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†The authors would like to thank Jean Luc Prigent and participants of AFFI Colloquium
(Paris, 2001), participants of RISK Quantitative Finance London 2002, and seminar partici-
pants at the Judge Institute of Management Studies, Cambridge.

‡Nomura Centre for Quantitative Finance, Mathematical Institute, 24-29 St. Giles’, Oxford,
OX1 3LB. UK. Email: {henders1, shaww}@maths.ox.ac.uk Tel: +44 (0)1865 270502

§Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK. Email:
dgh@maths.bath.ac.uk Tel: +44 (0)1225 826187

¶Department of Accounting and Finance, Lancaster University, Management School, LA1
4YX Lancaster, UK. Email: r.wojakowski@lancaster.ac.uk Tel: +44 (0)1524 593630

1



1 Introduction

Asian options have a payoff which depends on the average price of the underlying
asset during some part of its life. The average is usually arithmetic, and if the
asset price is assumed to follow exponential Brownian motion, an explicit option
price is not available as the arithmetic average of a set of lognormal distribu-
tions is not known explicitly. Instead, pricing of Asian options is usually done
numerically.

There are two types of Asian options: the fixed-strike option, where the av-
erage relates to the underlying asset and the strike is fixed; and floating strike
options where the average relates to the strike price. The fixed-strike option is
in some sense easier, and has received most attention in the literature.

The starting point for this paper is a ‘symmetry’ result in Henderson and Wo-
jakowski [11] (see also Hoogland and Neumann [12]) which proves an equivalence
between the price of a floating-strike Asian and the price of a related fixed-strike
Asian. In [11] this equivalence is shown to be valid at the start of the averaging
period.

In this paper we extend this symmetry result to ‘forward starting’ Asian
options. In particular, for a forward starting floating Asian options, we provide
a symmetry with a ‘starting’ fixed-strike Asian option. In the case where the
floating option is ‘starting’, we recover the special case given in Henderson and
Wojakowski [11]. If the option is ‘in progress’, we show that a floating-strike
option can be re-expressed as a generalised ‘starting’ option but not as any type
of fixed-strike option. Instead, we derive an approximate method to price ‘in
progress’ floating-strike options. This approximation is actually an upper bound,
and relates the price of a floating-strike Asian option to the sum of the price of
a fixed-strike Asian and the price of a vanilla option.

Pricing of the fixed-strike Asian has been the subject of much research over the
last ten years and academic interest in these options has experienced a revival
recently, see Carr and Schröder [2] and Donati-Martin et al [7] continuing the
earlier work of Geman and Yor [9]. The current state of the art methods for
fixed-strike Asians are numerical inversion of the Laplace transform (Shaw [18],
[19]), eigenfunction expansions of Linetsky [13] and the stable pde method of
Vecer [22].

The floating-strike Asian option has received far less attention in the litera-
ture, perhaps because the problem is more difficult in that the joint law of {St, At}
is needed. Chung et al [3] and Ritchken et al [16] generalise earlier efforts which
derive approximations using joint lognormality. A pde approach can also be
taken, see Rogers and Shi [17], and Vecer [22] for an excellent new method. Even
so, pricing methods for floating strike options are underdeveloped compared with
the more established methods for the fixed-strike option. Hence, a method which
capitalises on existing algorithms for fixed-strike options to achieve bounds on
floating-strike options is useful.
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Our upper bound for the price of the floating-strike Asian call option is exact
at times up to and including the time the averaging begins and at maturity. Via
symmetry, the bound may be expressed as a combination of fixed-strike puts
and vanilla call options, optimised over a weighting parameter. One of the main
advantages of the bound is that one can capitalise on existing methods to price the
fixed-strike option. As such, the speed and accuracy of the method depend on the
chosen algorithm to price the fixed-strike component of the bound. We introduce
an approximation to choose the weighting parameter optimally, and demonstrate
whilst this has little effect on the accuracy, it reduces the computation time
dramatically.

Other related work on approximations for Asian option prices includes bounds
obtained by conditioning methods by Curran [6] and Rogers and Shi [17], en-
hancements of the conditioning method by Thompson [20] and Nielsen and Sand-
mann [15] and adaptation for discrete monitoring by Vanmaele et al [21]. The
difference between these works and ours is that they obtain an approximate price
for the option at the start of the averaging, whilst our method is exact at this
time. It is difficult to compare the methods directly, as these papers do not report
results during the averaging period.

The main contribution of the paper is an approximation to the price of a
floating-strike Asian option which has some desirable properties. Further, the
paper builds on symmetry relationships for exotic options and provides an inter-
esting application of such symmetries to pricing.

The paper is structured as follows. The next section outlines the model and
defines the floating and fixed-strike Asian option. Section 3 gives some general
symmetry results for Asian options and recovers the symmetry found in Hen-
derson and Wojakowski [11] as a special case. The following section derives the
upper bound for the price of the floating-strike Asian call. We concentrate in this
paper on a bound for the call. Of course, the same method gives a bound for the
floating-strike Asian put, this is left to the interested reader. In Section 5 we give
an approximate method to reduce the calculation time and report the results of
our numerical investigation in Section 6. The final section concludes the paper.

2 The Model

We consider the standard Black Scholes economy with a risky asset (stock) and a
money market account. We take as given a complete probability space (Ω,F ,P)
with a filtration (Ft)0≤t≤T∞ , which is right-continuous and such that F0 contains
all the P-null sets of F . Here T∞ is the termination date of our economy, which
is certainly greater than the maturity date of any option we might consider. We
also assume the existence of a risk-neutral probability measure Q (equivalent to
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P) under which discounted asset prices are martingales, implying no arbitrage.
We denote expectation under measure Q by E, and under Q, the stock price
follows

dSt

St

= (r − δ)dt+ σdWt (1)

where r is the constant continuously compounded interest rate, δ is a continuous
dividend yield, σ is the instantaneous volatility of asset return and W is a Q-
Brownian motion.

We consider an Asian contract which is based on the value AT where (At)t≥t0

is the arithmetic average

At =
1

t− t0

∫ t

t0

Sudu t > t0,

and by continuity, we define At0 = St0 . The contract is written at time 0 (with
0 ≤ t0) and expires at T > t0. Of interest is to calculate the price of the option
at the current time t, where 0 ≤ t ≤ T . The position of t compared to the start
of the averaging, t0 may vary. If t ≤ t0 the option is ‘forward starting’. We will
call the special case t = t0 a ‘starting’ option. If t > t0, the option is termed
‘in progress’ as the averaging has begun. In this paper we are mainly concerned
with in progress options.

We consider a generalised Asian option with payoff (aST + bAT + c)+ at time
T . The important cases in financial options are
• (a, b, c) = (0, 1,−K) — the fixed-strike Asian call option,
• (a, b, c) = (0,−1, K) — the fixed-strike Asian put,
• (a, b, c) = (1,−1, 0) — the floating-strike Asian call, and
• (a, b, c) = (−1, 1, 0) — the floating-strike Asian put.
Note that vanilla European puts and calls correspond to the choice b = 0, a = ±1
and c = ±K.

By standard arbitrage arguments the time-t price of this generalised option
is the discounted expected payoff under Q, and we write

Vt(a, b, c; r, δ;St, At; t0, T ) = e−r(T−t)E[(aST + bAT + c)+|Ft].

Note that for forward starting options At is not well defined and so we write
Vt(a, b, c; r, δ;St, ?; t0, T ).

3 Symmetry Results for Asian Options

In this section, we show that the pricing function for the generalised option
satisfies certain scaling and symmetry results.
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Theorem 1 (i) V is homogeneous of degree 1 in the parameters a, b, c, so that

for λ > 0,

Vt(λa, λb, λc; r, δ;St, At; t0, T ) = λVt(a, b, c; r, δ;St, At; t0, T ).

(ii) For an in-progress option (t > t0) we have the identity

Vt(a, b, c; r, δ;St, At; t0, T ) = Vt

(

a, b
T − t

T − t0
, c+ b

t− t0
T − t0

At; r, δ;St, ?; t, T

)

(2)

which allows us to write any generalised in-progress Asian option as a start-

ing Asian option.

(iii) For a starting option we have the symmetry

Vt0(a, b, c; r, δ;St0 , ?; t0, T ) = Vt0

(

c

St0

, b, aSt0 ; δ, r;St0 , ?; t0, T

)

(3)

This is an extension of the result of Henderson and Wojakowski [11]. Note

that the roles of r and δ are reversed as well roles of a and c.

(iv) Combining (ii) and (iii) we get for in-progress options

Vt(a, b, c; r, δ;St, At; t0, T ) = Vt

(

c

St

+ b
t− t0
T − t0

At

St

, b
T − t

T − t0
, aSt; δ, r;St, ?; t, T

)

(4)

Proof:
The linearity of the the option pricing function is inherited from the homogeneity
of the payoff function: (λx)+ = λx+ at least for positive λ. The second part is
equally trivial and is based on the identity

AT =
t− t0
T − t0

At +
T − t

T − t0

1

T − t

∫ T

t

Su du
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where the first term is Ft measurable, and the second term is a constant mul-
tiplied by the average stock price over the interval [t, T ]. The final part does
indeed follow from earlier parts as indicated, so the main result of this theorem
is contained in (iii), the proof of which is relegated to the appendix. This proof
is an extension of an argument in Henderson and Wojakowski [11] and involves a
change of measure and an identification of a time-reversal of a Brownian motion.
¤

Note that it follows from the first part of the theorem that it is sufficient
to consider the cases b = ±1, together with b = 0 which corresponds to vanilla
European options. If we take a special case of (iii), namely a floating-strike
option, we can derive a symmetry which holds whilst the option is forward-
starting.

Theorem 2 For a forward-starting Asian option, t ≤ t0 we have

Vt(a,−1, 0; r, δ;St, ?; t0, T ) = Vt(0,−1, aSte
−δ(t0−t); δ, r;Ste

−δ(t0−t), ?; t, T + t− t0)

In particular a forward starting floating-strike call has the same price as a starting

fixed-strike put with r and δ reversing roles and modified maturity. An analogous

result holds for b = 1, which converts a floating-strike put into a fixed-strike Asian

call.

Remark 3 The special case of this result for a ‘starting’ option was proved in

Henderson and Wojakowski [11] and is given as

Vt0(a,−1, 0; r, δ;St0 , ?; t0, T ) = Vt0(0,−1, aSt0 ; δ, r;St0 , ?; t0, T )

Vanmaele et al [21] also obtain this symmetry result when the average is sampled

discretely.
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Proof of Theorem 2:

Vt(a,−1, 0, r, δ, St, ?, t0, T ) = e−r(T−t)Et

[

St0

(

aST − AT

St0

)+
]

= e−r(T−t)(EtSt0)Et

(

aST

St0

− 1

T − t0

∫ T

t0

Su

St0

du

)+

where we use the independence of St0 and increments after t0. Using a time
translation u→ u− (t0 − t) in the second expectation this becomes

e−r(T−t0)Ste
−δ(t0−t)Et

(

aST+t−t0

St

− 1

T − t0

∫ T+t−t0

t

Su

St

du

)+

which is
Vt(a,−1, 0; r, δ;Ste

−δ(t0−t), ?; t, T + t− t0)

a starting floating option (but at time t) with modified maturity. Now applying
the symmetry result of Theorem 1[(iii)] for a starting option, we can write this
as

Vt(0,−1, aSte
−δ(t0−t); δ, r;Ste

−δ(t0−t), ?; t, T + t− t0)

¤

Theorems 1 and 2 are useful as they give relationships between various Asian
options. The generalised symmetry of Theorem 1[(iii)] can be used to transform
starting floating-strike Asians into starting fixed-strike Asians. In addition, a
forward starting floating-strike Asian is equivalent to a starting fixed-strike Asian
with modified maturity and other parameters, as given in Theorem 2. Any Asian
which is in progress may be written as a generalised starting option, as described
in (ii).

However, (iv) clarfies that although we can write an in progress Asian (take
a = 1, b = −1, c = 0 for call) as a generalised starting Asian, it cannot be
simplified further.

Thus, to price a forward starting (and starting) floating-strike call (or put),
we can use symmetry and price the equivalent fixed-strike put (or call). If the
floating Asian call is in progress however, there is no such symmetry. Instead
we derive an upper bound which involves fixed-strike Asian puts and vanilla call
options. Similarly we could derive an upper bound for the floating-strike Asian
put.
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4 An Upper Bound for the Floating-Strike Asian

Option

Since the symmetry in Theorem 2 holds only up to and at the moment the
averaging begins, we develop an upper bound for the case when the option is in
progress. The payoff of a floating-strike Asian call option

(ST − AT )
+ =

(

ST −
1

T − t0

∫ T

t0

Su du

)+

can be rewritten in terms of pre and post-t parts, for t0 < t
(

ST −
1

T − t0

∫ t

t0

Su du−
1

T − t0

∫ T

t

Su du

)+

. (5)

We can use this representation to obtain the following result.

Theorem 4 For t ≥ t0, an upper bound on the price Vt(1,−1, 0; r, δ;St, At; t0, T )

of an in-progress floating-strike call is given by

inf
α

{

Vt

(

(1− α), 0,− t− t0
T − t0

At; r, δ;St, ?; t, T

)

+ Vt

(

0,− T − t

T − t0
, αSt; δ, r;St, ?; t, T

)}

(6)

Note that we have bounded the floating in-progress option with the notionally
simpler fixed-strike Asian put with modified dynamics together with an ordinary
European call option.

Corollary 5 If t = t0 the infimum is attained at α = 1. Conversely, if t = T

then the infimum is attained at α = 0. Further, the bound in (6) gives the

exact price for the floating-strike option for times t at both ends of the averaging

interval.

Proof: The upper bound from Theorem 4 gives

Vt0(1,−1, 0; r, δ;St0 , ?; t0, T )

≤ inf
α
{Vt0 ((1− α), 0, 0; r, δ;St0 , ?; t0, T ) + Vt0(0,−1, αSt0 ; δ, r;St0 , ?; t0, T )}

≤ Vt0 (0, 0, 0; r, δ;St0 , ?; t0, T ) + Vt0(0,−1, St0 ; δ, r;St0 , At0 ; t0, T ) (7)
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where this last inequality is obtained by replacing the infimum over α with the
value when α equals 1. But the first of the two terms in (7) is zero, and by
Corollary 2 the second is exactly Vt0(1,−1, 0; r, δ;St0 , ?; t0, T ). Hence both the
inequalities are equalities, and the bound is attained when α = 1.

Similarly, when t = T ,

VT (1,−1, 0; r, δ;ST , AT ; t0, T )

≤ inf
α
{VT ((1− α), 0,−AT ; r, δ;ST , ?;T, T ) + VT (0, 0, αST ; δ, r;ST , ?;T, T )}

≤ VT (1, 0,−AT ; r, δ;ST , ?;T, T ) + VT (0, 0, 0; δ, r;ST , ?;T, T )

= (ST − AT )
+

where again the second inequality is obtained by substituting in a particular value
(α = 0). But this last expression is exactly the payoff of the floating strike call, so
that both the inequalities are equalities, and the bound is attained when α = 0. ¤

Proof of Theorem 4 : Note (a + b + c) = [(1 − α)a + b] + (αa + c) and
(x+ y)+ ≤ x+ + y+. Hence for any α, (a+ b+ c)+ ≤ ((1−α)a+ b)+ +(αa+ c)+.
Applying these to (5) gives

(ST − AT )
+ ≤ inf

α

{

(

ST (1− α)− 1

T − t0

∫ t

t0

Su du

)+

+

(

αST −
1

T − t0

∫ T

t

Su du

)+
}

Taking discounted expectations will give an upper bound on the price of a
floating-strike Asian call

Vt (1,−1, 0; r, δ;St, At; t0, T ) = e−r(T−t)E
[

(ST − AT )
+
∣

∣Ft

]

≤ inf
α

{

e−r(T−t)E

[

(

ST (1− α)− 1

T − t0

∫ t

t0

Su du

)+
∣

∣

∣

∣

∣

Ft

]

+ e−r(T−t)E

[

(

αST −
1

T − t0

∫ T

t

Su du

)+
∣

∣

∣

∣

∣

Ft

]}

. (8)

The first term is a call option and can be rewritten as

Vt

(

1− α, 0,− t− t0
T − t0

At; r, δ;St, ?; t, T

)

Further, by Theorem 1[(iv)] the second term can be re-expressed as a fixed-
strike Asian put:

Vt

(

α,− T − t

T − t0
, 0; r, δ;St, ?; t, T

)

= Vt

(

0,− T − t

T − t0
, αSt; δ, r;St, ?; t, T

)

.
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¤

We have managed to construct a bound for floating-strike Asians which de-
pends only on vanilla options and fixed-strike Asians. The fixed-strike Asian
option has been well studied. Competing methods include integral formulas of
Linetsky [13], inversion of Laplace transform of Geman and Yor [9] (implemented
by Shaw [18], [19]), and the stable pde method of Vecer [22]. Each of these meth-
ods was shown to give six digit precision by Vecer [23] and Shaw [19]. Thus, given
any of these (or another) method for pricing fixed-strike Asian options, the bound
can be calculated without any new algorithms. The bound requires optimizing
over the parameter α. This potentially means many calls to a routine to price
the fixed-strike put need to be made. It is therefore vital to choose a fast (and
accurate) method for pricing the fixed-strike put, as the speed and accuracy of
the bound depend on this.

However, if we could avoid this optimization over α by choosing an approxi-
mate value which achieved very similar accuracy, this would speed up the com-
putation, as only a single call to the fixed-strike pricing routine would be needed.
In the next section we give a method for speeding up the calculation by deriving
an approximation to the optimal choice of α for the upper bound.

Note that in this section we have concentrated on the pricing of the ‘in
progress’ floating-strike Asian and we have not mentioned hedging at all. How-
ever, implicit in the analysis is a simple super-replicating hedge. At time t ∈
[t0, T ], choose the optimal α = α(t) (or indeed any α) and decompose the floating-
strike option into a combination of a vanilla and a fixed-strike Asian option. The
vanilla can be replicated in the standard fashion. If the fixed-strike Asian is
hedged approximately, then we have a super-hedge for the floating-strike Asian
option.

5 Optimal Choice of the parameter α for the

upper bound

The purpose of this section is to find an efficient method to choose a value of
the parameter α to give a good approximate upper bound in Theorem 4. Recall
that if t = t0, so we are in the case of a starting option, then the optimal α is
given by α = 1. We consider ‘in-progress’ options, so that t0 < t < T , and we
will make a series of approximations and assumptions to derive a suitable choice
of α. Our linearizing of exponential terms is similar to that used in the pricing
approximation in Chung et al [3] and Bouaziz et al [1].
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We begin by recalling

(ST − AT )
+ ≤

(

(1− α)ST −
t− t0
T − t0

At

)+

+

(

αST −
1

T − t0

∫ T

t

Sudu

)+

Note that, for u ≥ v, Su = Sv exp{σ(Wu −Wv) + (r − δ − σ2/2)(u− v)}.

Assumption 6 r − δ and σ2 are small, or more precisely (r − δ)(T − t0) and

σ2(T − t0) are small.

Under this assumption, for u ≥ t, we can approximate Su by St(1 + σ(Wu −
Wt)) = St(1 + σ

∫ u

t
dWv), and then, with

.
= denoting approximately equal

(1− α)ST −
t− t0
T − t0

At
.
= (1− α)St −

t− t0
T − t0

At + St(1− α)σ

∫ T

t

dWv

∼ N

(

(1− α)St −
t− t0
T − t0

At; S
2
t (1− α)2σ2(T − t)

)

. (9)

Also

1

T − t0

∫ T

t

Sudu
.
=

(T − t)

T − t0
St +

σSt

T − t0

∫ T

t

(Wu −Wt)du.

and hence

αST −
1

T − t0

∫ T

t

Sudu

.
= αSt + αStσ

∫ T

t

dWt −
(T − t)

T − t0
St −

σSt

T − t0

∫ T

t

(T − u)dWu

=

(

α− T − t

T − t0

)

St + Stσ

∫ T

t

(

α− T − u

T − t0

)

dWu

∼ N

(

(

α− T − t

T − t0

)

St ;
T − t0

3
S2
t σ

2

[

α3 −
(

α− T − t

T − t0

)3
])

. (10)

Note that the covariance of the terms in (9) and (10) is

S2
t σ

2(1− α)

∫ T

t

(

α− T − u

T − t0

)

du

= (T − t0)S
2
t σ

2 (1− α)

2

[

α2 −
(

α− T − t

T − t0

)2
]

(11)
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Let G1 and G2 be normal random variables with distributions

G1 ∼ N

(

(1− α)St −
t− t0
T − t0

At; S
2
t (1− α)2σ2(T − t)

)

G2 ∼ N

(

(

α− T − t

T − t0

)

St ;
T − t0

3
S2
t σ

2

[

α3 −
(

α− T − t

T − t0

)3
])

and covariance as given in (11).
We are assuming that σ is small. If in fact if σ is zero then At

.
= St and

the variance of both G1 and G2 is zero. In that case it is optimal to take α ≡
(T − t)/(T − t0) as then both G1 and G2 are identically zero.

More generally, our goal is to minimise G+
1 +G+

2 . Note that G1+G2 has mean
(St − At)(t − t0)/(T − t0) which is independent of α. We can imagine choosing
α to distribute this mean between the two variables Gi. The proportion of this
quantity that we assign to each normally distributed random variable should
depend on their respective variances.

In particular we consider α of the form

α =
T − t

T − t0
+ γ

{

t− t0
T − t0

(

St − At

St

)}

.

Assumption 7 To leading order α = (T − t)/(T − t0). Further, when we sub-

stitute α in to the expressions for the variances of G1 and G2 we can neglect

higher order terms.

Note that under the approximations σ is small and St
.
= St0(1+σ(Wt−Wt0))

we find that (St −At)/St is approximately mean zero with variance σ2(t− t0)/3
so that the first part of this latest assumption follows from Assumption 6.

For this α, and using the leading order expression for the variances we have

G1 ∼ N

(

(1− γ)
t− t0
T − t0

(St − At); S
2
t σ

2(T − t)
(t− t0)

2

(T − t0)2

)

G2 ∼ N

(

γ
t− t0
T − t0

(St − At) ; S
2
t σ

21

3

(T − t)3

(T − t0)2

)

Note also that the ratio of the standard deviations is given by:
√

Var(G1) :
√

Var(G2) =
√
3(t− t0) : (T − t)

We choose γ such that the ratio of the means is equal to the ratio of the standard
deviations, so

(1− γ) : γ =
√
3(t− t0) : (T − t)

12



and hence γ = (T − t)/(T − t+
√
3(t− t0)). This choice can be justified rigorously

if G1 and G2 are uncorrelated (whereas in fact they have correlation
√
3/2), and

if the means are large in comparison with the standard deviations, but remains
a plausible choice in many circumstances.

In conclusion, the proposed choice of α is

α̂ =
T − t

T − t0
+

t− t0
T − t0

(

T − t

T − t+
√
3(t− t0)

)(

St − At

St

)

.

To summarize, this approximation will be better when (r − δ)(T − t0) and
σ2(T − t0) are small. We test this approximation in the next section, where both
the full α minimisation in (6) and this approximate α̂ are used in some examples.

6 Implementation and Results

We implement the upper bound using Laplace transform inversion methods for
the fixed-strike option. Shaw [18] performs the Laplace transform inversion by
direct numerical integration along the truncated Bromwich contour. This contour
is a vertical line to the right of any finite singularities, and the truncation can be
adjusted to obtain higher accuracy. He has improved upon this implementation
in Shaw [19] by transforming the hypergeometric function into a collection of
geometric series using Mellin transforms. This improved the computation time
dramatically, especially for low volatility examples. We have employed this im-
proved method in our calculation of the fixed-strike options.

The advantages of this choice are that it is accurate, reasonably fast, and it is
relatively easy to code (approximately fourteen lines in Mathematica). A further
advantage from a coding perspective is that we can then calculate the bound in
Mathematica using its inbuilt optimisation routines. In this implementation, we
also utilised put-call parity for floating-strike Asians.

We will test our bound against a benchmark price for the floating-strike Asian
option, which we calculate by Monte Carlo simulation, with variance reduction
techniques. Monte Carlo and Quasi Monte Carlo simulation are used extensively
in finance to obtain benchmark prices, see Corwin et al [5] and Fu et al [8].
Our random numbers were generated using a twisted GFSR (see Matsumoto and
Nishimura [14]). Fu et al [8] find that for fixed-strike Asians, the continuous
geometric average Asian served as a high quality control variate. We take the
same approach and follow Conze and Visvanathan [4] to derive a formula for the
floating-strike geometric average call option and use this as a control variate. For
each example following, our calculated simulation prices at time 0 agreed (up to
reported accuracy) with those in Chung et al [3].

Our first example uses parameters t = t0 = 0, T = 1, r = 0.1, q = 0, σ =
0.5, St = 100 and At is either 90, 100 or 110. The second example uses the same
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parameters but reduces volatility to 0.3. Both are ‘starting’ options. Figures 1
and 2 plot the upper bound (Cu calculated using Theorem 4 and optimising over
α) and the benchmark prices (C) over the 1 year life of the option, for each value
of At. It can be seen the bound is exact at time 0 and at maturity. If we were
to compute the value for a forward starting option, the bound would simply be
exact up to and including the time the averaging began. More detail is given in
Tables 1 and 2. Simulation benchmark values C with standard deviation δ and
the upper bound Cu with optimised value of α are reported. The remaining two
columns contain the price bound Ĉu calculated using the approximation α̂ given
in Section 5.

Our first comparison is between C, the benchmark and Cu the upper bound.
For t = 0, the option is ‘starting’ and the upper bound should be exact, at least
theoretically. We see that 3 or 4 digits of accuracy are obtained between the
simulation and the bound, due to errors inherent in the numerical estimation of
each. This represents around a 0.02 % error. We can use this as a guide for
evaluating the errors over the life of the option, since this is a ‘base‘ error we
are starting with. For volatility 0.5 (Table 1), the accuracy is reduced to 2 digits
when t > 0 and 1 or 2 if the volatility is 0.3 (Table 2). As a percentage (when
volatility is 0.5), errors range from about 0.1 % to 3.5 %, for the worst out-of-
the-money option with t = 0.4. These are slightly better for the lower volatility
case. If we compare these errors to a 1 % misspecification in volatility, we find
the bound in Table 2 is less than the simulated price C with volatility 0.31.

These calculations are time consuming, however. For example, when volatility
is 0.5, and At = 90, it took between 63 and 90 seconds to compute Cu for
various points in time, t, for a truncation of 10000 in Shaw’s implementation.
These times can be reduced dramatically with little loss of accuracy by using
Ĉu and α̂, the approximation to α. Under both volatilities, the difference in
accuracy between Ĉu and Cu is insignificant, although α̂ is closer to α when
volatility is 0.3, as expected. Recall α̂ does not depend on volatility. Using the
approximation for α reduced the computation time for the At = 90, σ = 0.5
example to around a twelfth of the times reported earlier. For example, when
t = 0.2, the time reduces from 75.6 to 6.3 seconds. Thus the approximation
method retains virtually the same accuracy as the full optimized upper bound,
but for a fraction of the computation time.

7 Conclusion

This paper has explored symmetries in Asian option pricing and exploited such
relationships to derive a new approximation to the price of a floating-strike Asian.
This approximation takes the form of a one-sided bound on the true price. The
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Figure 1: Upper Bounds Cu (dashed lines with dots) vs optimized control variate
Monte-Carlo estimates of the arithmetic Asian option price C (solid lines with
dots). Parameters are St = 100, σ = 0.5, r = 0.1, q = 0, t0 = 0, T = 1. The
‘highest’ case is when At = 90 and either bounds or both prices reach the payoff
(St − At)

+ = 10 for t = T = 1. The ‘middle’ and ‘lowest’ cases arise when
At = 100 and At = 110 respectively: bounds and prices reach (St − At)

+ = 0
then.
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Figure 2: Upper Bounds Cu (dashed lines with dots) vs optimized control variate
Monte-Carlo estimates of the arithmetic Asian option price C (solid lines with
dots). Parameters are St = 100, σ = 0.3, r = 0.1, q = 0, t0 = 0, T = 1. The
‘highest’ case is when At = 90 and either bounds or both prices reach the payoff
(St − At)

+ = 10 for t = T = 1. The ‘middle’ and ‘lowest’ cases arise when
At = 100 and At = 110 respectively: bounds and prices reach (St − At)

+ = 0
then.
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bound depends only on fixed-strike Asians and vanilla options. Given an effi-
cient method for pricing a fixed-strike Asian option, and our approximation for
the optimal weights of the fixed-strike and vanilla, the bound can be calculated
immediately in one extra line of code. The accuracy and speed of computation
of the bound depends on the choice of algorithm for the fixed-strike option. Us-
ing Shaw’s [19] implementation, calculations took a few seconds to give prices to
within a couple of percent of the Monte Carlo simulation. This approximation
may serve as a simple check of the price of a floating-strike Asian option, before a
more complex and accurate solution is implemented, and is particularly accurate
near the beginning and end of the averaging period.

Ongoing research of the authors includes lower bounds via symmetry, and
possible extensions to American style payoffs, see Hansen and Jorgensen [10].

8 Appendix

8.1 Proof of Theorem 1[(iii)]

This proof is an extension of the argument used in Henderson andWojakowski [11,
Theorem 1]. Assume that S has the dynamics given by (1) and that the option
is ‘starting’, so t = t0. We begin by rewriting the price of the generalised Asian
option as:

Vt0(a, b, c; r, δ;St0 , ?; t0, T ) = e−r(T−t0)E[(aST + bAT + c)+|Ft0 ]

= St0e
−δ(T−t0)Et0

[

ST e
−(r−δ)(T−t0)

St0

(aST + bAT + c)+

ST

]

Define the measure Q̂ via

dQ̂
dQ

=
ST e

−(r−δ)(T−t0)

St0

= exp

{

σ(WT −Wt0)−
σ2

2
(T − t0)

}

.

Under Q̂, Ŵu = Wu − σu is a Brownian motion and the price becomes

Vt0 = St0e
−δ(T−t0)Êt0

[

(

a+ b
AT

ST

+
c

ST

)+
]

. (12)

Again under Q̂ we have dSu = Su{(r − δ + σ2)du+ σdŴ} and for u ≥ t0,

Su

ST

= exp

{(

r − δ +
1

2
σ2

)

(u− T ) + σ(Ŵu − ŴT )

}

.
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Now let (B̂u)t0≤u≤T be defined via B̂u = B̂t0 + ŴT+t0−u − ŴT for some constant

B̂t0 . Then B̂ is a time-reversal of a Brownian motion and therefore B̂ is again a
Brownian motion under Q̂. Also

c

ST

=
c

St0

St0

ST

=
c

St0

e(δ−r)(T−t0) exp

{

σ(B̂T − B̂t0)−
1

2
σ2(T − t0)

}

=
c

St0

ŜT

Ŝt0

,

where Ŝ solves the stochastic differential equation

dŜu

Ŝu

= (δ − r)du+ σdB̂u u ≥ t0 (13)

with Ŝt0 ≡ St0 . In particular we think of Ŝ as a stock paying constant rate of
dividends r in a market with interest rate δ. Further

(T − t0)
AT

ST

=

∫ T

t0

Su

ST

du =

∫ T

t0

du exp

{(

r − δ +
1

2
σ2

)

(u− T ) + σ(Ŵu − ŴT )

}

=

∫ T

t0

du e(δ−r)(T−u) exp

{

σ(B̂T+t0−u − B̂t0)−
1

2
σ2(T − u)

}

=

∫ T

t0

dv e(δ−r)(v−t0) exp

{

σ(B̂v − B̂t0)−
1

2
σ2(v − t0)

}

=

∫ T

t0

dv
Ŝv

Ŝt0

.

We have that

St0

(aST + bAT + c)+

ST

=

(

c

Ŝt0

ŜT + b
1

T − t0

∫ T

t0

dvŜv + aŜt0

)+

and under Q̂, this last term is the payoff of a generalised Asian option under the
dynamics (13). Finally, if we discount this expression at the interest rate δ we
get from (12)

Vt0(a, b, c; r, δ;St0 , ?; t0, T ) = Vt0

(

c

St0

, b, aSt0 ; δ, r;St0 , ?; t0, T

)

as required. ¤

References

[1] Bouaziz L., Briys E. and Crouhy M. (1994). The Pricing of forward-
starting Asian options. Journal of Banking and Finance, 18, 823-839.

18
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At t Cg C δ Cu α Ĉu α̂

− 0 14.8329 13.6756 0.00436 13.6729 − 13.6729 1.
90 0.1 15.3068 14.0854 0.00449 14.2607 0.91211 14.2677 0.90839

0.2 15.6529 14.4306 0.00441 14.7292 0.81985 14.74 0.81396
0.3 15.8499 14.7114 0.00393 15.0582 0.724 15.0702 0.71722
0.4 15.8765 14.8765 0.00334 15.224 0.62525 15.2353 0.61856
0.5 15.7078 14.8806 0.00264 15.197 0.5242 15.2065 0.5183
0.6 15.3105 14.6794 0.00189 14.9375 0.42136 14.9447 0.41668
0.7 14.6338 14.205 0.00122 14.3875 0.31717 14.3922 0.31388
0.8 13.5896 13.3462 0.00062 13.4512 0.21201 13.4538 0.21009
0.9 12. 11.9074 0.0002 11.9435 0.1062 11.9445 0.10543
1 10 10 − 10 − 10 0

− 0 14.8329 13.6756 0.00436 13.6729 − 13.6729 1.
100 0.1 14.7731 13.6521 0.00423 13.8452 0.90388 13.8525 0.9

0.2 14.5808 13.54 0.00396 13.8625 0.80577 13.8727 0.8
0.3 14.2363 13.3326 0.00337 13.7055 0.70625 13.7159 0.7
0.4 13.7166 12.976 0.00276 13.3502 0.60579 13.3591 0.6
0.5 12.9918 12.4235 0.0021 12.7643 0.50476 12.771 0.5
0.6 12.019 11.6225 0.00143 11.9019 0.40347 11.9063 0.4
0.7 10.7285 10.4886 0.00087 10.69 0.30217 10.6924 0.3
0.8 8.9891 8.8749 0.0004 8.9949 0.20105 8.9959 0.2
0.9 6.4745 6.4442 0.0001 6.49 0.10028 6.4902 0.1
1 0 0 − 0 − 0 0

− 0 14.8329 13.6756 0.00436 13.6729 − 13.6729 1.
110 0.1 14.2977 13.2319 0.00402 13.4418 0.89589 13.4501 0.89161

0.2 13.6413 12.6993 0.00361 13.0442 0.79246 13.0565 0.78604
0.3 12.8466 12.0728 0.00295 12.4643 0.68984 12.4776 0.68278
0.4 11.8926 11.2887 0.00233 11.6814 0.58814 11.6937 0.58144
0.5 10.7517 10.3158 0.00171 10.6685 0.48742 10.6787 0.4817
0.6 9.3853 9.1014 0.00111 9.3872 0.38774 9.3947 0.38332
0.7 7.7337 7.577 0.00063 7.7793 0.28913 7.7842 0.28612
0.8 5.6952 5.6295 0.00027 5.7464 0.19163 5.7491 0.18991
0.9 3.0649 3.051 0.00006 3.0916 0.09525 3.0926 0.09457
1 0 0 − 0 − 0 0

Table 1: Upper Bounds for St = 100, σ = 0.5, r = 0.1, q = 0, t0 = 0, T = 1. In
the table, At is the arithmetic average realized up to time t, Cg is the price at time
t of an otherwise identical geometric average option, C is an optimized control
variate Monte-Carlo estimate of the arithmetic Asian price, with N = 100000
simulated paths and m = 3000 sampling points, δ is the standard deviation
of the Monte-Carlo estimate, Cu is the upper bound computed by numerically
minimizing over α, Ĉu is the approximate upper bound for approximate α̂. Note
that the average At is unknown if t = t0 = 0 and that at this time point, as well
as at t = T = 1, both bounds Cu, Ĉu are ‘exact’.
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At t Cg C δ Cu α Ĉu α̂

− 0 9.8676 9.3741 0.00159 9.3725 − 9.3725 1.
90 0.1 10.4256 9.8614 0.00174 9.9666 0.91042 9.97 0.90839

0.2 10.8995 10.3054 0.00177 10.4776 0.81726 10.483 0.81396
0.3 11.2724 10.6948 0.00164 10.8925 0.72112 10.8988 0.71722
0.4 11.5293 11.0028 0.00144 11.1978 0.62253 11.2039 0.61856
0.5 11.655 11.2041 0.00116 11.3775 0.52193 11.383 0.5183
0.6 11.6326 11.2749 0.00085 11.4128 0.41968 11.4172 0.41668
0.7 11.4408 11.1851 0.00056 11.2793 0.31611 11.2825 0.31388
0.8 11.0517 10.8962 0.0003 10.9466 0.2115 10.9485 0.21009
0.9 10.4468 10.3797 0.0001 10.3915 0.1071 10.3968 0.10543
1 10 10 − 10 − 10 0

− 0 9.8676 9.3741 0.00159 9.3725 − 9.3725 1.
100 0.1 9.8245 9.3457 0.00156 9.4627 0.90205 9.4659 0.9

0.2 9.686 9.2441 0.00146 9.4348 0.80304 9.4394 0.8
0.3 9.4384 9.0576 0.00125 9.2778 0.70329 9.2825 0.7
0.4 9.0662 8.7564 0.00103 8.9778 0.60304 8.9818 0.6
0.5 8.5501 8.3147 0.00078 8.5161 0.5025 8.5191 0.5
0.6 7.8629 7.7003 0.00054 7.8659 0.40182 7.8679 0.4
0.7 6.9617 6.8647 0.00032 6.9845 0.30114 6.9856 0.3
0.8 5.7668 5.7215 0.00015 5.793 0.20055 5.7935 0.2
0.9 4.0824 4.0707 0.00004 4.1165 0.10021 4.1167 0.1
1 0 0 − 0 − 0 0

− 0 9.8676 9.3741 0.00159 9.3725 − 9.3725 1.
110 0.1 9.2954 8.8508 0.00143 8.979 0.89393 8.983 0.89161

0.2 8.6481 8.267 0.00124 8.4735 0.78961 8.4798 0.78604
0.3 7.9171 7.6121 0.00101 7.8495 0.68681 7.8567 0.68278
0.4 7.0922 6.8623 0.00078 7.0992 0.58537 7.1063 0.58144
0.5 6.1611 6.0006 0.00056 6.2128 0.48517 6.2191 0.4817
0.6 5.1084 5.0082 0.00036 5.1782 0.38612 5.1833 0.38332
0.7 3.9149 3.8619 0.0002 3.9802 0.28813 3.9838 0.28612
0.8 2.5583 2.537 0.00009 2.6021 0.19115 2.6043 0.18991
0.9 1.0412 1.0369 0.00002 1.0557 0.09408 1.0564 0.09457
1 0 0 − 0 − 0 0

Table 2: Upper Bounds for St = 100, σ = 0.3, r = 0.1, q = 0, t0 = 0, T = 1. In
the table, At is the arithmetic average realized up to time t, Cg is the price at time
t of an otherwise identical geometric average option, C is an optimized control
variate Monte-Carlo estimate of the arithmetic Asian price, with N = 100000
simulated paths and m = 3000 sampling points, δ is the standard deviation
of the Monte-Carlo estimate, Cu is the upper bound computed by numerically
minimizing over α, Ĉu is the approximate upper bound for approximate α̂. Note
that the average At is unknown if t = t0 = 0 and that at this time point, as well
as at t = T = 1, both bounds Cu, Ĉu are ‘exact’.
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