a(t, Vt)− qρα(t, Vt)b(t, Vt))dt+ b(t, Vt)dŴ

with P̂-Brownian motion Ŵ . If ρ = 0 or q = 0 then P̂ is just the real world

measure P.
By the Feynman-Kac theorem, f solves the representation equation

q

2
α(t, v)2 − qρb(t, v)α(t, v)fv −

R

2
b(t, v)2(fv)

2 + a(t, v)fv +
1

2
b(t, v)2fvv + ḟ = 0

(9)

with f(T, v) = 0.

Consider the representation (7). If qR > 0 (or equivalently, q > 0 and

ρ2 < 1
q
) then f is positive and finite, and the q-optimal measure is defined over

all time horizons. However, if qR ≤ 0, additional conditions are necessary to

ensure the change of drift λ(q) is finite. Typically the function f explodes at a

finite time-horizon, beyond which the q-optimal measure ceases to be defined.

Under Q(q), the dynamics in (3) become

dSt

St
= VtdB

Q(q)

t

dVt = [a(t, Vt)− ρα(t, Vt)b(t, Vt)− ρ̄2b(t, Vt)
2 fv(t, Vt)]dt+ b(t, Vt)dW

Q(q)

t
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with BQ(q)

t = Bt +
∫ t

0 α(u, Vu)du, ZQ(q)

t = Zt +
∫ t

0 ρ̄b(u, Vu)fv(u, Vu)du and

dWQ(q)
= ρdBQ(q)

+ ρ̄dZQ(q)
. These are the general model dynamics for the

class of q-optimal measures.

5 Comparisons between the q-optimal measures

The general ordering theorem says option prices are decreasing in λ, or equiva-

lently decreasing in the market price of volatility risk. Our task in this section

is to analyse λ(q) for the q-optimal class of measures and hence to compare

option prices. As we saw earlier, the q-optimal market price of Z risk may be

written as

λ(q)(t, Vt) = ρ̄b(t, Vt)fv(t, Vt)

where f is given in (7) or (8) and solves the pde (9).

We first investigate the sign of λ(q). If q = 0 then f ≡ 0 and λ(0) ≡ 0.

Otherwise, consider first the case R 6= 0. Under the transformation g = e−Rf ,

g is given by

g(t, v) = Ê exp

(
−q

2
R

∫ T

t

α(u, Vu)
2du

)
> 0,

see (7), and (9) becomes

−q

2
Rα(t, v)2g + (a(t, v)− qρb(t, v)α(t, v)) gv +

1

2
gvvb(t, v)

2 + ġ = 0 (10)

subject to g(T, v) = 1. Now gv = −Rgfv and we can examine the sign of fv via

an analysis of gv. The above pde can be written as

0 = L̂g − q

2
Rα(t, v)2g (11)

where

L̂ = (a(t, v)− qρα(t, v)b(t, v))
∂

∂v
+

1

2
b(t, v)2

∂2

∂v2
+

∂

∂t
.

Differentiating (11) with respect to v yields

0 =
[
L̂g −

(q

2
Rα(t, v)2

)
g
]

v

= L̂vg + L̂gv −
q

2
R(2gααv + α2gv)

=

(
(av − qρbαv − qραbv)

∂

∂v
+ bbv

∂2

∂v2

)
g + L̂gv −

q

2
R
(
2gααv + α2gv

)
.

Define

L‡ = L̂+ b(t, v)bv(t, v)
∂

∂v
.

13



Then gv(T, v) = 0 and

0 =
(
av − qρbαv − qραbv −

q

2
Rα2

)
gv + L‡gv − qRααvg.

By the Feynman-Kac representation,

gv(t, v) = −qRE‡
[∫ T

t

ααvg exp

(∫ s

t

(av − qρbαv − qραbv −
q

2
Rα2)du

)
ds

]

where under P‡, V has drift (a− qραb+ bbv). Now recall gv = −Rgfv so

fv =
q

g
E‡

[∫ T

t

ααvg exp

(∫ s

t

(av − qρbαv − qραbv −
q

2
Rα2)du

)
ds

]
.

Since g > 0 we have that

if qα(t, v)αv(t, v) > 0 then fv > 0;

if qα(t, v)αv(t, v) < 0 then fv < 0;

if qα(t, v)αv(t, v) = 0 then fv = 0.

It remains to consider the case R = 0. In that case (9) becomes

q

2
α2 − qρfvbα+ afv +

1

2
b2fvv + ḟ = 0,

subject to f(T, v) = 0. Differentiating this equation with respect to v and

applying the Feynman-Kac formula gives

fv = qE‡
[∫ T

t

α(t, v)αv(t, v) exp

(∫ s

t

(av − qρbαv − qραbv)du

)
ds

]

and the same conclusions. We have proved the following theorem.

Theorem 2 Under stochastic volatility dynamics in (1), and for q ∈ R
(i) if qα(t, v)2 is non-decreasing in v, then λ(q) ≥ 0;

(ii) if qα(t, v)2 is non-increasing in v, then λ(q) ≤ 0;

(iii) the inequalities on λ(q) are strict if qα(t, v)2 is strictly increasing or de-

creasing in v.

Combining this result with the general ordering of Theorem 1, and the fact

that λ(0) = 0 we can make the following conclusion on the ordering of q-optimal

option prices.

Corollary 3 If, for each t, qα(t, v)2 is increasing in v, then option prices un-

der the q-optimal measure are less than those under the minimal martingale

measure. Conversely, if qα(t, v)2 is decreasing in v, then option prices under

the q-optimal measure exceed those under the minimal martingale measure.

14



Corollary 4 If α is deterministic, then option prices under the q-optimal mea-

sure are all equal to the minimal martingale measure option price.

Remark 5 The restricted set of models where the Sharpe ratio α(t, Vt) is de-

terministic are ‘almost complete’ in the terminology of Pham et al [36] and

Laurent and Pham [31]. Corollary 4 generalises results of Pham et al [36] and

Schweizer [42], [43] to q-optimal measures.

In the light of Theorem 2 and Corollary 3 it is natural to make the following

conjecture:

Conjecture 6 Option prices under the q-optimal measure are decreasing (re-

spectively increasing) in q if α2 is increasing (respectively decreasing) in v.

This conjectures that whether option prices increase or decrease in q de-

pends on whether the (square of the) Sharpe ratio is increasing or decreasing

in volatility.

The remainder of this section is devoted to an investigation of this con-

jecture. As Henderson [23] shows (and as we show below) the conjecture is

true for models with zero correlation. (The proof in [23] is based on couplings

of stochastic processes.) The conjecture also holds for the special case of the

Heston model we consider in the next section.

We are interested in the effect of q on the market price of Z risk given in

(6) earlier as

λ(q)(t, Vt) = ρ̄fv(t, Vt)b(t, Vt).

The variable of interest is therefore fvq which we denote by k(t, Vt). Note that

k(T, v) = 0. It is sufficient to determine the sign of k. Differentiating the pde

for f given in (9) with respect to v and then q gives

k̇ +
1

2
b2kvv + kv(a+ bbv − qρbα−Rb2fv)

+ k(av −Rb2fvv − qρ(bα)v − 2Rbbvfv) = −
1

2
[(α− ρbfv)

2]v.

If we set ρ = 0 then the Feynman-Kac representation tells us that if (α2)v is

everywhere positive then k > 0. Conversely, if (α2)v < 0 then k < 0. However,

if ρ 6= 0, Feynman-Kac shows the sign of k depends on the sign of [(α−ρbfv)
2]v

which is not so easy to determine, since it depends on the unknown fv.

Although we cannot obtain a general result for the effect of q on λ(q) when

correlation is present, we can if we specialise to a particular model. In the next

section we consider the Heston [24] model.
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6 Option Price Comparisons under the Heston model

In this section, we are interested in comparing various q-optimal option prices

in the Heston [24] model. In this special case we can give explicit formulæ for

the market price of Z risk (and hence market price of volatility risk) associated

with the q-optimal measure. This allows us to analyse the effect of choice of q

on option prices.

Later in this section we illustrate these comparisons by solving the q-optimal

pricing pde for the Heston model numerically. The graphs reinforce the theo-

retical results and allow for analysis of implied volatility smiles generated by

q-optimal pricing for various q.

The Heston model [24] gives the squared volatility U as a squared Bessel

process under the real world probability measure P
dSt

St
= α(t,

√
Ut)

√
Utdt+

√
UtdBt,

dUt = 2κ(m− Ut)dt+ 2β
√

UtdWt

with B and W correlated Brownian motions. Writing U = V 2 and m̄ = m −
β2/2κ we get

dSt

St
= Vt (α(t, Vt)dt+ dBt) dVt = κ(m̄/Vt − Vt)dt+ βdWt. (12)

This model is equivalent to taking a(t, Vt) = κ(m̄/Vt − Vt) and b(t, Vt) = β in

our original model. We assume β, κ > 0 and m ≥ β2/κ, the latter to guarantee

that V does not hit zero. The existence and uniqueness of solutions to (12) is

covered in Sin [44]. Sin also provides a discussion of sufficient conditions for S

to be a true martingale under a local martingale measure element of Q.
The choice of the Sharpe ratio α(t, Vt) in the model will have a direct impact

on the form of the q-optimal measure and hence the ordering of q-optimal option

prices, via the function f in (7) or (8). Before discussing the appropriate choice

of α(t, Vt), we will describe the martingale measure used by Heston for pricing.

In the original Heston model [24] the Sharpe ratio term α(t, Vt) is of the form

α(t, Vt) = α−1/Vt. To obtain a model under the risk neutral measure Heston

adjusts the drift on the traded Brownian motion B so that S is a Q-martingale

and then proposes that the effect of the change of measure on the volatility

V is to adjust the drift by a term λHV . Thus under the pricing measure the

dynamics become

dSt

St
= VtdB

Q
t dVt = {κ(m̄/Vt − Vt)− λHVt}dt+ βdWQ

t . (13)
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In particular, although Heston makes the choice α(t, Vt) = α−1/Vt, his choice

of pricing measure makes this term disappear. Note that the market price of

volatility risk λHV/β is equivalent to a change of measure for which dWQ =

dW+(λHV/β)dt is a Q-martingale. In turn this corresponds to a change in drift

on the orthogonal martingale Z to make ZQ given by dZQ = dZ − 1
ρ̄
(ρα−1

V
−

λHV
β

)dt into a Q-martingale. (The Brownian motions B and W are correlated,

so although the switch to the pair (B,Z) is merely a reparameterisation, we

contend that it is more natural to consider the effect of a change of measure in

terms of the impact on the independent driving Brownian motions.)

Under the Heston change of drift,

dVt = κ∗
(
m̄∗

Vt
− Vt

)
dt+ βdWt

Q

where κ∗ = κ+λH, m̄∗ =
κm− 1

2
β2

κ+λH are risk adjusted parameters and WQ is a Q-

Brownian motion. Under this framework, Heston was able to obtain a pricing

formula via Fourier inversion techniques involving numerical integration of the

real part of a complex function. However, Heston’s choice of pricing measure

is essentially arbitrary and, in terms of its effect on the Brownian motion Z,

not very natural. Certainly it is not one of the q-optimal measures. The choice

does, however allow him to obtain a tractable method for pricing options.

Returning to the question of the specification of Sharpe ratio α(t, Vt) in

the real world model (12), there are several possibilities. We disregard a con-

stant Sharpe ratio (α(t, Vt) = α0) case since Corollary 4 implies option prices

under all q-optimal measure prices are equal in this case. Heston [24] takes

α(t, Vt) = α−1/Vt, although as described, this has no impact in his model on

option prices. The third choice of Sharpe ratio α(t, Vt) = α1Vt is a popular one

in the literature, and appears as (H2) in Heath et al [22], and as an example

in both Hobson [26] and Henderson [23]. If α1 > 0, this specification implies

a Sharpe ratio which is increasing with volatility, a feature which is backed up

empirically by Campbell and Cochrane [6]. In this section we will focus on the

specification of the Heston model with α(t, Vt) = α1Vt.

Hobson [26, Proposition 5.1] gives an explicit formula for the solution of (7)

and (8) (or equivalently (9)). In this case the solution to (9) is of the form

f(t, v) = v2F (T − t)/2 +G(T − t)

where F (0) = 0 = G(0) and F and G solve

Ḟ = qα2
1 − 2(κ+ qρβα1)F −Rβ2F 2, Ġ = κmF. (14)
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The differential equation for F can be solved explicitly on a case by case basis

depending on the signs of q and R. For example if q and R are both positive,

F (τ) =
C

A
tanh

(
ACτ + tanh−1

(
AB

C

))
−B

where the constants A,B and C are given by

A2 = Rβ2 B =
κ+ qρβα1

β2R
C2 = qα2

1 +
(κ+ qρβα1)

2

β2R
.

This solution is finite for all time. For other parameter values the function F

may explode.

We are interested in the market price of Z risk

λ(q)(t, V ) = ρ̄βVtF (T − t)

for the change of drift of V under the q-optimal measure. The dynamics of V

under Q(q) are

dVt = (κ(m̄/Vt − Vt)− ρβα1Vt − ρ̄2β2VtF (T − t))dt+ β(ρdBQ(q)

t + ρ̄dZQ(q)

t )

with dZQ(q)

t = dZt + ρ̄βVtF (T − t)dt. Note the dynamics under the q-optimal

measure are time-inhomogeneous.

We can now investigate the dependence of λ(q) on q under the Heston model.

Proposition 7 For the Heston model (12), with α(t, Vt) = α1Vt, the market

price of risk under the q-optimal class of pricing measures q ∈ R is increasing

in q.

Proof: To decide the sign of (λ(q))q it is enough to know the sign of fvq.

Further, since f(t, v) = v2F (T − t)/2+G(T − t) it is sufficient to know the sign

of H = Fq where F (0) = 0 and F solves (14). Differentiating (14) with respect

to q gives

Ḣ = (α2
1 − 2ρβα1F + ρ2β2F 2)− 2(κ+ qρβα1)H − 2Rβ2FH = θ +ΘH

where θ = (α2
1−2ρβα1F +ρ2β2F 2) ≥ 0 and Θ = −2(Rβ2F +κ+qρβα1). Since

H(0) = 0 and Ḣ(0) = α2
1 > 0 we conclude H(t, V ) > 0. ¤

Combining Proposition 7 and the general comparison result in Theorem 1,

we have
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Corollary 8 For the Heston model (12) with α(t, Vt) = α1Vt, q-optimal prices

for European options with convex payoffs are decreasing in q.

This implies the highest option prices (within the class of q-optimal measure

prices) are attained with the measures which correspond to the smallest values

of q. In particular, the minimal martingale measure price is larger than the

minimal entropy price, which in turn is greater than the variance-optimal price.

Having established the general relationship between option prices and the

choice of q in the q-optimal measure in the Heston model, we now investigate

numerically the magnitude of the differences in option prices. We also examine

the impact of the choice of q on the implied volatilities resulting from this

model.

The numerical solutions are generated by solving the Heston pricing pde

Ċ + Cv

(
κ(m̄/v − v)− ρβα1v − ρ̄2β2vF (T − t)

)

+
1

2
(Csss

2v2 + Cvvβ
2 + 2Csvsvβρ) = 0 C(T, s, v) = h(s) (15)

using a Crank-Nicolson type finite difference method. We follow Kluge [30]

and apply this scheme to the log spot transformed pde (x := log s) which

is of convection diffusion type. At the zero volatility boundary, v = 0, the

diffusion term disappears and only the convection remains. With the restriction

m ≥ β2/κ, which implies that the stochastic volatility process does not hit

zero, it turns out that this is an outflow boundary. That is why no boundary

conditions can be imposed and we use an upwind scheme at this boundary. All

other boundaries are artificial due to the fact that the log spot transformed

pde lives in (x, v) ∈ R × R+ and have to be set sufficiently far away from the

area of interest. To further reduce the numerical error a non-uniform grid in

space and time dimension is used. Numerical accuracy of this scheme has been

examined in [30] for q = 0 and α1 = 0 and verified against the Heston closed

form solution.

Our model parameters are appropriate for the foreign exchange market,

although our qualitative conclusions do not depend on such a choice. Melino

and Turnbull [34] explore pricing in this market with stochastic volatility, as

do Hakala and Wystup [21]. In the foreign exchange market, correlations tend

to be small and positive. This differs from the equity market where strong

negative correlations are the norm. The leverage effect is often cited to be the

cause of this. As the stock price falls, debt to equity ratios rise making the firm

riskier and resulting in greater volatility, see Nandi [35].
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Figure 1: Price of a 1 year at-the-money put option under the Heston

model with the parameters given in the table.

Parameter Value

m long term variance 0.01

κ rate of mean reversion 1

β volatility of volatility 0.1

V0 initial volatility 0.1

α1 absolute drift on asset α1V
2S 4

S0 initial asset price 1

The parameters used to generate each of the following graphs are given in

the above table. We consider a put option with varying strike and maturity.

Puts have convex, bounded payoffs, which helps for the calculation of numerical

solutions. Put-call parity allows us to infer the prices of calls and since interest

rates are zero, the prices of at-the-money puts and calls will be the same.

Figure 1 uses the above parameters values together with strike K = 1 and

T = 1. We plot the put price for ρ ∈ [−0.5, 0.5] and q ∈ [−4, 5]. Over most of

this range qR > 0 and the q-optimal measure exists for all time, and even for

q = 5 and |ρ| = 0.5 the q-optimal measure exists up to T = 1. As anticipated

by Corollary 8, we observe the put price is decreasing in q. The range of the

graph represents about a 16% difference in prices between the extreme points.
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Figure 2: Price of a 1 year at-the-money put option under the Heston

model for various values of q and ρ. Model parameters are given in the

table.

If we examine special cases of moving from say q = 0 to q = 2, the price change

is of the order of a couple of percent, depending on the correlation. This is a

non-trivial difference, and highlights the fact that choice of martingale measure

or adjustment for risk has an impact on option prices.

In the figure, put option prices are also observed to decrease with correlation.

It turns out that this is the case for ‘small’ q. Note that in the pricing pde

(15), there are two drift terms arising from the incompleteness, ρβα1v and

ρ̄2β2vF (T − t). In the small q case, the first of these is dominant. If correlation

is negative, this term has a positive effect on the option price, whilst the reverse

is true for positive correlation.

As Figure 2 shows, once q is no longer small, the ordering reverses. This is

the case as the drift term involving ρ̄2F (T−t) becomes dominant. As mentioned

earlier, outside the range qR > 0, the function F may explode, and the graph

shows these effects. For q = 5 and ρ = −0.5, F explodes to infinity (for

sufficiently large T ) and prices are small as a result. Similarly, for q = −5 and

ρ = 0.5, F explodes to −∞ and prices are large.

One of the best ways of capturing the effects of a stochastic volatility model

is by considering the implied volatilities and the true test of a model is whether
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Figure 3: The effect of correlation and the volatility of volatility on implied

volatilities for a 1 year put option priced under the Heston model, q =

0, α1 = 0.

it can be calibrated well to market data. The Heston [24] model, and stochastic

volatility models in general, fit market options prices reasonably well, although

they do not perform as well for very short or very long maturities. According to

Rubinstein [41], volatility smile patterns and pricing biases are time dependent.

Bakshi et al [1], Belledin and Schlag [3], Hakala and Wystup [21] and many

others observe that smiles are strongest for short term puts and calls, and this

is where the fit is least impressive.

By including the adjustment for volatility risk via the q measures, we have

a richer class of models which may provide a better fit. We will not focus on

calibration here, but rather on the shape of implied volatility smiles from the

Heston model under q-optimal measures. This is equivalent to looking at the

effect of q on options of differing moneyness.

In Figure 3, we plot the implied volatility from the Heston model against

the strike of the option K. The parameters used are those in the table, with the

exception that α1 = 0, q = 0 and the option maturity is 1 year. The four smiles

correspond to different choices of correlation and volatility of volatility β. When

ρ = 0, the smile is symmetric about the at-the-money volatility. Increasing β

appears to increase the convexity of the smile. Non-zero correlation controls

the smile’s asymmetry, important in equity markets. Hakala and Wystup [21]
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document the qualitative effects of changing parameters in the Heston model

and note these two effects.

In the final figure we consider the effect of changing the Sharpe ratio (gov-

erned by the parameter α1) and the measure of distance between the real world

and candidate pricing measures parameterised by q. We also consider the ef-

fects of varying maturity. In each case the implied volatilities are calculated

from the Heston model with correlation ρ = −0.2. There are two graphs (one

for changing the notion of distance between the pricing and real world mea-

sures and one for changing the Sharpe ratio) for each of three maturities. The

parameter values have been chosen to roughly match the magnitude of these

effects, for T = 1/4.

The key feature that will aid our understanding is that the market price

of volatility risk λ(q)(t, Vt) = ρ̄βVtF (T − t) is time-inhomogeneous. Since, for

each q, |F (τ)| is increasing in τ , the effects of changing q will become more

pronounced as the maturity increases.

We begin with some generic observations which are typical features of

stochastic volatility models. The correlation is negative so the smiles are skewed

to the left. As maturity increases, the smile becomes flatter or less convex -

beware the change in horizontal scale. By considering the left-hand column we

see that as q increases, option prices decrease. This is consistent with Corol-

lary 8. Conversely, in the right-hand column, we see that as α1 increases, the

option price increases. This is a consequence of the drift term appearing in the

pde (15). Since ρ < 0, the term −ρα1βv is positive and prices increase as the

drift term under the pricing measure increases. (Although this is not shown on

the graph, it is possible to find alternative parameter values such that option

prices decrease as α1 increases.) This is because under the pricing measure, the

second drift term −ρ̄2β2vF (T − t) is negative (for ρ < 0 and q > 0). The two

terms will have competing effects, and the overall effect of a change in α1 will

depend on which term dominates. If F is small (q is small or T small), then

the first term dominates and increasing α1 shifts the smile upward, as we saw

in Figure 4. But if F is large then the second term dominates and increasing

α1 will cause the smile to shift down. This depends on correlation, since if

correlation is zero, the first term disappears and the smile always shifts down

with increased α1. If correlation is positive, both terms work together to have

the same effect.

A final feature of the graphs that we wish to remark on is the relative
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Figure 4: Implied volatility smiles for the Heston model with ρ = −0.2 and
T = 0.25 (top row), T = 1 (middle row) and T = 4 (bottom row). The

solid line in each graph corresponds to q = 0, α1 = 4. The lower line in the

graphs in the left column correspond to a higher value of q (q = 4, α1 = 4)

and the lower lines in the graphs on the right correspond to a lower value

of α1 (q = 0, α1 = 0). Note that the horizontal scale changes with maturity

(by a factor of
√
T ).
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magnitude of the implied volatility shifts as maturity changes. For the graphs

in the right column, (q = 0 and α1 = 0 or 4) the change in drift induced

by the pricing measure is −ρα1βv. The magnitude of the implied volatility

changes seems to approximately double each time T increases by a factor of 4.

Conversely, on the left hand side, modification to the drift under Q(q) consists

of two terms −ρα1βv and −ρ̄2β2vF (T − t). For q > 0, F (τ) is positive and

increasing in τ , so the effect of changing q is comparatively larger when the

maturity is large (note that the parameter values have been chosen so when

T = 1/4 the effect of changing q from 0 to 4 is approximately the same as

changing α1 from 4 to 0).

7 Conclusion

In this paper we have investigated the role of the market price of volatility risk

and the choice of pricing measure on the prices of options. In a final section we

compared these theoretical results for a general stochastic volatility model to

numerical results for the Heston model.

Our first result is that as the market price of risk on the unhedgeable source

of randomness Z increases, or equivalently as the market price of volatility risk

increases, the prices of European style options with convex payoffs decrease.

At least when ρ = 0, this result can be seen as an extension to an incomplete

market of the standard result that in a complete market (such as the Black

Scholes model) option prices are increasing in volatility.

As an application of this result we investigated how the market price of risk

changes with q when the pricing measure is chosen to be the q-optimal measure.

If the innovations process driving the volatility is independent of that driving

the traded asset then we recover the result of Henderson [23] that if (the square

of) the Sharpe ratio is increasing in volatility then (European) options with

convex payoffs have prices decreasing in q. In the correlated case, the results

are less clear, but we are able to show that under the same conditions, the

q-optimal price for any positive q is smaller than that for any negative q.

We conjecture that in the correlated case, if α(t, v)2 is increasing in v then

option prices are decreasing in q (so that the result for the correlated case is

the same as when ρ = 0). The evidence for the conjecture is based on the ρ = 0

case and also on the analysis of the Heston model. However, this evidence is

fairly slim, and it would be extremely interesting if it were possible either to
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prove the result or to find a counterexample. We hope this motivates the study

of other examples, particularly if they lead to further explicit solutions, as this

should help aid intuition.

Even when the correlation is zero we can have the following surprising result:

namely that as an agent becomes more risk averse (which corresponds to q

increasing) q-optimal option prices may go down or up. The precise effect of

changing q depends on the Sharpe ratio.

An important observation is that the market price of volatility risk corre-

sponding to the q-optimal measure is time-inhomogeneous. As a consequence,

changing q may have different effects for short and long maturity options. This

additional feature of the model may provide extra ability for the model to fit

market data and extra explanatory power. The issue of calibrating the model

and inferring the parameter q or risk aversion of the market is an extremely

interesting one, and will be addressed elsewhere.
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