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Abstract

In the framework of stochastic volatility models we examine estima-
tors for the integrated volatility based on the p-th power variation (i.e. the
sum of p-th absolute powers of the log-returns). We derive consistency
and distributional results for the estimators given high frequency data,
especially taking into account what kind of process we may add to our
model without affecting the estimate of the integrated volatility. This may
on the one hand be interpreted as a possible flexibility in modelling, for
example adding jumps or even leaving the framework of semimartingales
by adding a fractional Brownian motion, or on the other hand as robust-
ness against model misspecification. We will discuss possible choices of p
under different model assumptions and irregularly spaced data.
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1 Introduction

In the last years the concept of power variation (i.e. taking
∑

i |Xti
− Xti−1 |p

as maxi |ti − ti−1| → 0, where Xt denotes the log-price process), as an estimate
for the integrated volatility, became popular as a measure for the change in
the volatility, because stochastic volatility models play an important role in
overcoming the problems of the Black-Scholes world, especially being able to fit
skews and smiles. Moreover, volatility derivatives, such as volatility and variance
swaps and swaptions, became increasingly attractive to investors. Namely these
financial instruments avoid direct exposure to underlying assets, but make it
possible to hedge volatility risk. For pricing these derivatives reliable estimators
of the integrated volatility based on the discretely observed log-price process are
important, cf. Howison et.al. (2003).
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The starting point for the use of power variation was made when the link
between the mathematical concept of quadratic variation and integrated volatil-
ity was established. Contributions include Barndorff-Nielsen and Shephard
(2001, 2002a,b, 2003), Corsi, Zumbach, Muller, and Dacorogna (2001), An-
dersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold,
and Ebens (2001), Andreou and Ghysels (2001), Bai, Russell, and Tiao (2000),
Maheu and McCurdy (2001), Areal and Taylor (2001), Galbraith and Zinde-
Walsh (2000), Bollerslev and Zhou (2001) and Bollerslev and Forsberg (2001).
However, empirically it seems to be more attractive to use absolute values of the
returns than squared returns, see for example Andersen and Bollerslev (1997,
1998), Taylor (1986, Ch.2), Cao and Tsay (1992), Ding, Granger, and Engle
(1993), West and Cho (1995), Granger and Ding (1995), Jorion (1995), Shiryaev
(1999, Ch. IV) and Granger and Sin (1999). Barndorff-Nielsen and Shephard
(2002b, 2003) provide the theoretical background to this work in terms of limit
theorems for power variations when the underlying data is obtained from a con-
tinuous semimartingale of the form αt +

∫ t

0
σsdBs, where σt > 0 and αt are

assumed to be stochastically independent of the Brownian motion Bt and to
satisfy some regularity conditions, especially being satisfied for their Ornstein-
Uhlenbeck type stochastic volatility model. They also consider the same model
when the Brownian motion is replaced by a stable process, cf. Barndorff-Nielsen
and Shephard (2002b). From the practical point of view the concept of power
variation is very attractive since it is simple and easy to implement, as it only
involves certain powers of the log-returns.

We now leave the framework of continuous semimartingale models and ex-
amine how we can choose the process αt = (αt, t ≥ 0) such that it does not
affect the estimate for the integrated volatility. This extends results on consis-
tency of these estimators in a semimartingale framework with jumps (cf. Wo-
erner (2003)). For consistency of the estimates we can relax the conditions on
σt = (σt, t ≥ 0) and αt, as to include most of the well known stochastic volatil-
ity models, such as Hull and White (1987), Scott (1987) and Stein and Stein
(1991), as well as the Ornstein-Uhlenbeck type model by Barndorff-Nielsen and
Shephard (2001). For αt it turns out that we can add jump processes or even
leave the framework of semimartingales by adding a fractional Brownian motion.
Furthermore, we may have a correlation between the mean process and the un-
derlying Brownian motion. The possibility of adding different types of processes
αt can be seen as a greater flexibility in modelling. Our framework allows us
for example to include the leverage effect in the Ornstein-Uhlenbeck type model
by adding a jump component built of the adjusted subordinator which drives
σt, as suggested by Barndorff-Nielsen and Shephard (2001). Furthermore, our
model allows us to include fractional Brownian motion with Hurst parameter
H ∈ (1/2, 1). Since the covariance function between increments of this process
is positive, this is especially interesting for modelling clustering effects of the
data, cf. Shiryaev (1999, pp. 232).

In addition, examining what kind of processes we can add to the stochastic
volatility model can also be interpreted as examining the robustness of the
estimator of the integrated volatility, namely what kind of noise we can add
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without affecting the estimate.
For the distributional theory our conditions are a bit more restrictive than

for consistency, hence in some cases we obtain that adding a certain process does
not influence the consistency of the estimator of the integrated volatility but the
spread around the true integrated volatility. This means for practical purposes,
when we have a model misspecification our error bounds for the estimate will
no longer be valid.

We will examine what the best choice for p is, both in terms of the process
αt and in terms of the irregularity of the sampling scheme. We do not require
equally spaced data, which is hardy available in practice, but only some mild
regularity in terms of the ratio of the decay of the maximal and minimal distance
of observations.

Furthermore, our results give some insight, why empirically stochastic volatil-
ity estimates perform better, when using absolute values of returns rather than
quadratic variation. Namely, when we assume a continuous semimartingale
model, but the data involves some jump component, then the quadratic vari-
ation possesses an additional unexpected term coming from the jumps. Hence
we not only get an estimate for the integrated volatility, but for the integrated
volatility plus some extra term. Whereas when using absolute values and the
correct norming as for a continuous semimartingale model, the continuous part
is dominating the jumps and we get an estimate of the integrated volatility,
even when our model assumption was not correct. However, taking absolute
values, only works when the jump component has at most as much activity as
a bounded variation process. However, for the commonly used financial models
this is satisfied since they mostly add jumps derived from a compound Poisson
process (i.e. a process with finite activity), or from a subordinator ( i.e. a process
with bounded variation). If the jump component possesses more activity, an al-
ternative is to choose some exponent of the variation lying between one and two,
since for values strictly less than two, the continuous part is still dominating and
the jump part is negligible. However, this only describes the setting for consis-
tency. For the distributional theory to hold we need an exponent less than one,
hence possibly a mean process of less activity than a bounded variation process.

The paper is organized as follows. First we will introduce our notation and
the stochastic volatility models. Then we prove consistency for the estimate of
the integrated volatility, discussing the conditions on the mean process αt and
the choice of p. Finally we discuss the distributional theory for the estimate of
the integrated volatility and suitable choice of p.

2 Models and Notation

The concept of variational sums and power variation was introduced in the
context of studying the path behaviour of stochastic processes in the 1960ties,
cf. Berman (1965), Hudson and Tucker (1974), Hudson and Mason (1976) for
additive processes or Lepingle (1976) for semimartingales. Assume that we are
given a stochastic process X on some finite time interval [0, t]. Let n be a
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positive integer and denote by Sn = {0 = tn,0, tn,1, · · · , tn,n = t} a partition of
[0, t], such that 0 < tn,1 < tn,2<··· < tn,n and max1≤k≤n{tn,k − tn,k−1} → 0 as
n →∞. Now the p-th power variation is defined to be∑

i

|Xtn,i
−Xtn,i−1 |p = Vp(X, Sn).

We are interested in the limit as n → ∞. Well established are for convergence
in probability the cases for p = 1, where finiteness of the limit means that the
processes has bounded variation, and p = 2, called quadratic variation, which
is finite for all semimartingale processes. However, in the stochastic volatility
setting, for the moment assuming that our process has the form

∫ t

0
σsdBs, only

the case p = 2 leads to a non-trivial limit. Obviously, for p > 2 the limit is zero
and for p < 2 the limit is infinity.

An extension of the concept of power variation is to introduce an appropriate
norming sequence, as it was done in Barndorff-Nielsen and Shephard (2003),
which allows to find non-trivial limits even in the cases where the non-normed
power variation limit would be zero or infinity. Let us introduce the following
notation for the normed p-th power variation∑

i

∆γ
n,i|Xtn,i

−Xtn,i−1 |p = Vp(X, Sn,∆γ
n),

where γ ∈ IR and tn,i − tn,i−1 = ∆n,i denotes the distance between the i-th
and the i− 1-th time-point. When we have equally spaced observations, ∆n,i is
independent of i and the normed power variation reduces to ∆γ

nV (X, Sn).
In the following we need a measure of the regularity for the sequence of

partitions. We use the term of ε-balanced partitions, ε ∈ (0, 1), which was
introduced by Barndorff-Nielsen and Shephard (2002b) and is defined by

maxi ∆n,i

(mini ∆n,i)ε
→ 0,

as n → ∞. This means we compare how fast the minimum distance in the
partition converges to zero compared with the sequence of maxima, for example
if maxi ∆n,i = O(1/n) and mini ∆n,i = O(1/n2), then the partition is ε-balanced
for ε ∈ (0, 1/2). Obviously, an equally spaced partition is ε-balanced for all
ε ∈ (0, 1). If a partition is ε-balanced for some ε ∈ (0, 1), then it is also δ-
balanced for δ ∈ (0, ε]. Hence the larger ε the closer the partition is to an
equally-spaced one.

Let us now briefly review the stochastic processes which we will need in the
following. We start with a general semimartingale process Xt, which is widely
used in finance. For an overview both under financial and theoretical aspects
see Shiryaev (1999). In its canonical representation a semimartingale may be
written as

Xt = X0 + B(h) + Xc + h ∗ (µ− ν) + (x− h(x)) ∗ µ,
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or for short with the predictable characteristic triplet (B(h), 〈Xc〉, ν), where
Xc denotes the continuous local martingale component, B(h) is predictable
of bounded variation and h is a truncation function, behaving like x around
the origin. Furthermore, µ((0, t] × A;ω) =

∑
(IA(J(Xs)), 0 < s ≤ t), where

J(Xs) = Xs −Xs− and A ∈ B(IR− {0}), is a random measure, the jump mea-
sure, and ν denotes its compensator, satisfying (x2∧1)∗ν ∈ Aloc (i.e. the process
(
∫
(0,t]×IR

(x2∧1)dν)t≥0 is locally integrable). Semimartingale models include the
well-established continuous diffusions, jump-diffusions, hence stochastic volatil-
ity models, as well as Lévy processes.

Lévy processes are a special class of semimartingales where we have indepen-
dent and stationary increments. They are given by the characteristic function
via the Lévy-Khichin formula

E[eiuXt ] = exp{t(iαu− σ2u2

2
+

∫
(eiux − 1− iuh(x))ν(dx))},

where α denotes the drift, σ2 the Gaussian part and ν the Lévy measure. Hence
σ2 determines the continuous part and the Lévy measure the frequency and
size of jumps. If

∫
(1 ∧ |x|)ν(dx) < ∞ the process has bounded variation. If∫

ν(dx) < ∞ the process jumps only finitely many times in any finite time-
interval, called finite activity, it is a compound Poisson process. Furthermore,
the support of ν determines the size and direction of jumps. A popular example
in finance are subordinators, where the the support of the Lévy measure is
restricted to the positive half line, hence the process is of bounded variation.
For more details see Sato (1999).

A measure for the activity of the jump component of a semimartingale is
the generalized Blumenthal-Getoor index,

β = inf{δ > 0 : (|x|δ ∧ 1) ∗ ν ∈ Aloc},

where Aloc is the class of locally integrable processes. This index β also deter-
mines, that for p > β the sum of the p-th power of jumps will be finite. Note
that if we are in the framework of Lévy processes, being an element of a locally
integrable process reduces to finiteness of the integral with respect to the Lévy
measure, since the jump measure is deterministic.

A fractional Brownian motion with Hurst exponent H ∈ (0, 1) is defined by

1
Γ(H + 1/2)

(
∫ 0

−∞
((t− s)H−1/2 − (−s)H−1/2)dWs +

∫ t

0

(t− s)H−1/2dWs),

where (Ws,−∞ < s < ∞) denotes a Wiener process extended to the real line.
A fractional Brownian motion does not belong to the class of semimartingales,
however it is used in finance to model clustering and long range dependence,
cf. Shiryaev (1999).

Let us now introduce the stochastic volatility models. In the Black and
Scholes framework the logarithm of an asset price Xt is modelled as a geometric
Brownian motion or as the solution of the stochastic differential equation

dXt = (µ + βσ2)dt + σdBt,
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where µ, β and σ are constants. One possibility of overcoming the problems of
the Black-Scholes framework and capturing the empirical facts of excess kurtosis,
skewness, fat tails and volatility smiles, is to introduce a random spot volatility
process σt = (σt, t ≥ 0) leading to the simplest case of a stochastic volatility
model. Now the logarithm of an asset price Xt is modelled as the solution to
the following diffusion equation

dXt = (µ + βσ2
t )dt + σtdBt, (1)

where σt is assumed to satisfy a second stochastic differential equation. Trans-
forming (1) to an integrated form leads to

Xt = µt + β

∫ t

0

σ2
sds +

∫ t

0

σsdBs,

up to a constant, or in a more general formulation

Xt = αt +
∫ t

0

σsdBs,

where αt = (αt, t ≥ 0) is some stochastic process. Traditionally, it is assumed
that the mean process αt is of locally bounded variation, but in our framework
we do not need this restriction, we can even allow that the process is not a
semimartingale such as a fractional Brownian motion.

The main differences between the various stochastic volatility models lie
in the stochastic differential equation the spot volatility process is assumed to
satisfy. We will recall different examples, which our estimating results can be
applied to. Note that the model by Heston (1993) does not satisfy our assump-
tions, since we need that σt and Bt are independent, whereas in Heston (1993)
Bt and the Brownian motion which drives σt are correlated.
Example:
Assume that the price process can be described by the following diffusion equa-
tion

dXt = µXtdt + σtXtdBt

Then Hull and White (1987) model σ2
t by a geometric Brownian motion,

dσ2
t = ασ2

t dt + χσ2
t dWt,

where Wt is a Brownian motion independent of Bt, α and χ are some constants.
Scott (1987) and Stein and Stein (1991) model σt by an Ornstein-Uhlenbeck
process,

dσt = −δ(σt − θ)dt + kdWt,

where again Wt is a Brownian motion independent of Bt and δ, θ and k are some
constants.
Barndorff-Nielsen and Shephard (2001) model σ2

t by an Ornstein-Uhlenbeck
type process of the form

dσ2
t = −λσ2

t dt + dZλt.
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Here Zt is a subordinator without drift, independent of the Brownian motion
Bt. The time scale λt is chosen to ensure that the marginal law of σ2

t is not
affected by the choice of λ. Note that though σ2

t exhibits jumps, Xt is still
continuous.

3 Estimating integrated volatility

In the context of stochastic volatility models in practice neither the structure
of the underlying spot volatility process is known nor the process is observed
continuously. This makes it difficult to infer the volatility, which is necessary
for option pricing, hedging and risk assessment.

The concept of power variation provides a solution to this problem. It makes
it possible to infer the integrated volatility in a simple way, using irregularly
spaced high frequency data, only by assuming mild regularity assumptions on
the spot volatility and the mean process, which are satisfied by the most popular
models .

Under a suitable choice of the power exponent p, a large class of mean
processes turns out to be negligible in the estimating procedure of the integrated
volatility. This on the one hand provides us with more flexibility in modelling.
Namely, we can add jump components as for example desirable to include the
leverage effect in the Ornstein-Uhlenbeck type model (cf. Barndorff-Nielsen and
Shephard (2001)), or include fractional Brownian motion to model clustering
effects. On the other hand allowing to add processes to our original stochastic
volatility model can be viewed as adding noise. Hence we can determine how
robust our estimator is under a misspecification of the model. As the simplest
case take p = 2, then we are in the case of quadratic variation. It is obvious
that our estimating procedure is not robust against jumps, since in this case we
get a quadratic variation part estimating the integrated volatility and one extra
part belonging to the jump component. We will discuss in the following how
the choice of p affects the robustness of the estimate in different settings.

The following theorem is an extension of Barndorff-Nielsen and Shephard
(2002b, 2003) and Woerner (2003) allowing irregularly spaced data as well as a
larger class of spot volatility processes and mean processes. Especially we can
include jumps and not necessarily have to stay in the framework of semimartin-
gales. Furthermore, the mean process may be correlated with both the spot
volatility process and the Brownian motion.

Theorem 1 Let

Xt = Yt +
∫ t

0

σsdBs, (2)

where Yt is some stochastic process satisfying for some p > 0

Vp(Y, Sn,∆1−p/2
n )

p→ 0. (3)
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Furthermore, assume that the volatility process σ2
t is independent of the Brown-

ian motion Bt and a.s. locally Riemann-integrable. Then for any t > 0 and for
any sequence of 1/2-balanced partitions Sn, we obtain

Vp(X, Sn,∆1−p/2
n )

p→ µp

∫ t

0

σp
sds, (4)

as n →∞, where µp = E(|u|p) = 2p/2Γ( p+1
2 )

Γ(1/2) and u ∼ N(0, 1).

Proof. The idea of the proof is to use the result for the stochastic volatility
component derived by Barndorff-Nielsen and Shephard (2002b) together with
a triangular inequality for p ≤ 1 and Minkowski’s inequality for p > 1. Let us
denote the stochastic volatility part by Zt =

∫ t

0
σsdBs.

First we show that we do not need all conditions stated in Theorem 5.3
of Barndorff-Nielsen and Shephard (2002b) to establish the convergence of the
stochastic volatility component, but Riemann integrability is sufficient. As n →
∞, we obtain

|µ−1
p Vp(Z, Sn,∆1− p

2
n )−

∫ t

0

σp
sds|

≤ |µ−1
p Vp(Z, Sn,∆1− p

2
n )−

∑
j

∆1− p
2

n,j |
∫ tn,j

tn,j−1

σ2
sds|p/2|

+|
∑

j

∆1− p
2

n,j |
∫ tn,j

tn,j−1

σ2
sds|p/2 −

∫ t

0

σp
sds|

→ 0. (5)

The first term tends to zero by equation (5.17) in Barndorff-Nielsen and Shepard
(2002c), noting that the denominator in (5.17) tends to zero. The second term
tends to zero by (5.21) in Barndorff-Nielsen and Shephard (2002b) using the
Riemann-integrability.

Now for p ≤ 1 we obtain

P (|Vp(X, Sn,∆1−p/2
n )− µp

∫ t

0

σp
sds| > λ)

≤ P (|Vp(X, Sn,∆1−p/2
n )− Vp(Z, Sn,∆1−p/2

n )| > λ/2)

P (|Vp(Z, Sn,∆1−p/2
n )− µp

∫ t

0

σp
sds| > λ/2)

≤ P (Vp(Y, Sn,∆1−p/2
n ) > λ/2)

P (|Vp(Z, Sn,∆1−p/2
n )− µp

∫ t

0

σp
sds| > λ/2) < ε,

since Vp(Y, Sn,∆1−p/2
n )

p→ 0 by assumption (3) and Vp(Z, Sn,∆1−p/2
n )

p→ µp

∫ t

0
σp(s)ds

by (5). For the second inequality we used that for p ≤ 1 applying |a + b|p ≤

8



|a|p + |b|p, we have

|
∑

i

|ai + bi|p −
∑

i

|bi|p| ≤
∑

i

|ai|p.

For p > 1 we use Minkowski’s inequality together with the same technique,
which yields

P (|(Vp(X, Sn,∆1−p/2
n ))1/p − (µp

∫ t

0

σp
sds)1/p| > λ)

≤ P ((Vp(Y, Sn,∆1−p/2
n ))1/p > λ/2)

P (|(Vp(Z, Sn,∆1−p/2
n ))1/p − (µp

∫ t

0

σp
sds)1/p| > λ/2) < ε.

This implies the desired result since the function f(x) = xp is continuous. 2

Now we discuss the condition on the process Yt. Condition (3) provides
lots of flexibility in choosing Yt. This can be interpreted as for what kind of
mean process our estimate is still valid or how robust our estimate is against
misspecification of the model, namely what type of noise we can add without
affecting the estimate. In the following we look at the conditions on Yt:

• Condition (3) is satisfied when Yt is locally Hölder-continuous of the order
1/2+γ, γ > 0, since this implies that (Yn,j −Yn,j−1)/∆(1/2)+γ

n,j ≤ Cj < ∞
and hence for p > 0

Vp(Y, Sn,∆1−p/2
n ) =

n∑
j=1

∆1+γp
n,j |Yn,j − Yn,j−1

∆(1/2)+γ
n,j

|p

≤ (max
j

Cj)(max
j

∆γp
n,j)t → 0,

as n → ∞. This is less restrictive than the condition used in Barndorff-
Nielsen and Shephard (2003). We can see that we can even leave the
framework of semimartingales and include models or noise where Yt is a
fractional Brownian motion with Hurst exponent H ∈ (1/2, 1]. We only
need slightly more regularity in the paths than for Brownian motion.

• Condition (3) is also satisfied if we have finite p-th power variation of Yt

and take p < 2, which means that the norming sequence tends to zero.
Hence for all processes Yt with bounded variation, which is the standard
setting of a stochastic volatility model, we can always take p = 1.

For jump processes this is also very interesting since we can easily deter-
mine for which r we have finite r-th power variation and can then take
p ∈ [r, 2). From Woerner (2003) we know that assuming a general semi-
martingale setting, the r-th power variation is finite if either 1 ≤ β < r < 2
and 〈Y c〉t = 0 or β < r ≤ 1, 〈Y c〉t = 0, B(h)+(x−h)∗ν = 0 and the jump
times of Yt are previsible. Here β denotes the generalized Blumenthal-
Getoor index and 〈Y c〉t denotes the quadratic variation of the continuous
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local martingale component of Yt. Note that for subordinators or Lévy
processes of bounded variation in their usual representation with h(x) = x,
the condition B(h) + (x− h) ∗ ν = 0 reduces to no drift.

• Even less restrictive than the previous condition is to assume that

Vp(Y, Sn,∆γ
n)

p→ C < ∞,

where γ > 0 and 1 − (p/2) − γ > 0 which implies (3). One example in
which this holds is to take

Yt =
∫ t

0

fsdZs,

where Zt is a symmetric α-stable process, ft is independent of Zt and
locally Riemann integrable. Then by Barndorff-Nielsen and Shephard
(2002b), for p < α

∆1−p/α
n Vp(Y, Sn)

p→ µα,p

∫ t

0

fp
s ds,

where µα,p = E(|Z(1)|p). Here 1 − (p/2) − (1 − p/α) > 0 is obviously
satisfied since p > 0 and α ∈ (0, 2).

Taking f(x) = 1 this reduces to an symmetric α-stable process, in which
case the Blumenthal-Getoor index is α and hence together with the pre-
vious consideration (3) is satisfied for all p ∈ (0, 2)

• Using the same method as in the proof we can see that Yt obviously also
satisfies (3), if it is the sum of processes, each of which satisfies (3).

Now we can discuss the choice of p. Traditionally, p = 2, the quadratic
variation case, is used and we can see it works quite well, as long as we do
not have a jump component. This means the quadratic variation can be used
as an estimate for the integrated volatility when the mean process is Hölder
continuous of the order (1/2) + γ. The absence of jumps can be checked by
calculating limn→∞ Vp(X, Sn) for p > 2, cf. Woerner (2003). If the limit is
greater than zero then our data possesses a jump component. However, since we
square all differences of data-points in the quadratic variation case, all outliers
are weighted quite strongly and from a practical point of view it might be better
to choose a smaller exponent p.

As we have seen in the discussion of the jump component, taking p = 1 might
be a good choice for p as it was also suggested by empirical studies, cf. for
example Andersen and Bollerslev (1997, 1998). This makes jumps negligible
when they are derived from a process with Blumenthal-Getoor index β ≤ 1. This
is satisfied by most financial models since they either use a compound Poisson
process or a subordinator. Of course from the point of view of down-weighting
outliers it is desirable to choose p as small as possible, whereas choosing p close
to 2 capture the widest range of possible jump activities.

10



The condition on σt is quite mild. It is implied by the continuity of most
volatility processes, as for example Hull and White (1987), Scott (1987) and
Stein and Stein (1991). However, Heston (1993) is not included since in this
model σt and Bt are correlated. Furthermore, the condition is also satisfied by
the jump process model, where σt is an Ornstein-Uhlenbeck type process, as it
is shown in Barndorff-Nielsen and Shephard (2003).

As a special case we obtain the result for equally spaced partitions. Condi-
tion (3) reduces to

∆1−p/2
n Vp(Y, Sn)

p→ 0.

For any t > 0 and equally spaced partitions Sn we obtain

∆1−p/2
n Vp(X, Sn)

p→ µp

∫ t

0

σp
sds, (6)

as n →∞, where µp = E(|u|p) and u ∼ N(0, 1).

We can summarize our result in to following table which shows us how we
can choose p depending on the components of our mean process. Note that it
does not have any influence if the mean process is correlated to or independent
of the underlying Brownian motion.

components of mean process p
Hölder continuous jumps with index β α-stable
yes no no p > 0
yes yes no β < p < 2
yes no yes 0 < p < 2
no yes no β < p < 2
no no yes 0 < p < 2

4 Distributional Theory

In the previous section we derived consistency for estimators of the integrated
volatility, however this does not provide the rate of convergence or confidence
intervals. As in practice even for high frequency data there is always some
distance between the observations, we need a distributional theory to establish
error bounds. It turns out that the asymptotic distribution is a normal variance
mixture, where the variance is distributed up to a constant as the corresponding
2p power variation limit. Hence theoretically the limit theory is feasible. How-
ever, we need some restrictions on the mean and the spot volatility process as
well as on the sampling scheme. Unfortunately we derive that if we consider the
general case where the mean process might be correlated with the underlying
Brownian motion Bt only the influence of a purely continuous or a purely dis-
continuous but not a mixture of both is negligible. However, if we assume that
the continuous part of the mean process is independent of Bt, as discussed for
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the equally spaced sampling scheme in Barndorff-Nielsen and Shephard (2003),
the whole mean process including a possible correlated jump component is neg-
ligible under a suitable choice of p. An example where these conditions are
satisfied is the Ornstein-Uhlenbeck type stochastic volatility model capturing
the leverage effect.

The following theorem generalizes the result of Barndorff-Nielsen and Shep-
hard (2002b, 2003) to a large class of mean processes, especially including jumps
and fractional Brownian motion, and generalizing the part with the independent
continuous mean process to irregularly spaced data.

Theorem 2 Let

Xt = Yt +
∫ t

0

σsdBs, (7)

where Yt = Y
(1)
t + Y

(2)
t is some stochastic process satisfying for some p > 0

V2p(Y, Sn,∆1−p
n )

p→ 0 (8)

Vp(Y (1), Sn,∆1−p/2
n )√

mini ∆n,i

p→ 0 (9)

V2p(Y (1), Sn,∆2−p
n )

mini ∆n,i

p→ 0, (10)

lim sup
n→∞

max
i

Y
(2)
tn,i

− Y
(2)
tn,i−1

∆a
n,i

≤ c < ∞, (11)

where a ∈ (1/2, 1] and Y
(2)
t is independent of Bt. Assume that σt > 0 is

independent of Bt, locally Riemann integrable, pathwise bounded away from zero
and has the property that for some γ > 0 and n →∞

1√
minj ∆n,j

n∑
j=1

∆n,j |σγ(ηn,j)− σγ(χn,j)|
p→ 0 (12)

for any χn,j and ηn,j such that

0 ≤ χn,1 ≤ ηn,1 ≤ tn,1 ≤ χn,2 ≤ ηn,2 ≤ tn,2 · · · ≤ χn,n ≤ ηn,n ≤ t.

Then for any t > 0 and for any sequence of max(2/3, 1/(4a − 2))-balanced
partitions Sn, we obtain

Vp(X, Sn,∆1−p/2
n )− µp

∫ t

0
σp

sds√
µ−1

2p νpV2p(X, Sn,∆2−p
n )

D→ N(0, 1), (13)

as n →∞, where µp = E(|u|p) and νp = V ar(|u|p) with u ∼ N(0, 1).

12



Proof. We use the same notation as in Theorem 1, namely Zt =
∫ t

0
σsdBs. The

idea of the proof is to extend the result for Zt given in Barndorff-Nielsen and
Shephard (2002b) to the general Xt by applying Slutzki’s Lemma and combine
it with an extension of Barndorff-Nielsen and Shephard (2003) to include a wider
range of mean processes independent of the underlying Brownian motion. We
use the following reformulation

Vp(X, Sn,∆1−p/2
n )− µp

∫ t

0
σp

sds√
µ−1

2p νpV2p(X, Sn,∆2−p
n )

=
Vp(X, Sn,∆1−p/2

n )− Vp(Z, Sn,∆1−p/2
n )√

µ−1
2p νpV2p(X, Sn,∆2−p

n )

+
Vp(Z, Sn,∆1−p/2

n )− µp

∫ t

0
σp

sds√
µ−1

2p νpV2p(Z, Sn,∆2−p
n )

√
µ−1

2p νpV2p(Z, Sn,∆2−p
n )√

µ−1
2p νpV2p(X, Sn,∆2−p

n )
.

This leads to the desired result if we can show

Vp(X, Sn,∆1−p/2
n )− Vp(Z + Y (2), Sn,∆1−p/2

n )√
µ−1

2p νpV2p(X, Sn,∆2−p
n )

+
Vp(Z + Y (2), Sn,∆1−p/2

n )− Vp(Z, Sn,∆1−p/2
n )√

µ−1
2p νpV2p(X, Sn,∆2−p

n )

p→ 0(14)

√
µ−1

2p νpV2p(Z, Sn,∆2−p
n )√

µ−1
2p νpV2p(Z + Y (2), Sn,∆2−p

n )

√
µ−1

2p νpV2p(Z + Y (2), Sn,∆2−p
n )√

µ−1
2p νpV2p(X, Sn,∆2−p

n )

p→ 1.(15)

Recall from Barndorff-Nielsen and Shephard (2002b) Theorem 5.3 that under
our assumptions

Vp(Z, Sn,∆1−p/2
n )− µp

∫ t

0
σp

sds√
µ−1

2p νpV2p(Z, Sn,∆2−p
n )

D→ N(0, 1). (16)

For the proof of the first part of (14) we can use the same technique as in
Theorem 1, noting that for p ≤ 1

|Vp(X, Sn,∆1−p/2
n )− Vp(Z + Y (2), Sn,∆1−p/2

n )|√
µ−1

2p νpV2p(X, Sn,∆2−p
n )

≤ Vp(Y (1), Sn,∆1−p/2
n )√

mini ∆n,i

√
µ−1

2p νpV2p(X, Sn,∆1−p
n )

,

13



where

Vp(Y (1), Sn,∆1−p/2
n )√

mini ∆n,i

p→ 0,

√
µ−1

2p νpV2p(X, Sn,∆1−p
n )

p→

√
νp

∫ t

0

σ2p
s ds

as n →∞ by the assumptions together with Theorem 1.
For p > 1 we have to use the same argument combined with Minkowski’s

inequality

|(Vp(X, Sn,∆1−p/2
n ))1/p − (Vp(Z + Y (2), Sn,∆1−p/2

n ))1/p|

(
√

µ−1
2p νpV2p(X, Sn,∆2−p

n ))1/p

≤ (Vp(Y (1), Sn,∆1−p/2
n ))1/p

(
√

mini ∆n,i

√
µ−1

2p νpV2p(X, Sn,∆1−p
n ))1/p

.

For the second part of (14) we use the same technique as in Barndorff-Nielsen
and Shephard (2003) extended to an irregularly spaced sampling scheme and a
relaxed condition (11). The main idea is to use the fact that the mean process
Y

(2)
t is independent of the underlying Brownian motion Bt. We can express

Vp(Z+Y (2), Sn,∆1−p/2
n )−Vp(Z, Sn,∆1−p/2

n ) =
n∑

i=1

∆n,iθ
p/2
i hp(ui, γi/θ

1/2
i ,∆a−1/2

n,i ),

where
hp(ui, γi/θ

1/2
i ,∆a−1/2

n,i ) = | γi

θ
1/2
i

∆a−1/2
n,i + ui|p − |ui|p.

The notation is as in Barndorff-Nielsen and Shephard (2003), that is, ui denotes
a sequence of iid (independent identically distributed) standard normal random
variables, γi = (Y (2)

tn,i
− Y

(2)
tn,i−1

)/∆a
n,i and θi = (σ2

tn,i
− σ2

tn,i−1
)/∆n,i. With

exactly the same procedure as in Barndorff-Nielsen and Shephard (2003) it can
be shown that by the LLN (law of large numbers)

n∑
i=1

∆1−b
n,i hp(ui, γi/θ

1/2
i ,∆a−1/2

n,i )
p→ 0, (17)

provided 1− b + 2a− 1 > 1, hence b < 2a− 1.
We can rewrite the second part of (14) to

(maxi ∆n,i)b
∑n

i=1 ∆1−b
n,i θ

p/2
i hp(ui, γi/θ

1/2
i ,∆a−1/2

n,i )√
mini ∆n,i

√
µ−1

2p νpV2p(X, Sn,∆1−p
n )

.

Hence for an ε-balanced partition, ε > 1/(4a − 2), condition (17) is satisfied
which implies the desired result.
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Finally, it remains to prove (15). Equivalently, we can show that

|µ−1
2p νpV2p(Z + Y (2), Sn,∆2−p

n )− µ−1
2p νpV2p(X, Sn,∆2−p

n )|
µ−1

2p νpV2p(X, Sn,∆2−p
n )

p→ 0

|µ−1
2p νpV2p(Z, Sn,∆2−p

n )− µ−1
2p νpV2p(Z + Y (2), Sn,∆2−p

n )|
µ−1

2p νpV2p(Z + Y (2), Sn,∆2−p
n )

p→ 0.

Now, for the first part we can proceed similarly as for the first part of (14) and
hence only look at the case p ≤ 1 since p > 1 can be derived analogously

|µ−1
2p νpV2p(Z + Y (2), Sn,∆2−p

n )− µ−1
2p νpV2p(X, Sn,∆2−p

n )|
µ−1

2p νpV2p(X, Sn,∆2−p
n )

≤
|µ−1

2p νpV2p(Y (1), Sn,∆2−p
n )|

µ−1
2p νpV2p(X, Sn,∆2−p

n )

≤
|µ−1

2p νpV2p(Y (1), Sn,∆2−p
n )|

mini ∆n,iµ
−1
2p νpV2p(X, Sn,∆1−p

n )

The second part can also be shown similarly as the second part of (14), namely
it can be reformulated to

(maxi ∆n,i)b
∑n

i=1 ∆2−b
n,i θp

i h2p(ui, γi/θ
1/2
i ,∆a−1/2

n,i )

mini ∆n,iµ
−1
2p νpV2p(X, Sn,∆1−p

n )
p→ 0,

which is satisfied by (17) and the condition on the partition.
Piecing together (14), (15) and (16) leads to the desired result. 2

Let us discuss the conditions on Yt first. The conditions are stronger than
for Theorem 1, especially since we need that (8) is satisfied for 2p. We can
distinguish two sets of conditions, one which is stronger, when the mean process
may be correlated to the underlying Brownian motion and one where the key
is to assume that the mean process is independent of the underlying Brownian
motion.

In addition, we have two parameters which determine how to choose p,
namely the balance coefficient ε, describing the regularity of the sampling scheme,
and the Hölder coefficient or Blumenthal-Getoor index describing the regularity
of the sample paths of Y

(1)
t . It turns out the more regular the sampling scheme

the less regularity we need in the sample paths and vice versa.

• Similarly as for condition (3), condition (8) is satisfied if Y
(1)
t is Hölder

continuous with exponent 1/2 + γ, γ > 0. Clearly it only makes sense to
take γ ∈ (0, 1/2], since if γ > 1/2 this would imply that Y

(1)
t is constant.

Condition (9) is satisfied, if maxj ∆pγ
n,j/ minj ∆1/2

n,j → 0, hence if Sn is
1/(2pγ)-balanced. Hence we must satisfy at least 1 > 1/(2pγ) or pγ > 1/2,
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which is however only for the equally spaced case. Taking into account
the range of γ, we see that p > 1. If we have an ε-balanced partition
ε ∈ [2/3, 1), we need ε ≥ 1/(2pγ), hence

pγ ≥ 1
2ε

(18)

The relation (18) allows us to compute the possible range p, when we know
the regularity of the paths and the regularity of the partition. The more
regularity we have in the sample paths the closer we can choose p to 1/ε.

Finally (10) holds if (9) is satisfied since this yields
maxj ∆1+pγ

n,j / minj ∆n,j → 0 as well.

• Similarly to the discussion for Theorem 1, for (8) to hold, we need 2p <
2 hence p < 1 which means more regularity than bounded variation to
get finite 2p-th power variation. Furthermore, (8) is satisfied if we have
finite p-th power variation and maxi ∆1−p/2

n,i / mini ∆1/2
n,i → 0, hence if the

partition is 1/(2−p)-balanced. This leads to the range 1 > p in an equally
spaced setting, or 2− 1/ε ≥ p for an ε-balanced partition. Hence knowing
the regularity of our partition we can calculate the possible range of p,
for example in the most irregular spaces case we have to take 1/2 ≥ p.
Obviously conditions (8) and (9) imply (10).

• Condition (11) is satisfied if Y
(2)
t is Hölder continuous of the order a.

Hence this condition does not impose any restrictions on the choice of p.
However, a and ε are related through a > (2ε + 1)/(4ε) or ε > 1/(4a− 2).
Hence the more regularity we have in the sampling scheme the less we
need in Y

(2)
t and vice versa. For the equally spaces case we need a > 3/4

whereas for the most irregular spaces case, ε = 2/3 we need a > 7/8.

Summarizing, these considerations show that, compared to the considerations
of consistency, it is much harder to find a good choice for p to obtain a reliable
distributional theory and hence good error bounds for the estimate of the inte-
grated volatility. They even show that it is impossible to obtain a distributional
theory when the mean process possesses a continuous part which is correlated
to the underlying Brownian motion and a jump part at the same time. Namely
for the continuous part to be negligible we need at least p > 1 and for the jump
part p < 1. Hence p = 1 cannot be used in neither case by this technique.

The situation improves if we know that the continuous part of the mean
process is independent of the underlying Brownian motion. Then the continuous
part imposes no restriction on the choice of p, hence we can choose some p < 1
to satisfy the condition for the jump part.

Let us discuss the choice of p in more detail. For the continuous, possibly
correlated setting, we have two parameters which determine the choice of p, it is
the balance parameter which is known and the Hölder coefficient of the process
Yt which might be unknown. The balance parameter ε determines the range of
pγ, namely pγ ≥ 1/(2ε). Hence if we do not know the regularity of Yt it is safest
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to choose p large. However, if we choose p large outliers are weighted strongly.
Note that the quadratic variation satisfies the conditions for equally spaces data
if γ ∈ (1/4, 1/2] or γ ∈ (3/8, 1/2] for the most irregular 2/3-balanced partition.

If the continuous part is independent of the underlying Brownian motion,
we have no restrictions on p.

If Yt is a jump process, we need low activity, that is a Blumenthal-Getoor
index β < 1 even for equally spaced data. For the most irregularly spaced data
we need β ≤ 1/2. This means that compound Poisson processes satisfy our
assumptions, whereas not all bounded variation processes do.

Hence for the setting where the mean process possesses a jump component
Y

(1)
t and a continuous component Y

(2)
t , independent of the underlying Brownian

motion, as for example in the Ornstein-Uhlenbeck stochastic volatility model
with leverage, the best choice is to take p close to the Blumenthal-Getoor index
of the driving Lévy process.

Condition (12) ensures that
∑

i ∆1−p/2
n,i |

∫ tn,i

tn,i−1
σsds|p converges fast enough

to
∫

σp
sds as required for (16) to hold. In Barndorff-Nielsen and Shephard (2003)

it is shown that (12) is satisfied for Ornstein-Uhlenbeck type processes. Unfor-
tunately, for continuous processes σt condition (12) only holds if we have Hölder
continuity with exponent > 1/2, hence more regularity than for a Brownian mo-
tion or a diffusion process, normally used as volatility process. Recently, there
has been made some progress towards relaxing this condition, namely to include
the Cox-Ingersoll-Ross model as volatility process, cf. Barndorff-Nielsen et.al.
(2003). However, so far this extension only holds for p ≥ 2 which rules out the
possibility showing that a jump component in the mean process is negligible.

As a special case we obtain the result for equally spaced data:
The assumption on Yt reduces to

∆1−p
n V2p(Y, Sn)

p→ 0

∆(1−p)/2
n Vp(Y (1), Sn)

p→ 0,

Y
(2)
t satisfies (11) with a ∈ (3/4, 1) and the stochastic volatility component

satisfies the same conditions as in Theorem 2. Then for any t > 0 and for
equally spaced partitions Sn, we obtain

∆1−p/2
n Vp(X, Sn)− µp

∫ t

0
σp(s)ds√

µ−1
2p νp∆

2−p
n V2p(X, Sn)

D→ N(0, 1),

as n →∞, where µp = E(|u|p) and νp = V ar(|u|p) with u ∼ N(0, 1).

Example:(Ornstein-Uhlenbeck-type model including leverage)
The Ornstein-Uhlenbeck-type stochastic volatility model including leverage, as
it was suggested by Barndorff-Nielsen and Shephard (2001) is given by

dXt = {µ + βσ2
t }dt + σtdBt + ρdZ̄λt

dσ2
t = −λσ2

t dt + dZλt,
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where Z̄t = Zt − E(Zt) and it is assumed that the subordinator Zt is indepen-
dent of the Brownian motion Bt. We can see that our conditions are satisfied,
namely the continuous part of the mean process is independent of Bt and Lip-
schitz continuous, and condition (12) is satisfied by Bardorff-Nielsen and Shep-
hard (2003). Hence for the equally spaced setting we obtain the distributional
theory for β < p < 1, or β < p ≤ 2−1/ε for the ε-balanced setting. This implies
that we have to choose a Lévy process with sufficiently small Blumenthal-Getoor
index, for example a compound Poisson process or a Gamma process.

We can summarize our result in to following table which shows us how we
can choose p depending on the components of our mean process. Note that
it does not have any influence if the jump component of the mean process is
correlated to or independent of the underlying Brownian motion. First we look
at the equally spaces setting. The last column shows the maximal range of p
which is obtained for γ = 1/2.

components of mean process p pmax

Hölder cts. Hölder cts. jumps with
1/2 + γ, a > 3/4, indep. index β
γ > 0 of B
yes no no p > 1/(2γ) p > 1
no yes no p > 0 p > 0
no no yes β < p < 1 β < p < 1
yes yes no p > 1/(2γ) p > 1
yes yes yes – –
yes no yes – –
no yes yes β < p < 1 β < p < 1

For the most irregularly spaced setting, i.e. 2/3-balanced partitions we obtain:

components of mean process p pmax

Hölder cts. Hölder cts. jumps with
1/2 + γ, a > 7/8, indep. index β
γ > 0 of B
yes no no p > 3/(4γ) p > 3/2
no yes no p > 0 p > 0
no no yes β < p ≤ 1/2 β < p ≤ 1/2
yes yes no p > 3/(4γ) p > 3/2
yes yes yes – –
yes no yes – –
no yes yes β < p ≤ 1/2 β < p ≤ 1/2
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