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Abstract

We derive analytically the first four conditional moments of the integrated variance implied

by the GARCH diffusion process. From these moments we obtain an analytical closed-form

approximation formula to price European options under the GARCH diffusion model. Using

Monte Carlo simulations, we show that this approximation formula is accurate for a large

set of reasonable parameters. Finally, we use the closed-form option pricing solution to shed

light on the qualitative properties of implied volatility surfaces induced by GARCH diffusion

models.
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1 Introduction

In this paper we study European option prices in stochastic volatility models where the underly-

ing asset follows a geometric Brownian motion with instantaneous variance driven by a GARCH

diffusion process. Precisely, we derive analytically a closed-form approximation for European

option prices under the GARCH diffusion model.

Stochastic volatility models were first introduced by Hull and White (1987), Scott (1987) and

Wiggins (1987) to overcome the drawbacks of the Black and Scholes (1973) and Merton (1973)

model. Volatilities, stochastically changing over time, account for random behaviours of im-

plied and historical variances and generate some of the log-return features observed in empirical

studies1. Unfortunately, in the stochastic volatility setting it is difficult to derive closed or ana-

lytically tractable option pricing formulas even for European options. The Hull and White (1987)

and the Heston (1993) models have an analytical approximation and a quasi-analytical formula

to price European options, respectively. For other stochastic volatility models numerical meth-

ods are available but these procedures are highly computationally intensive2. In this paper, we

derive an analytical closed-form approximation for European option prices based on the con-

ditional moments of the integrated variance when the variance is driven by an uncorrelated

GARCH diffusion process3. Our approximation is very accurate and easy to implement, it can

be used to study the implied volatility and the volatility risk premium associated to GARCH

diffusion models.

The GARCH diffusion process has several desirable properties. It is positive, mean reverting,

with a stationary inverse Gamma distribution and it satisfies the restriction that both historical

and implied variances be positive. It also fits the observation that variances seem to be station-

ary and mean reverting; cf. Scott (1987), Taylor (1994), Jorion (1995) and Guo (1996, 1998).

Moreover, the GARCH diffusion model allows for rich pattern behaviours of volatilities and asset

prices. For instance, as observed in empirical studies, it produces large autocorrelation in the

squared log-returns, arbitrary large kurtosis and finite unconditional moments of log-return dis-

tributions up to a given order; cf. Genon-Catalot, Jeantheau and Laredo (2000). Furthermore,

Nelson (1990) and Drost and Werker (1996) showed that under the GARCH diffusion model

discrete time returns of asset prices follow a GARCH(1,1) process. Hence, the nasty problem of

making inference on continuous-time parameters is reduced to the inference on the parameters
1See , for instance, Mandelbrot (1963) and Fama (1965).
2When large trading books have to be quickly and frequently evaluated many procedures are practically not

feasible.
3This model was first introduced by Wong (1964) and popularized by Nelson (1990).
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of a GARCH(1,1) model4; cf., for instance, Engle and Lee (1996), Lewis (2000) and Melenberg

and Werker (2001). This is an important advantage over other stochastic volatility models for

which the parameter estimation is much more involved. Finally, the GARCH diffusion model is

the ‘mean reverting’ extension of the Hull and White (1987) model where the variance process

follows an uncorrelated log-normal process without drift. The GARCH diffusion model makes

a marked improvement over the Hull and White model because the mean reverting drift gives

stationary variance and log-return processes (cf. Genon-Catalot, Jeantheau and Laredo (2000))

and it can include the volatility risk premium in the variance process. By contrast, for the Hull

and White model the analytical option pricing approximation is available only when the drift

is equal to zero5. Furthermore, the mean reversion of the variance allows to approximate long

maturity option prices, while in the Hull and White model the option pricing approximation

holds only for short maturity options; cf. Hull and White (1987) and Gesser and Poncet (1997).

Our approximation for option prices under the GARCH diffusion model is based on the

Hull and White (1987) formula, which holds when the asset price and the instantaneous vari-

ance are uncorrelated. This assumption implies symmetric volatility ‘smiles’, i.e. symmetric

shapes of implied volatilities plotted versus strike prices; cf. Hull and White (1987) and Renault

and Touzi (1996). Typically, foreign currency option markets are characterized by symmetric

volatility smiles; cf., for instance, Chesney Scott (1989), Melino and Turbull (1990), Taylor and

Xu (1994) and Bollerslev and Zhou (2002). Therefore, the present model can be appropriate to

price currency options. Furthermore, also in some index option markets the non zero correlation

between price and variance can be neglected without increasing option pricing errors; cf. Cher-

nov and Ghysels (2000) and Melenberg and Werker (2001) for studies on Standard & Poor’s 500

and Dutch EOE index options, respectively.

The specific contributions of this paper are the following. We derive analytically the first

four conditional moments of the integrated variance implied by the GARCH diffusion process.

This result has several important implications. Firstly and foremost, these conditional moments

allow to obtain an analytical closed-form approximation for European option prices under the

GARCH diffusion model. This approximation can be easily implemented in any software pack-

age (such as Excel spread sheets). Then, just plugging in the model parameters, it provides

option prices without any computational efforts. As we will show by Monte Carlo simulations,

this approximation is very accurate across different strikes and maturities for a large set of rea-

sonable parameters. Secondly, we propose an analytical approximation for implied volatilities
4Chou (1988) verified the empirical consistency of Nelson’s theory.
5The volatility risk premium seems to be a significant component of the risk premia in many currency markets;

cf. Guo (1998), Melenberg and Werker (2001) and references therein.
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based on the conditional moments of the integrated variance, which allows us to easily study

volatility surfaces induced by GARCH diffusion models. Thirdly, the conditional moments of

the integrated variance can be used to estimate the continuous time parameters of the GARCH

diffusion model using high frequency data. Precisely, by matching the sample moments of the

realized volatility with the conditional moments of the integrated variance one has a standard

and easy-to-compute GMM-type estimator for the underlying model parameters; cf. Bollerslev

and Zhou (2002). Finally, the conditional moments of the integrated variance implied by the

GARCH diffusion process generalize the conditional moments derived by Hull and White (1987)

for log-normal variance processes.

The rest of the paper is organized as follows. Section 2 introduces the GARCH diffusion

model. Section 3 presents the analytical approximation formula to price European vanilla options

under the GARCH diffusion model. In Section 4, using Monte Carlo simulations, the accuracy

of the approximation is investigated across different strike prices and time to maturities for

different parameter choices. Section 5 studies implied volatility surfaces induced by the model

and Section 6 concludes.

2 The Model

Let S = (St)t≥0 be the underlying currency price and V = (Vt)t≥0 its latent instantaneous

variance. We assume that (St, Vt)t≥0 satisfies the two-dimensional GARCH diffusion model

dSt = µSt dt +
√

Vt St dBt, (1)

dVt = (c1 − c2 Vt)dt + c3 Vt dWt, (2)

where c1, c2 and c3 are positive constants, µ is the positive constant drift of dSt/St, B and W

are mutually independent one-dimensional Brownian motions on some filtered probability space

(Ω,F ,Ft,P) and P is the objective measure. We set the initial time t = 0 and (S0, V0) ∈ R+×R+.

The V process is mean reverting, c1/c2 determines the run mean value and c2 is the reversion

rate (see also equation (4)). For ‘small’ c2 the mean reversion is ‘weak’ and Vt tends to stay

above (or below) the run mean value for long periods, i.e. to volatility cluster. The parameter

c3 determines the random behaviour of the volatility: for c3 = 0 the volatility process is deter-

ministic, for c3 > 0 the kurtosis of log-return distributions is larger than 3. When c1 = c2 = 0,

the GARCH diffusion process reduces to the log-normal process without drift in the Hull and

White (1987) model.
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Given V0 > 0, Vt is positive P-almost surely ∀t ≥ 0, and the strong solution is

Vt = V0 e−(c2 + 1
2

c23)t + c3Wt + c1

∫ t

0
e(c2 + 1

2
c23)(s−t)+ c3(Wt−Ws)ds, (3)

see Karatzas and Shreve (1991), p. 360. The stationary distribution of V is the Inverse Gamma

distribution (cf. Nelson (1990)) with parameters 1 + 2c2/c2
3 and c2

3/2c1, i.e. 1/Vt ; Γ(1 +

2c2/c2
3, c2

3/2c1). Hence Vt has finite moments up to order r if and only if r < 1 + 2c2/c2
3.

This implies that log-return distributions have finite unconditional moments up to order 2r.

Empirical studies showed that log-return distributions have finite moments up to some given

order. Moreover, when c2
3 → 2c+

2 , the kurtosis of log-return distributions tends to infinity

and the correlation between squared log-returns approaches to 1/3. By contrast, when the

variance follows a square root process (cf. Heston (1993)) the corresponding stationary Gamma

distribution implies log-return distributions with finite unconditional moments of any order,

excess kurtosis at most equal to 3 and autocorrelation of squared log-returns at most 1/5;

cf. Genon-Catalot, Jeantheau and Laredo (2000).

When 2c2 > c2
3, the V process is strictly stationary, ergodic with conditional mean and

variance

E[Vt | V0] =
c1

c2
+ (V0 − c1

c2
) e−c2t, (4)

Var[Vt | V0] =
(c1/c2)

2

2c2/c2
3 − 1

+ e−c2t 2(c1/c2)(V0 − (c1/c2))
c2/c2

3 − 1
− e−2c2t (V0 − (c1/c2))

2

+ e(c23−2c2)t

(
V 2

0 −
2V0(c1/c2)
1− c2

3/c2
+

(c1/c2)2

(1− c2
3/2c2)(1− c2

3/c2)

)
. (5)

The unconditional expectation of (4) and (5) give the unconditional mean and variance of V

E[V1] =
c1

c2
, Var[V1] =

(c1/c2)2

2c2/c2
3 − 1

. (6)

In Section 4 we will infer some reasonable parameters for the variance process using equations (6).

Higher order unconditional moments of V can be derived by the stationary Inverse Gamma

distribution.

In the following section we will derive an analytical approximation formula for European

options when the underlying currency price satisfies equations (1)–(2).
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3 The Option Pricing Formula

Given the model (1)–(2), a foreign currency option price f(S, V, t) satisfies the following partial

differential equation

1
2

V S2 ∂f2

∂S2
+

1
2

c2
3 V 2 ∂f2

∂V 2
+(rd−rf ) S

∂f

∂S
+((c1−c2) V −λ(S, V, t))

∂f

∂V
−(rd−rf ) f +

∂f

∂t
= 0,

where rd and rf are the domestic and the foreign interest rates, respectively, and the unspecified

term λ(S, V, t) represents the market price of risk associated to the variance V . As V is not a

traded asset, arbitrage arguments are not enough to determine the option price f(S, V, t). To

specify λ(S, V, t) one introduces an equilibrium market model to set investor risk preferences.

As in Chesney and Scott (1989) and Heston (1993) we can specify the volatility risk premium

λ(V, S, t) = λV or as an affine function of V, λ(V ) = c + λV . In both cases, the risk-adjusted

process is still a GARCH diffusion process

dSt = (rd − rf ) St dt +
√

Vt St dB∗
t , (7)

dVt = (c∗1 − c∗2 Vt)dt + c3 Vt dW ∗
t , (8)

where c∗1 = c1 − c, c∗2 = c2 + λ, B∗ and W ∗ are mutually independent Brownian motions under

the risk-adjusted measure P∗.

For the risk-adjusted dynamics in equations (7)–(8) the notable option pricing result in Hull

and White (1987) holds: the fair price value Csv for a European call with time to maturity T

and strike price K is given by

Csv =
∫ ∞

0
Cbs(V T )f(V T | V0) dV T , (9)

where Cbs is the Black and Scholes (1973) option price, V T is the integrated variance over the

time to maturity T , i.e.

V T :=
1
T

∫ T

0
Vt dt (10)

and f(V T | V0) is the conditional density function of V T given V0. The integrated variance

density f(V T | V0) is not known and the option price Csv is not available in closed-form. The

expectation in equation (9) can be computed by Monte Carlo simulation but such a procedure

is very time-consuming. Hull and White (1987) provided an analytical approximation for Csv in

(9). Precisely, they computed the Taylor expansion of Cbs in equation (9) around the conditional

mean of V T obtaining a series option pricing formula that involves only the conditional moments

of V T and the sensitivities of the Black and Scholes price to the variance. Denoting by M1 :=
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E[V T | V0] the conditional mean of V T and Mic := E[(V T −M1)i | V0] i ≥ 2 the i-th centered

conditional moment of V T , the option pricing series is

Csv = Cbs(M1)+
1
2

M2c
∂2Cbs

∂V
2
T

∣∣∣∣∣
V T =M1

+
1
6

M3c
∂3Cbs

∂V
3
T

∣∣∣∣∣
V T =M1

+
1
24

M4c
∂4Cbs

∂V
4
T

∣∣∣∣∣
V T =M1

+..., (11)

where the derivatives are

∂Cbs

∂V T

=
e−rf T S0

√
Te−d2

1/2

√
8πV T

, (12)

∂2Cbs

∂V
2
T

=
∂Cbs

∂V T

[
1
2

m2

(V T T )2
− 1

2V T T
− 1

8

]
T,

∂3Cbs

∂V
3
T

=
∂Cbs

∂V T

[
m4

4(V T T )4
− m2 (12 + V T T )

8(V T T )3
+

48 + 8V T T + (V T T )2

64(V T T )2

]
T 2,

∂4Cbs

∂V
4
T

=
∂Cbs

∂V T

[
1
8

m6

(V T T )6
− 3

32
m4 (20 + V T T )

(V T T )5
+

3
128

m2 (240 + 24V T T + (V T T )2)

(V T T )4

−(960 + 144V T T + 12(V T T )2 + (V T T )3)

512(V T T )3

]
T 3,

and m := log(S0/K) + (rd − rf )T. So far, the conditional moments of the integrated variance

have been calculated analytically only for few specifications of the variance process

1. for the mean reverting Ornstein-Uhlenbeck process6 Cox and Miller (1972, Sec. 5.8) derived

the first two conditional moments of V T ;

2. for the geometric Brownian motion with drift Hull and White (1987) derived the first two

conditional moments of V T and the first three conditional moments of V T for the variance

process without drift;

3. for the squared root process Bollerslev and Zhou (2002) derived the first two conditional

moments. Lewis (2000a) derived the first four conditional moments of the integrated

variance for the general class of affine processes (including the squared root process).

Given the analytical conditional moments of V T it is very easy to price European options by the

series approximation (11). Garcia, Lewis and Renault (2001) use this formula to price European

options under the Heston model notwithstanding the Heston option pricing formula; cf. also

Ball and Roma (1994). Indeed, implementing integral solutions for option prices, such as the

Heston formula, can be very delicate due to divergence of the integrand in some regions of the

parameter space.
6We recall that the mean reverting Ornstein-Uhlenbeck process is normally distributed and then can not ensure

positive variance.
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We derive the first four conditional moments of V T when the variance V is driven by the

GARCH diffusion process (2). The first conditional moment is already known in the litera-

ture. The second, the third and the fourth are believed to be new. Higher order moments

are essential to capture the ‘smile’ effect of implied volatilities; cf., for instance, Bodurtha and

Courtadon (1987) for PHLX foreign currency options and Lewis (2000). We denote these con-

ditional moments by Mgd
1 , Mgd

2c , Mgd
3c and Mgd

4c . Here we state Mgd
1 , Mgd

2c and the calculations

are given in Appendix A. The third and the fourth conditional moments are more involved and

are available from the authors on request.

Proposition 3.1 Let V = (Vt)t≥0 to satisfy the stochastic differential equation (2). Given

(V0, c1) ∈ R+ × R+ and c2 > c2
3, the first and the second conditional moment of the integrated

variance V T are

Mgd
1 := E[V T |V0] =

c1

c2
+ (V0 − c1

c2
)
1− e−c2T

c2T
, (13)

Mgd
2c := E[(V T −Mgd

1 )
2|V0] = −e−2 T c2 (c2 V0 − c1)

2

T 2 c4
2

+
2 e(c23−2 c2) T (2 c2

1 + 2 c1 (c2
3 − 2 c2)V0 + (2 c2

2 − 3 c2 c2
3 + c4

3) V 2
0 )

T 2 (c2 − c2
3)

2 (2 c2 − c2
3)

2

−c2
3 (c2

1 (4 c2 (3− T c2) + (2 T c2 − 5) c2
3) + 2 c1 c2 (−2 c2 + c2

3) V0 + c2
2 (−2 c2 + c2

3) V 2
0 )

T 2 c4
2 (−2 c2 + c2

3)
2

+
2 e−T c2 c2

3 (2 c2
1 (T c2

2 − (1 + T c2) c2
3) + 2 c1 c2

2 (1− T c2 + T c2
3)V0 + c2

2 (c2
3 − c2) V 2

0 )

T 2 c4
2 (c2 − c2

3)
2 .

(14)

These moments are obtained using properties of Brownian motion such as independence and

stationarity of non-overlapping increments and the linearity of dVt in Vt. As already observed,

for c1 = 0 the GARCH diffusion process reduces to the log-normal process with drift and then

Mgd
1 , Mgd

2c reduce to the conditional mean and variance of V T in Hull and White (1987), p. 287.

Given the first four conditional moments of V T , under the GARCH diffusion model the call

price is

C̃gd = Cbs(M
gd
1 )+

1
2

Mgd
2c

∂2Cbs

∂V
2
T

∣∣∣∣∣
V T =Mgd

1

+
1
6

Mgd
3c

∂3Cbs

∂V
3
T

∣∣∣∣∣
V T =Mgd

1

+
1
24

Mgd
4c

∂4Cbs

∂V
4
T

∣∣∣∣∣
V T =Mgd

1

.

(15)

Although Mgd
1 , Mgd

2c , Mgd
3c and Mgd

4c are rather nasty, the closed-form approximation formula (15)

can be easily implemented in any software package (such as Excel spread sheets) providing option

prices by just plugging in model parameters without any computational efforts.
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As we will show in the next section, our approximation formula (15) is very accurate for

a large set of reasonable parameters. Intuitively, when the time to maturity T is ‘short’, V T

is not too far from Mgd
1 := E[V T |V0], then we expect approximation (15) to converge quickly.

When the time to maturity T increases, Mgd
1 tends to the run mean value of V, E[Mgd

1 ] = c1/c2,

and M2c, M3c and M4c go to zero. Therefore, we expect the approximation formula (15) to

work well also for long maturities. By contrast, in the Hull and White (1987) model, where the

variance Vt follows a log-normal process without drift, M2c and M3c tend to infinity when T

increases and the series (11) fails to give the right price; cf. Hull and White (1987) and Gesser

and Poncet (1997). The effect of moving to a mean reverting process from a log-normal process

is to avoid that the variance explodes or goes to zero when T increases.

Lewis (2000) derived a closed-form approximation for European option prices for a large

class of stochastic volatility models including the GARCH diffusion model (7)–(8). Lewis’s

approximation formula for European option prices is based on second order Taylor expansion

of some complex integrals around c3 = 0; see Lewis (2000), p. 77–84. When c3 = 0, V T

is deterministic and equals to Mgd
1 . Indeed, it can be shown that Lewis’s approximation is

a particular case of our approximation (15) and is obtained by (15) neglecting terms o(c2
3).

Therefore, for the GARCH diffusion model, our approximation is more accurate than the Lewis’s

one.

In the following section, by Monte Carlo simulations we study the accuracy of the approxi-

mation formula (15).

4 Monte Carlo Simulations

In order to verify the accuracy of the approximation (15) we compute by Monte Carlo simulations

European option prices. The advantage of using Monte Carlo estimates is that the standard

error of estimates is known. Precisely, we compute put option prices7 implied by (9) using the

conditional Monte Carlo method; cf. Boyle, Bradie and Glasserman (1997).

Specifically, we divide the time interval [0, T ] into s equal subintervals and we draw s indepen-

dent standard normal variables (υi)i=1,...,s. We simulate the random variable Vt in (8) over the

discrete time iT/s, for i = 1, . . . , s, using the Milstein scheme (cf. Kloeden and Platen (1992))

Vi = c∗1 ∆t + Vi−1(1− c∗2 ∆t + c3

√
∆t υi) +

1
2

c2
3 V 2

i−1 ((
√

∆t υi)2 −∆t),

where ∆t := T/s. Then, we compute the Black and Scholes put option price P
(n)
bs with squared

7Monte Carlo standard errors are generally smaller for put option prices than for call option prices as in the

first case payoffs are bounded. Using the put-call parity call option prices are readily computed.
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volatility s−1
∑s

i=1 Vi. Finally, iterating this procedure N times we obtain the Monte Carlo

estimate for the put option price

Pmc := N−1
N∑

n=1

P
(n)
bs ,

with the corresponding Monte Carlo standard error

emc :=

√
N−1

∑N
n=1(P

(n)
bs − Pmc)2√

N
.

When N goes to infinity, Pmc converges in probability to the put option price implied by (9).

Notice that we do not need to simulate the price process S.

To simulate the variance process (8) we use parameter values inferred from empirical esti-

mates of model (7)–(8). Typically, for currency and index daily log-returns the unconditional

mean of V , c∗1/c∗2, ranges from 0.01 to 0.1 per year. The ‘half life’8 varies from few days to

about a half year; cf. Chesney and Scott (1989), Taylor and Xu (1994), Xu and Taylor (1994),

Guo (1996, 1998) and Fouque, Papanicolaou and Sircar (2000). This implies that c∗2 ranges

from 1 to 40. Moreover, empirical estimates of discrete GARCH(1,1) model on currency and

index daily log-returns imply values of c3 ranging from about 1 to 4; cf., for instance, Hull and

White (1987a, 1988) and Guo (1996,1998). For stock log-returns, estimates of c3 are generally

smaller.

For the Monte Carlo simulations, we consider time to maturities for European put options

ranging from 30 to 504 days. We wrote a Matlab code to run N = 106 simulations. The

computation time goes from about 14 hours for T = 30 days to 15 hours for T = 504 days on a

PC Pentium IV 1GHz, running Windows XP.

In Table 1 we simulate the risk-adjusted variance process (8) using parameter values that

we infer (cf. Nelson (1990)) from the GARCH(1,1) estimates in Guo (1996) for the dollar/yen

exchange rates9, i.e. c∗1 = 0.16, c∗2 = 18 and c3 = 1.8. The variance process is quickly mean

reverting (the half life is about 10 days) and rather volatile, the two-standard deviation range

for V is from 0.003 to 0.016; see equations (6). Table 1 shows the Monte Carlo put price

Pmc, the put price P̃ gd given by the series approximation (15), the pricing error ep% defined as

ep% := 100×(Pmc−P̃ gd)/Pmc and the Monte Carlo standard error emc. All errors are practically

negligible across all strikes and maturities and the average error is −0.025%. Although the

variance process is rather volatile, the high mean reversion rate c∗2 implies that the integrated

variance process V T tends to stay around E[V T |V0] and then the approximation (15) works well.
8The ‘half life’ is the time necessary after a shock to halve the deviation of Vt from its run mean value, given

that there are no more shocks. For this model the half life is equal to 252 × ln (2)/c∗2 days.
9As in Guo (1996) we assume the volatility risk premium λ(S, V, t) = 0.
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In Table 2 we simulate the variance process (8) using the risk-neutral parameters estimated

by Melenberg and Werker (2001) for the Dutch EOE index. The volatility risk premium was

estimated using European call options on the Dutch index. The correlation between price and

volatility was negligible. The risk-neutral coefficients are c∗1 = 0.53, c∗2 = 29.23 and c3 = 3.65.

The run mean value of the variance is 0.018 and the two-standard deviation range for V is

0–0.03. Table 2 is organized as Table 1. Also in this case pricing errors ep% are almost always

lower than 1% (except for one case). The average error is −0.011%.

In Table 3 and Table 4 we use parameter values that give reasonable variance process as

discussed in Hull and White (1988). In Table 3 we set c∗1 = 0.18, c∗2 = 2 and c3 = 0.8. The

parameter value c∗2 is quite small and implies a ‘slow’ mean reverting variance process (8), the

half life of about 88 days. The unconditional mean and standard deviation of V are 0.09 and

0.03, respectively, and the two-standard deviation range for V is 0.01–0.16. As the volatility

of Vt is not too large, the process V T tends to stay around E[V T |V0] and hence the series

approximation (15) is very accurate. The average pricing error is −0.044%. In Table 4 we set

c∗1 and c∗2 as in Table 3 and c3 = 1.2. This implies that the standard deviation of V is 0.06 and

the two-standard deviation range for V is 0–0.22. Table 4 shows that pricing errors ep% are

still very small (the average pricing error is −0.2%) but slightly larger than in Table 3 as the

variance process is more volatile than in the previous case.

Finally, in Table 5 we set c∗1 = 0.09, c∗2 = 4 and c3 = 1.2 as in Lewis (2000). The unconditional

mean of V is 0.02, the ‘half life’ is about 43 days and the two-standard deviation range for V is

0.001–0.04. Also in this case errors ep% are generally quite small and the average pricing error

is −0.018%.

We simulate the variance process (8) also for other reasonable parameter choices (not re-

ported here) and we found similar results. The approximation formula (15) induces pricing

errors less than 1% for at the money options and less than 2% for out of the money options.

Bid-ask spreads on currency option prices are larger than 2% of the prices for out of the money

options and about 1% for more liquid, at the money currency options. Then, the approximation

formula (15) gives accurate prices within the tolerance imposed by market frictions.

5 The Implied Volatility Surface

In this section we study the implied volatility induced by the GARCH diffusion model (7)–(8), i.e.

the volatility σ2
imp which gives the Black and Scholes option price equals to the GARCH diffusion

option price, Cbs(σ2
imp) = C̃gd. Typically, to solve the implicit equation Cbs(σ2

imp) = C̃gd the

11



Newton-Raphson method is used10. Hence, we propose to compute σ2
imp as

σ2
imp = Mgd

1 +
C̃gd − Cbs(M

gd
1 )

∂Cbs/∂V T

∣∣
V T =Mgd

1

, (16)

that is a one-step Newton-Raphson algorithm starting at Mgd
1 . As σ2

imp → Mgd
1 when T →∞,

Mgd
1 is a sensible starting point for the algorithm and one iteration gives very accurate results11.

Given C̃gd implementing (16) is straightforward and the model (7)–(8) can be easily calibrated

to the market implied volatilities.

Renault and Touzi (1996) show that, for any stochastic volatility process, the assumption of

no correlation between price and variance induces symmetric ‘volatility smiles’, i.e. symmetric

shape with respect to the forward price of the implied volatility plotted as a function of the strike

price; cf. also Hull and White (1987). The functional dependence of implied volatilities on time

to maturities, i.e. the ‘term structure patterns’, depends on the specific variance process. In

the following we qualitatively study the volatility smile and the term structure pattern induced

by the GARCH diffusion model. As in Table 5 we set c∗1 = 0.09, c∗2 = 4 and c3 = 1.2 and

we compute the GARCH diffusion option prices (15). Then, by formula (16) we obtain the

implied volatilities for different strikes and maturities. Figure 1 shows volatility smiles for time

to maturities equal to 30, 60, 90 and 120 days. Figure 2 shows the volatility surface for time to

maturity between 0 and 120 days and strike prices between 90 and 110. As expected, volatility

smiles are quite symmetric with respect to the forward price. Moreover, the convexity of the

volatility surface increases when the time to maturity decreases. These features of implied

volatility surface were observed for all parameter choices (positive parameters). When the time

to maturity increases the volatility surface flattens because the random variable V T converges

to the the run mean value c∗1/c∗2 by the Ergodic theorem and σ2
imp → c∗1/c∗2 for all strike prices.

These results are in qualitative agreement with the empirical evidence on volatility surfaces

observed in currency option markets, where volatility smiles are quite symmetric with respect

to the forward price, very pronounced at short maturities and almost flat for long maturities;

cf., for instance, Chesney and Scott (1989), Melino and Turbull (1990), Taylor and Xu (1994),

and Bollerslev and Zhou (2002).
10See for instance the Matlab function blsimpvdiv and the Mathematica function BlackScholesCallImpVol.
11We compared implied volatilities given by (16) with implied volatilities returned by the Matlab function

blsimpvdiv and the errors were less than 0.01% for all the parameters used in Section 4.
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6 Conclusions

We derive analytically the first four conditional moments of the integrated variance under the

GARCH diffusion model. Using these conditional moments we obtain an analytical closed-

form approximation formula C̃gd (15) which allows us to price European options under the

GARCH diffusion model. This formula can be easily implemented in any software package and

provides option prices without any computational efforts. Monte Carlo simulations show that

this approximation is accurate across different strikes and maturities for a large set of reasonable

parameters. Finally, using the approximation formula (15) we study implied volatility surfaces

induced by GARCH diffusion models. We find that volatility smiles and term structure patterns

of implied volatilities are in qualitative agreement with volatility surfaces typically observed in

the foreign exchange option markets.

13



A Proof of Proposition 3.1

In the following, we derive the first two conditional moments of the integrated variance V T for

the GARCH diffusion process,

V T =
V0

T

∫ T

0
dt e−(c2+ 1

2
c23) t ec3Wt +

c1

T

∫ T

0
dt

∫ t

0
ds e(c2+ 1

2
c23)(s−t) ec3 (Wt−Ws). (17)

To prove Proposition 3.1 we recall that, if w is a normal random variable w ∼ N (0, t)

E[eλw] = e
λ2 t
2 . (18)

We also need the following lemma

Lemma A.1

∀ x > y > 0,

F (x, y) = e−(c2+ 1
2

c23)(x+y) E[ec3(Wx+Wy)] = e−c2 xe(c23−c2)y. (19)

∀ x > y > α > 0,

G(x, y, α) = e−(c2+ 1
2

c23)(x+y−α) E[ec3(Wx+Wy−Wα)] = e−c2 xe(c23−c2)ye(c2−c23)α. (20)

∀ x > α > y > 0,

H(x, y, α) = e−(c2+ 1
2

c23)(x+y−α) E[ec3(Wx+Wy−Wα)] = e−c2 (x +y−α). (21)

∀ x > y > α > β > 0,

L(x, y, α, β) = e−(c2+ 1
2
c23)(x+y−α−β)E[ ec3(Wx+Wy−Wα−Wβ) ] = e−c2 xe(c23−c2)ye(c2−c23)αec2β.(22)

∀ x > α > y > β > 0,

M(x, y, α, β) = e−(c2+ 1
2
c23)(x+y−α−β)E[ ec3(Wx+Wy−Wα−Wβ) ] = e−c2 (x+y−α−β). (23)

Proof. To prove (19) we write Wx + Wy = (Wx − Wy) + 2Wy. As (Wx − Wy) and Wy

are non-overlapping increments of the Brownian motion W , (Wx − Wy) ∼ N (0, x − y) and

2Wy ∼ N (0, 4y) one has

E[ec3(Wx+Wy)] = E[ec3 (Wx−Wy)+2Wy ] = E[ec3 (Wx−Wy)]E[ec3 2Wy ],

then formula (19) follows directly from (18).

To prove (20), use Wx + Wy −Wα = (Wx − Wy) + 2 (Wy −Wα) + Wα.

To prove (21), use Wx + Wy −Wα = (Wx −Wα) + Wy.

To prove (22), use Wx + Wy −Wα −Wβ = (Wx − Wy) + 2 (Wy −Wα) + Wα −Wβ.

To prove (23), use Wx + Wy −Wα −Wβ = (Wx −Wα) + (Wy −Wβ). 2

14



A.1 First conditional moment

The first conditional moment of V T is given by

Mgd
1 := E[V T | V0]

=
V0

T

∫ T

0
dt e−(c2+ 1

2
c23) t E[ec3 Wt ] +

c1

T

∫ T

0
dt

∫ t

0
ds e(c2 + 1

2
c23) (s−t) E[ec3 (Wt−Ws)].

As Wt ∼ N (0, t) and Wt−Ws ∼ N (0, t−s), using (18) we get the first conditional moment (13)

in Proposition 3.1,

Mgd
1 :=

V0

T

∫ T

0
dt e−(c2+ 1

2
c23)t e

1
2

c23 t +
c1

T

∫ T

0
dt

∫ t

0
ds e(c2+ 1

2
c23)(s−t) e

1
2
c23(t−s)

= V0

∫ T

0
e−c2 t dt + c1

∫ T

0
dt

∫ t

0
ds ec2(s−t) =

V0

c2

(
1− e−c2T

T

)
+

c1

T

∫ T

0

1− e−c2 t

c2
dt

=
c1

c2
+

(
V0 − c1

c2

)
1− e−c2T

c2T
.

A.2 Second conditional moment

The second conditional moment of V T is given by

E[V 2
T | V0] = E

[
1
T 2

∫ T

0
dr2

∫ T

0
dr1 (Vr1 Vr2)

]
=

1
T 2

∫ T

0
dr2

∫ T

0
dr1 E[Vr1 Vr2 ]

=
2!
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[Vr1 Vr2 ]

=
2!
T 2

∫ T

0
dr2

∫ r2

0
dr1

(
E[A] + E[B] + E[C] + E[D]

)
, (24)

where

A := V 2
0 e−(c2+ 1

2
c23)(r1+r2)+c3(Wr1 +Wr2),

B := c1 V0 e−(c2+ 1
2

c23)r1+c3 Wr1

∫ r2

0
ds2 e(c2+ 1

2
c23)(s2−r2)+c3(Wr2−Ws2),

C := c1 V0 e−(c2+ 1
2

c23)r2+c3Wr2

∫ r1

0
ds1 e(c2+ 1

2
c23)(s1−r1)+c3(Wr1−Ws1),

D := c2
1

∫ r1

0
ds2

∫ r2

0
ds1 e(c2+ 1

2
c23)(s1−r1+s2−r2)ec3(Wr1−Ws1+Wr2−Ws2).

We compute each addend in (24).

• Calculation of

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[A] =

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 V 2

0 e−(c2+ 1
2
c23)(r1+r2)E[ec3(Wr1+Wr2)].

15



As r2 > r1 > 0, we use formula (19) with x = r2 and y = r1

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[A] =

2V 2
0

T 2

∫ T

0
dr2

∫ r2

0
dr1 F (r2, r1),

and iterating integrations

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[A] =

2V 2
0

T 2

[
e−(2c2−c23)T

(c2
3 − 2c2)(c2

3 − c2)
+

e−c2T

c2 (c2
3 − c2)

− 1
c2 (c2

3 − 2c2)

]
.(25)

• Calculation of

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[B] =

2 c1 V0

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r1

0
ds1 e−(c2+ 1

2
c23)(r2+r1−s1) E[ec3(Wr2 + Wr1 −Ws1)].

As r2 > r1 > s1 > 0, we use formula (20) with x = r2, y = r1 and α = s1 and we get

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[B] =

2 c1 V0

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r1

0
ds1 G(r2, r1, s1)

=
c1 V0

T 2 c4
2 (c2 − c2

3)
2 (−2 c2 + c2

3)
×

[
− c2 e−T c2 (−2 c2 + c2

3)
(
c2
2 (−2 + T c2) + 2 c2 c2

3 − (2 + T c2) c4
3

)

+ c2 (c2 − c2
3)

2 (− 2 c2 (−1 + T c2) + (−2 + T c2) c2
3

)
+ 2 c4

2 eT (c23−2 c2)
]
. (26)

• Calculation of

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[C].

Simply notice that

∫ T

0
dr2

∫ T

0
dr1 E[B] =

∫ T

0
dr2

∫ T

0
dr1 E[C]. (27)

• Calculation of

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[D] =

2 c2
1

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r2

0
ds2

∫ r1

0
ds1

(
e−(c2+ 1

2
c23)(r2+r1−s2−s1)E[ ec3(Wr2+Wr1−Ws1−Ws2) ]

)
.
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We divide the integration domain of s2 and s1 as follows

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[D] =

2 c2
1

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r1

0
ds2

∫ s2

0
ds1

(
...

)
+ (28)

+
2 c2

1

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r1

0
ds2

∫ r1

s2

ds1

(
...

)
+ (29)

+
2 c2

1

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r2

r1

ds2

∫ r1

0
ds1

(
...

)
. (30)

The previous partition allows us to use

formula (22) with x = r2, y = r1, α = s2, β = s1 in (28) as T > r2 > r1 > s2 > s1 > 0;

formula (22) with x = r2, y = r1, α = s1, β = s2 in (29) as T > r2 > r1 > s1 > s2 > 0;

formula (23) with x = r2, y = r1, α = s2, β = s1 in (30) as T > r2 > s2 > r1 > s1 > 0;

then

2
T 2

∫ T

0
dr2

∫ r2

0
dr1 E[D] =

=
2 c2

1

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r1

0
ds2

∫ s2

0
ds1 L(r2, r1, s2, s1)

+
2 c2

1

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r1

0
ds2

∫ r1

s2

ds1 L(r2, r1, s1, s2)

+
2 c2

1

T 2

∫ T

0
dr2

∫ r2

0
dr1

∫ r2

r1

ds2

∫ r1

0
ds1 M(r2, r1, s2, s1),

and iterating integrations

2
T 2

∫ T

0

∫ r2

0
E[D] dr1 dr2 =

c2
1

T 2 c4
2 (c2 − c2

3)
2 (−2 c2 + c2

3)
2×

[
− 2 e−T c2

(− 2 c2 + c2
3

)2 (
c2
2 − T c3

2 − 2 c2 c2
3 + (3 + T c2) c4

3

)

+
(
c2 − c2

3

)2 ((
4 c2

2 (−1 + T c2)
2 − 4 c2 (4 + T c2 (−3 + T c2)) c2

3 + (6 + T c2 (−4 + T c2)) c4
3

)
+

+4 eT (c23−2 c2) c4
2

]
.

(31)
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Summing (25), (26), (27) and (31) we get the second conditional moment of V T :

Mgd
2 := E[V 2

T | V0] = 1

T 2 c42 (c2−c23)
2
(−2 c2+c23)

2[
e−2 T c2

(
− 2 eT c2

(− 2 c2 + c2
3

)2

(
c2
1

(
c2
2 − T c3

2 − 2 c2 c2
3 + (3 + T c2) c4

3

)

+c1 c2

(
c2
2 (−2 + T c2) + 2 c2 c2

3 − (2 + T c2) c4
3

)
V0+

c3
2

(
c2 − c2

3

)
V 2

0

)
+ e2 T c2

(
c2 − c2

3

)2 (
c2
1

(
4 c2

2 (−1 + T c2)
2

−4 c2 (4 + T c2 (−3 + T c2)) c2
3 + (6 + T c2 (−4 + T c2)) c4

3

)
+

2 c1 c2

(
2 c2 − c2

3

) (
2 c2 (−1 + T c2)− (−2 + T c2) c2

3

)

V0 + 2 c3
2

(
2 c2 − c2

3

)
V 2

0

)
+ 2 eT c23 c4

2

(
2 c2

1 − 2 c1

(
2 c2 − c2

3

)
V0+(

2 c2
2 − 3 c2 c2

3 + c4
3

)
V 2

0

))]
.

(32)

The second central conditional moment of V T , Mgd
2c , stated in (14) Proposition 3.1 is given by

Mgd
2c = Mgd

2 − (Mgd
1 )2.
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Figure 1: Volatility smiles for maturities of 30, 60, 90 and 120 days and the parameter choice S0 = 100,

r = 0, d = 0; dV = (0.09− 4 V )dt + 1.2V dW , V0 = 0.0225, as in Table 5.
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Figure 2: Volatility Surface for maturities T ∈ [30, 120] days, strikes K ∈ [90, 110] and the parameter choice

S0 = 100, r = 0, d = 0; dV = (0.09− 4 V )dt + 1.2 V dW , V0 = 0.0225, as in Table 5.
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maturity strike Pmc P̃ gd ep% emc × 104

90 0.0008 0.0008 −0.6840 0.0129

95 0.0800 0.0800 0.1025 0.3610

30 days 100 1.2921 1.2924 −0.0267 1.1997

105 5.0999 5.0998 0.0020 0.4231

110 10.0023 10.0024 −0.0002 0.0294

90 0.0184 0.0184 −0.2445 0.1330

95 0.2993 0.2992 0.0199 0.8289

60 days 100 1.8284 1.8290 −0.0281 1.5411

105 5.3497 5.3496 0.0008 0.9215

110 10.0363 10.0364 −0.0002 0.2224

90 0.0664 0.0664 0.0189 0.30666

95 0.5401 0.5401 −0.0003 1.0964

90 days 100 2.2411 2.2414 −0.0166 1.678

105 5.6155 5.6155 −0.0003 1.1971

110 10.1131 10.1131 0.0004 0.45367

90 0.1393 0.1393 0.0210 0.47265

95 0.7760 0.7760 −0.0093 1.2603

120 days 100 2.5890 2.5893 −0.0125 1.7489

105 5.8721 5.8722 −0.0015 1.3634

110 10.2187 10.2187 0.0004 0.65406

90 0.3295 0.3294 0.0171 0.7371

95 1.2163 1.2163 −0.0038 1.4470

180 days 100 3.1727 3.1729 −0.0052 1.8186

105 6.3464 6.3465 −0.0009 1.5509

110 10.4734 10.4734 0.0005 0.9500

90 0.5928 0.5929 −0.0096 0.9571

95 1.6919 1.6921 −0.0108 1.5684

252 days 100 3.7550 3.7553 −0.0071 1.8615

105 6.8550 6.8552 −0.0029 1.1821

110 10.8062 10.8063 −0.0007 1.1863

90 1.5438 1.5440 −0.0101 1.3327

95 3.0577 3.0579 −0.0076 1.7336

504 days 100 5.3116 5.3119 −0.0050 1.9141

105 8.3052 8.3054 −0.0029 1.8354

110 11.9443 11.9445 −0.0015 1.5584

Table 1: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd put prices given

by (15); ep% = 100 × (Pmc − P̃ gd)/Pmc; emc Monte Carlo standard error. Model parameters:

S0 = 100, r = 0, d = 0; dV = (0.16 − 18 V )dt + 1.8 V dW, V0 = 0.01.
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maturity strike Pmc P̃ gd ep% emc × 104

90 0.0236 0.0240 −1.5083 0.3503

95 0.3093 0.3071 0.7134 1.5033

30 days 100 1.8344 1.8389 −0.2473 2.6253

105 5.3602 5.3580 0.0398 1.6594

110 10.0436 10.0435 0.0016 0.5242

90 0.1508 0.1495 0.8793 0.9954

95 0.7899 0.7898 0.0177 2.3314

60 days 100 2.6014 2.6052 −0.1464 3.1471

105 5.8867 5.8868 −0.0017 2.5150

110 10.2325 10.2307 0.0176 1.3279

90 0.3449 0.3438 0.3171 1.4788

95 1.2348 1.2355 −0.0563 2.7146

90 days 100 3.1915 3.1942 −0.0859 3.3572

105 6.3659 6.3668 −0.0139 2.9048

110 10.4914 10.4903 0.0108 1.8716

90 0.5668 0.5661 0.1128 1.8267

95 1.6394 1.6403 −0.0526 2.9359

120 days 100 3.6891 3.6911 −0.0555 3.4717

105 6.7987 6.7997 −0.0147 3.1284

110 10.7723 10.7717 0.0049 2.2435

90 1.0310 1.0311 −0.0083 2.2774

95 2.3550 2.3561 −0.0457 3.1795

180 days 100 4.5229 4.5245 −0.0361 3.5916

105 7.5601 7.5613 −0.0156 3.3733

110 11.3372 11.3375 −0.0024 2.7073

90 1.5777 1.5780 −0.0217 2.6024

95 3.0980 3.0990 −0.0314 3.3406

252 days 100 5.3549 5.3561 −0.0239 3.6742

105 8.3478 8.3488 −0.0126 3.5354

110 11.9831 11.9836 −0.0042 3.0333

90 3.2715 3.2724 −0.0271 3.0858

95 5.1528 5.1540 −0.0228 3.5523

504 days 100 7.5754 7.5767 −0.0172 3.7759

105 10.5187 10.5199 −0.0118 3.7472

110 13.9310 13.9320 −0.0075 3.5050

Table 2: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd put prices given

by (15); ep% = 100 × (Pmc − P̃ gd)/Pmc; emc Monte Carlo standard error. Model parameters:

S0 = 100, r = 0, d = 0; dV = (0.53 − 29.23 V )dt + 3.65 V dW, V0 = 0.01.
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maturity strike Pmc P̃ gd ep% emc × 104

90 0.7901 0.7900 0.0099 1.6735

95 2.0011 2.0010 0.0062 2.5395

30 days 100 4.1169 4.1169 0.0022 2.9438

105 7.1841 7.1840 0.0018 2.7010

110 11.0473 11.0472 0.0010 2.0293

90 1.9061 1.9061 −0.0017 4.0187

95 3.5125 3.5133 −0.0222 5.0139

60 days 100 5.8083 5.8095 −0.0199 5.4663

105 8.7862 8.7871 −0.0097 5.3017

110 12.3644 12.3646 −0.0015 4.6523

90 2.8985 2.8990 −0.0155 6.0747

95 4.7109 4.7128 −0.0390 7.0986

90 days 100 7.1015 7.1040 −0.0346 7.5819

105 10.0522 10.0542 −0.0198 7.4915

110 13.5044 13.5052 −0.0059 6.9242

90 3.7858 3.7873 −0.0410 7.8285

95 5.7337 5.7372 −0.0606 8.8537

120 days 100 8.1892 8.1935 −0.0523 9.3602

105 11.1311 11.1348 −0.0334 9.3346

110 14.5125 14.5147 −0.0148 8.8543

90 5.3378 5.3424 −0.0868 10.6045

95 7.4645 7.4717 −0.0963 11.6077

180 days 100 10.0110 10.0192 −0.0824 12.1468

105 12.9552 12.9628 −0.0590 12.2263

110 16.2621 16.2678 −0.0351 11.9015

90 6.9387 6.9458 −0.1024 13.0138

95 9.2060 9.2158 −0.1065 13.9836

252 days 100 11.8297 11.8406 −0.0924 14.5487

105 14.7891 14.7995 −0.0702 14.7208

110 18.0562 18.0646 −0.0469 14.5415

90 11.3404 11.3521 −0.1031 17.3351

95 13.8865 13.9001 −0.0982 18.2109

504 days 100 16.6835 16.6980 −0.0871 18.8137

105 19.7148 19.7292 −0.0730 19.1580

110 22.9623 22.9757 −0.0581 19.2664

Table 3: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd put prices given

by (15); ep% = 100 × (Pmc − P̃ gd)/Pmc; emc Monte Carlo standard error. Model parameters:

S0 = 100, r = 0, d = 0; dV = (0.18− 2 V ) dt + 0.8 V dW , V0 = 0.09.
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maturity strike Pmc P̃ gd ep% emc × 104

90 0.7901 0.7894 0.0882 2.5219

95 1.9925 1.9924 0.0036 3.8025

30 days 100 4.1038 4.1043 −0.0133 4.4041

105 7.1747 7.1746 0.0004 4.0438

110 11.0457 11.0450 0.0067 3.0519

90 1.8942 1.8934 0.0395 6.0288

95 3.4865 3.4906 −0.1182 7.4909

60 days 100 5.7761 5.7826 −0.1131 8.1602

105 8.7583 8.7629 −0.0518 7.9202

110 12.3481 12.3483 −0.0011 6.9710

90 2.8713 2.8737 −0.0855 9.0975

95 4.6673 4.6791 −0.2543 10.5933

90 days 100 7.0509 7.0669 −0.2268 11.3051

105 10.0057 10.0186 −0.1283 11.1786

110 13.4706 13.4754 −0.0353 10.3598

90 3.7432 3.7529 −0.2592 11.7084

95 5.6738 5.6972 −0.4126 13.1994

120 days 100 8.1220 8.1511 −0.3588 13.9428

105 11.0676 11.0927 −0.2267 13.9152

110 14.4615 14.4753 −0.0955 13.2316

90 5.2682 5.3010 −0.6238 15.8534

95 7.3776 7.4311 −0.7247 17.3052

180 days 100 9.9165 9.9784 −0.6242 18.0949

105 12.8633 12.9202 −0.4422 18.2261

110 16.1813 16.2224 −0.2536 17.7801

90 6.8458 6.9104 −0.9427 19.4864

95 9.0969 9.1869 −0.9895 20.8891

252 days 100 11.7133 11.8138 −0.8583 21.7182

105 14.6740 14.7694 −0.6502 21.9888

110 17.9501 18.0272 −0.4297 21.7612

90 11.2078 11.3528 −1.2940 26.2295

95 13.7415 13.9123 −1.2428 27.5161

504 days 100 16.5319 16.7143 −1.1035 28.4149

105 19.5621 19.7423 −0.9214 28.9460

110 22.8135 22.9793 −0.7267 29.1419

Table 4: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd put prices given

by (15); ep% = 100 × (Pmc − P̃ gd)/Pmc; emc Monte Carlo standard error. Model parameters:

S0 = 100, r = 0, d = 0; dV = (0.18 − 2 V )dt + 1.2 V dW, V0 = 0.09.
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maturity strike Pmc P̃ gd ep% emc × 104

90 0.0416 0.0418 −0.4024 0.2796

95 0.4271 0.4269 0.0559 1.2305

30 days 100 2.0543 2.0546 −0.0118 2.0377

105 5.4912 5.4910 0.0044 1.3532

110 10.0743 10.0744 −0.0011 0.4321

90 0.2403 0.2395 0.3186 1.2698

95 1.0088 1.0088 0.0013 2.7060

60 days 100 2.8976 2.8995 −0.0661 3.5178

105 6.1229 6.1230 −0.0019 2.9091

110 10.3537 10.3527 0.0097 1.6629

90 0.5059 0.5040 0.3736 2.2925

95 1.5236 1.5243 −0.0482 3.8280

90 days 100 3.5450 3.5484 −0.0953 4.5905

105 6.6746 6.6756 −0.0146 4.0842

110 10.6943 10.6924 0.0180 2.8388

90 0.7895 0.7873 0.2753 3.1594

95 1.9843 1.9862 −0.0935 4.6713

120 days 100 4.0917 4.0965 −0.1164 5.3827

105 7.1657 7.1679 −0.0305 4.9653

110 11.0435 11.0416 0.0170 3.8040

90 1.3561 1.3550 0.0806 4.4457

95 2.7925 2.7964 −0.1395 5.8221

180 days 100 5.0114 5.0181 −0.1319 6.4495

105 8.0238 8.0281 −0.0539 6.1656

110 11.7203 11.7200 0.0026 5.2043

90 2.0035 2.0036 −0.0071 5.4574

95 3.6288 3.6333 −0.1240 6.6719

252 days 100 5.9334 5.9400 −0.1108 7.2297

105 8.9091 8.9140 −0.0551 7.0508

110 12.4759 12.4770 −0.0084 6.2867

90 3.9613 3.9637 −0.0605 7.0744

95 5.9352 5.9394 −0.0710 7.9420

504 days 100 8.4032 8.4082 −0.0592 8.3767

105 11.3436 11.3481 −0.0396 8.3715

110 14.7118 14.7148 −0.0208 7.9875

Table 5: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd put prices given

by (15); ep% = 100 × (Pmc − P̃ gd)/Pmc; emc Monte Carlo standard error. Model parameters:

S0 = 100, r = 0, d = 0; dV = (0.09 − 4 V )dt + 1.2 V dW, V0 = 0.0225.
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