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Abstract

Pricing high dimensional American options is a difficult problem in
mathematical finance. Many simulation methods have been proposed,
but Monte Carlo is numerically intensive, and therefore slow. We de-
rive an analytic expression for a new type of multi-asset barrier option
using Laplace transform methods. The solution is assumed to be ra-
dially symmetric in the normalized non dimensional variables, hence
the name “Radial Barrier Options”. In the single-asset case our results
reduce to published results for American binary barrier options.

1 Introduction

Pricing American options is a difficult problem in mathematical fi-
nance (Myneni [1992]). Tree based methods (Cox et al. [1979]) and
finite difference methods (Brennan and Schwartz [1977]) work well for
a single underlying asset as it is possible to solve backwards through
time from the payoff condition at the expiry of the option. However,
these methods quickly become impractical for more than three underly-
ing assets (Tavella [2002]). Monte Carlo methods (Boyle [1977], Boyle
et al. [1997]) have good convergence properties for higher dimensional
problems and were used for European options in Barraquand [1993].
American options are more difficult to value with simulation as the
paths are generated forwards through time, so it is non-trivial to de-
termine the optimal exercise strategy for the option.

An important simulation method for American options was Tilley
(Tilley [1993]). This and other early methods such as (Barraquand
and Martineau [1995], Fu and Hu [1995], Bossaerts [1989], Broadie and
Glasserman [1997a,b]) are reviewed in (Boyle et al. [1997]). Since then
the stochastic mesh method (Broadie and Glasserman [1997b]) has
been modified to use low-discrepancy sequences (Boyle et al. [2000]).
Other methods include; the parameterization of the optimal exercise
boundary (Bossaerts [1989], Fu and Hu [1995], Ibáñez and Zapatero
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[2001]), a quantization tree algorithm (Bally et al. [2002]), wavelets
(Dempster et al. [2000], Dempster and Eswaran [2001]), and an irregu-
lar grid approximation (Berridge and Schumacher [2002]). Regression
methods include (Longstaff and Schwartz [2001], Carriere [1996], Tsit-
siklis and Van Roy [2001]). Primal-Dual representations of the Ameri-
can option problem allow both an upper and lower bound to be calcu-
lated (Andersen and Broadie [2001], Haugh and Kogan [2001], Rogers
[2002]). Papers using a Malliavin calculus approach include (Fournié
et al. [1999, 2001], Lions and Regnier [2001], Bally et al. [2003]). A
comparison of some approaches can be found in (Fu et al. [2001]).

While Monte Carlo methods provide an approach to pricing Ameri-
can option problems they are numerically intensive and therefore slow.
As there are no closed form solutions to the American put pricing prob-
lem analytic approximations have been proposed to improve the speed
of pricing single-asset options (Geske and Johnson [1984], Barone-Adesi
and Whaley [1987], Bunch and Johnson [1992], Ju [1998], Bjerksund
and Stensland [2002]. For multi-asset options there has been some re-
search for European options (Stultz [1982], Johnson [1987]), however
in higher dimensions these formulae have to be computed numerically
(Boyle and Tse [1990]). There has been only limited research into ana-
lytic solutions for multi-asset American or compound options (Broadie
and Detemple [1997], Buchen and Skipper [2003]).

We look for multi-asset American style options that can be solved
analytically, and therefore quickly. We call this class of options “Radial
Barrier Options” as they depend on the assumption of radial symmetry
in the solution method. These options payoff if a barrier, defined as
a function of the parameters describing the process for the underlying
assets, is hit. Radial options may be useful in the financial market
place themselves, or it may be possible to use them to approximate
other, actively traded, financial products.

In Section 2 we formulate the problem, and detail the reduction,
via a series of transformations, of the multi-asset Black–Scholes equa-
tion to the standard high dimensional heat equation. In Section 3 we
find radially symmetric solutions to this problem, by using Laplace
transforms. We generalize the boundary conditions for these solutions
in Section 4 using the Laplace convolution theorem. In Section 5 we
reverse the transformations we have made to find the analytic value of
these options in the original financial variables and verify the results in
the case of one asset. Finally, we conclude and suggest possible future
directions for this work in Section 6.

2 The multi-asset Black Scholes equation

We consider a Black–Scholes economy for each asset (Black and Scholes
[1973]). The partial differential equation for the value, V , of an option
that depends on the evolution of n different underlying assets with
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price 0 < Si < ∞, where i = 1 . . . n, is

∂V

∂t
+ 1

2

n∑
ij

σijSiSj
∂2V

∂Si∂Sj
+

n∑
i

(r − qi)Si
∂V

∂Si
− rV = 0 , (1)

where r is the risk free rate, qi is the dividend yield of the ith asset,
t is time, and σij is the covariance of the ith asset with the jth asset.
Throughout this paper bold face capital letters, such as X, represent
matrices, and bold face lower case letters, such as x, represent column
vectors. The covariance matrix with elements σij , denoted by COV,
is symmetric, σij = σji. The element σii is the volatility squared of the
ith asset, σ2

i . We write the volatility as a diagonal matrix, Σ, with the
σi on the diagonal and zeros off the diagonal. The correlation between
assets i and j is written ρij , we write this as a symmetric matrix, P,
with unity on the diagonal and ρij as the off diagonal entries. The
covariance, volatility and correlation are related by σij = σi ρij σj We
write this in matrix notation as COV = ΣPΣ.

We non-dimensionalize in a similar manner to Wilmott et al. [1993].
Let E be some representative price scale of the option, and let σ be a
representative volatility. We transform the value function and variables
using

v =
V

E
, xi = log

Si

E
and τ = 1

2σ2(T − t) , (2)

where T is the expiry date of the option. Therefore τ is the risk
remaining until expiry. We also non-dimensionalize the parameters by

αij =
σij

σ2
, k0 =

r
1
2σ2

and ki =
r − qi

1
2σ2

i > 0 , (3)

where σ is a representative volatility. This gives

∂v

∂τ
=

n∑
ij

αij
∂2v

∂xi∂xj
+

n∑
i

(ki − αii)
∂v

∂xi
− k0v , (4)

where 0 < τ < 1
2σ2T and −∞ < x < ∞. Note that the normalized

covariance matrix of the αij , let us call it A, is symmetric positive
definite, as dividing by σ2 does not affect the symmetry or positive
definiteness.

2.1 Fixed boundary

We now reduce this equation to the heat equation. One way to achieve
this is to make the transformation

v(x, τ) = ea.x−bτu(x, τ) . (5)

This allows us to eliminate the u and ∂u/∂xi terms by solving equations
for a and b. Making this substitution we get the equation,

−bu +
∂u

∂τ
=

∑
ij αij

(
∂2u

∂xi∂xj
+ aj

∂u

∂xi
+ ai

∂u

∂xj
+ aiaju

)

+
∑

i (ki − αii)
(

aiu +
∂u

∂xi

)
− k0u .
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We use the fact that αij is symmetric, and that we can swap the order
of summation to write this as,

−bu +
∂u

∂τ
=

∑
ij αij

∂2u

∂xi∂xj

+
∑

i

((
2

∑
j αijaj

)
+ ki − αii

) ∂u

∂xi

+
((∑

ij aiajαij

)
+ (

∑
i(ki − αii)ai) − k0

)
u .

Setting the coefficients of ∂u/∂xi and u to zero gives n equations for
the coefficients of the first derivatives and a single equation for the
coefficient of u. First consider the coefficients of ∂u/∂xi. For each
i = 1, . . . , n, we have,∑

j

αijaj = − 1
2 (ki − αii) .

We can write this in terms of matrices as

Aa = − 1
2 k̃ ,

where k̃ is the column vector whose ith entry is ki −αii. We can solve
this for a by inverting A,

a = − 1
2A

−1k̃ . (6)

Now let us consider the equation for the coefficient of u,

b = −
∑
ij

aiαijaj −
∑

i

(ki − αii) ai + k0 .

Writing this as matrices gives,

b = −aTAa − aT k̃ + k0 ,

which, as A is symmetric, can be written,

b = − 1
4 k̃

T A−1AA−1k̃ + 1
2 k̃

T A−1k̃ + k0 ,

hence,
b = 1

4 k̃
T A−1k̃ + k0 . (7)

Therefore we have reduced (4) to an n dimensional heat equation,

∂u

∂τ
=

n∑
ij

αij
∂2u

∂xi∂xj
. (8)

Now, as A is symmetric positive definite we can write

A = QT D2 Q (9)

where Q is a rotation with QQT = 1 and QT has columns which are
the eigenvectors of A. D is a diagonal matrix of the corresponding n
eigenvalues, di. Therefore we can rotate to a new basis

z̄ = Qx , (10)

4



where x is the column vector of elements xi. which, when combined
with a scaling, zi = diz̄i (in matrix notation z = Dz̄), will convert our
xi basis into an orthonormal one, zi. This gives the result,

∂u

∂τ
=

n∑
i

∂2u

∂zi
2

. (11)

2.1.1 The one dimensional problem

We shall be able to compare our general results with published results
for the case of a single underlying asset. To this end it will be useful
to note that

k0 =
r

1
2σ2

and k1 =
r − q
1
2σ2

.

We find the one dimensional versions of (6) and (7),

a = − 1
2 (k1 − 1) and b = 1

4 (k1 − 1)2 + k0 . (12)

Writing the constants a and b in financial variables gives

a = −1
2

(
2(r − q)

σ2
− 1

)
and b =

1
4

(
2(r − q)

σ2
− 1

)2

+
2r

σ2
. (13)

2.2 Moving boundary

Another way to obtain an n dimensional heat equation is to transform
the non-dimensionalized Black-Scholes equation (4) using,

v = e−k0τw , (14)

to obtain
∂w

∂τ
=

n∑
ij

αij
∂2w

∂xi∂xj
+

n∑
i

(ki − αii)
∂w

∂xi
.

Next we remove the drifts by

yi = xi + (ki − αii)τ (15)

to get
∂w

∂τ
=

N∑
ij

αij
∂2w

∂yi∂yj
.

Note that this transformation will cause a fixed boundary in x space
to move in S space. Also, an option payoff which is a function of x in
x space will be a function of time in S space.

This is in the same form as (8), but in the yi basis, rather than the
xi basis. Again we use the eigenvector - eigenvalue decomposition (9)
to find a new basis

¯̂z = Qy ,
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where the elements of the vector y are yi, which, when combined with
one final transformation zi = di

¯̂zi (in matrix notation z = D¯̂z), gives
the result

∂w

∂τ
=

n∑
i

∂2w

∂ẑ2
i

.

For the rest of this paper we will only consider the fixed boundary case.

3 The radial problem for u

We look for radially symmetric solutions, u(ρ, τ), which depend on the
radial distance, ρ2 =

∑
z2

i , and τ . In radial co-ordinates we have

∂u

∂τ
=

1
ρn−1

∂

∂ρ

(
ρn−1 ∂u

∂ρ

)
=

∂2u

∂ρ2
+

n − 1
ρ

∂u

∂ρ
. (16)

We choose boundary conditions that allow this problem to be solved
analytically,

u(1, τ) = 1 (17)
u(∞, τ) = 0 (18)
u(ρ, 0) = 0 . (19)

We solve the problem where the sphere ρ = 1 initially has value 1.
The rest of the region outside is initially 0. We then let our time-like
variable evolve.

This is an option which pays 1 when the boundary is hit before
the expiry date, but otherwise expires worthless. For the case of one
underlying asset (n = 1) the solution

u(ρ, τ) = erfc
(

ρ − 1
2
√

τ

)
, (20)

is well known Carslaw and Jaeger [1959].
In three dimensions the problem can be transformed to the the one

dimensional case. The transformation

F = uρ ,

reduces the problem to the heat equation

∂F

∂τ
=

∂2F

∂ρ2
(21)

F (1, τ) = 1 (22)
F (∞, τ) = 0 (23)
F (ρ, 0) = 0 . (24)

Section 9.10 of Carslaw and Jaeger [1959] gives the solution valid for
ρ ≥ 1, the region bounded internally by the sphere ρ = 1. We find the
result for an initial value of zero, and a constant surface value of 1, by
using the 1-dimensional solution (20), to find,

u(ρ, τ) =
1
ρ

erfc
(

ρ − 1
2
√

τ

)
. (25)
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Figure 1: The keyhole contour for inverting the Laplace transform

3.1 Solution in n dimensions

We can solve the problem (16) – (19) in n dimensions using the Laplace
transform method. In general the solution involves Bessel functions.
We solve the problem in the region ρ ≥ 1, with u(ρ, τ) = 1. The rest
of space initially having value 0. The solution for the two dimensional
case can be found in Carslaw and Jaeger [1959] 13.5(I). We take the
Laplace transform in time and find the subsidiary equation,

d2ū

dρ2
+

n − 1
ρ

dū

dρ
− s ū = 0 , (26)

for the region ρ ≥ 1, where s is the Laplace parameter. The surface
ρ = 1 is held at a constant value 1. We set ν = 1 − n/2. We require
that ū be finite as ρ → ∞. The transformed boundary condition is

ū(1, s) = 1/s .

The general solution to this modified Bessel equation is

ū = AIν(
√

s ρ) + BKν(
√

s ρ) ,

where A and B are constants. We require a finite solution as ρ → ∞,
so A = 0. We find B from the transformed boundary condition and
obtain the solution

ū(ρ, s) =
ρνKν(

√
s ρ)

s Kν(
√

s)
. (27)

Next we invert this solution using the Laplace Inversion Theorem, so

u =
ρν

2π i

∫ γ+i∞

γ−i∞
eλτ Kν(

√
λρ)

Kν(
√

λ)
dλ

λ
. (28)
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Note that our series of Bessel functions, for increasing n, is

K1/2, K0, K−1/2, K−1, K−3/2, . . .

As K−ν(z) = Kν(z), we can see that the n = 1 and n = 3 cases will
differ only in factors of ρ, which is indeed the case.

The zeros of Kν(z) are discussed in Watson [1944] 15.7. We find
that there are no zeros for | arg z| ≤ 1

2π. The Bessel function in the
denominator of the integrand in (28) has argument

√
λ, therefore we

know that the integrand has no poles within the contour in Figure 1.
The integrand has a branch point at λ = 0, so we use the contour

in Figure 1. From Watson [1944] we know that there are no zeros of
Kν(

√
λ) within this contour. The integral along AB, that we wish to

calculate is equal to the integral

u =
ρν

2π i
(AF + FE + ED + DC + CB) .

We now calculate these integrals:

• AF : We write λ = Reiθ so the integral along the arc AF , from
−π/2 to −π becomes

IAF =
∫ −π/2

−π

eRτeiθ Kν(
√

R eiθ/2ρ)
Kν(

√
R eiθ/2)

i dθ .

We wish to prove that this integral goes to zero as ρ → ∞.
This is a standard exercise in integration in the complex plane.
We consider the modulus of the integral IAF , then we move the
modulus inside the integral and consider the modulus of each
term. We can expand Kν(z) for large z, and expand the resulting
fraction using a Taylor series. We find that the second term in
our integral and be bounded above by some value M .
We find that,

|IAF | ≤ M

∫ −π/2

−π

eRτ cos θ dθ .

Make the change of variable −φ = θ + π/2 and use Jordan’s
inequality to verify that as R → ∞ we have IAF → 0 for τ > 0,
as required.

• FE: To calculate the integral over FE we put λ = ζ2e−iπ which
gives,

2
∫ 0

∞
e−ζ2τ Kν(ρζe−iπ/2)

Kν(ζe−iπ/2)
dζ

ζ
= −2

∫ ∞

0

e−ζ2τ Jν(ζρ) + iYν(ζρ)
Jν(ζ) + iYν(ζ)

dζ

ζ
,

since

Kν(zeπi/2) = 1
2πiH(1)

ν (z) = 1
2πi[Jν(z) + iYν(z)] .
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• ED: We write λ = εeiθ so the integral around the circle ED,
from −π to π, becomes∫ π

−π

eετeiθ Kν(
√

ε eiθ/2ρ)
Kν(

√
ε eiθ/2)

i dθ .

We take the limit as ε → 0 to find that the integral evaluates to
2πi.

• DC: For the integral on DC we put λ = ζ2eiπ , and use

Kν(zeπi/2) = − 1
2πiH(2)

ν (z) = − 1
2πi[Jν(z) − iYν(z)] ,

since we have a complex argument of π/2 rather than −π/2 as
in the integral FE, and obtain,

2
∫ ∞

0

e−ζ2τ Kν(ρζeiπ/2)
Kν(ζeiπ/2)

dζ

ζ
= 2

∫ ∞

0

e−ζ2τ Jν(ζρ) − iYν(ζρ)
Jν(ζ) − iYν(ζ)

dζ

ζ
,

which is minus the complex conjugate of the integral that we
found for FE.

• CB: The argument is similar to the case AF , hence we find that
as R → ∞, ICB → 0 for τ > 0.

Combining these results we obtain

u = ρmin[0,2−n] +
2ρν

π

∫ ∞

0

e−ζ2τ Jν(ζρ)Yν (ζ) − Jν(ζ)Yν (ζρ)
Jν(ζ)2 + Yν(ζ)2

dζ

ζ
, (29)

which agrees with the solution for the two dimensional case in Carslaw
and Jaeger [1959] 13.5(I). Note, if we leave the integrand as modified
Bessel functions we have

u = ρ2ν +
ρν

i π

∫ ∞

0

e−ζ2τ

{
Kν(ρζ i)
Kν(ζ i)

+
Kν(−ρζ i)
Kν(−ζ i)

}
dζ

ζ
.

3.1.1 Spherical Bessel functions

It is informative to note that in one dimension the Bessel functions in
the integrand have order of a half and therefore can be rewritten as
trigonometric functions. We can verify our solution before and after
the Laplace inversion in this way.

We can also do this in the three dimensional case.
In five dimensions the situation is slightly more complicated. How-

ever, we can write the Bessel functions in (29) as

ζ(ρ − 1) cos(ζ − ζρ) + (ρζ2 + 1) sin(ζ − ζρ)
(ζ2 + 1)ρ3/2

,

we split this into three parts and find one relatively simple integral,
and two others that may be found in Gradshteyn and Ryzhik [2000]
3.954. Combining these and simplifying (29) we find

u(ρ, τ) =
1
ρ3

[
erfc

(
ρ − 1
2
√

τ

)
+ (ρ − 1) e(ρ−1)+τ erfc

(√
τ +

ρ − 1
2
√

τ

)]
,

(30)
which we can verify satisfies the partial differential equation for n = 5
dimensions.
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Figure 2: A graph of the integrand in (29) with ρ = 1.01 and τ = 0.01 over
a range of values for the dummy variable u. The lowest line is for dimension
n = 1 proceeding to the topmost line where n = 10.

3.1.2 Even dimensions

When we try to solve the integral in even dimensions we have to expand
the Bessel functions of integer order. It has been proven Watson [1944]
that this is not possible in finite terms. A finite expansion is only
possible when the order of the Bessel functions is half an odd integer.

3.1.3 Numerical solution

We can calculate the value of the function u from (29). As the in-
tegrand appears to be fairly well behaved we used the quad routine
in MATLAB as a first approximation to the integral. We find good
agreement with the analytic solutions for n = 3 and n = 5 dimensions,
as shown in Figure 3. The fact that the n = 1 dimension exact solution
crosses the n = 2 dimension numerical solution requires investigation.

Note that as the dimension increases the value of u for a particular
value of ρ decreases, which is as we expect. All lines come together
at 1 when ρ = 1, also as required, and all lines decay toward zero as
ρ increases. As we increase the time the influence of the fixed value
diffuses away from ρ = 1. For small times the diffusion is less. For
τ < 0.1 we find numerical instability in the solution.

3.1.4 Asymptotic solution for small values of τ

Unfortunately we can see that (29) does not converge well for small
values of τ . To find solutions for small τ we make an asymptotic
expansion, as in Carslaw and Jaeger [1959] 13.5. Expanding (27), and

10



2 3 4 5

0.2

0.4

0.6

0.8

1

Figure 3: A graph of the function u for a range of dimensions. The integral
in (29) was evaluated over [0,∞) using Mathematica, τ = 5, u0 = 1. The
horizontal axis is ρ and the vertical u. The top line is for one dimension,
the dimension increases until n = 6 for the bottom line. The smooth lines
are the exact solutions, the points are the numerical solution.

keeping ν = 1 − (n/2), we have

ū = 1
sρ−ν+(1/2) e

−√
s (ρ−1)

{
1 + (4ν2−1)

8ρ
√

s
+ (4ν2−1)((4ν2−9))

2(8ρ)2s + O( 1
s3/2 )

}/
{
1 + (4ν2−1)

8
√

s
+ (4ν2−1)((4ν2−9))

2(8)2s + O( 1
s3/2 )

} ,

which we can expand as

ū =
1

sρ−ν+(1/2)
e−

√
s (ρ−1)

{
1 − (4ν2 − 1)(ρ − 1)

(8ρ)
√

s

+
(4ν2 − 1)[ρ2(4ν2 + 7) − 2ρ(4ν2 − 1) + (4ν2 − 9)]

2(8ρ)2s
+ O(

1
s3/2

)
}

.

Inverting the Laplace transform term by term gives

u =
1

ρ(n−1)/2
erfc

(
ρ − 1
2
√

τ

)

−
√

τ (4ν2 − 1)(ρ − 1)
22ρ(n+1)/2

i1erfc
(

ρ − 1
2
√

τ

)

+
τ (4ν2 − 1)[4ν2(ρ − 1)2 + 7ρ2 + 2ρ − 9]

2.24ρ(n+3)/2
i2erfc

(
ρ − 1
2
√

τ

)
+ . . . ,

(31)
where inerfc (.) is the iterated error function (Abramowitz and Stegun
[1974]). This approximation is valid, according to Carslaw and Jaeger
[1959], for τ < 0.02 and ρ not small. We know that ρ ≥ 1 so the second
condition is not restrictive.
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4 Convolutions

In this section we use the Laplace Convolution Theorem

L[g ∗ h] = L[g]L[h]

to allow us to change the boundary condition when the radial barrier
at ρ = 1 is hit from a unit payoff to a payoff of the form φ(τ).

We have a solution u(ρ, τ) to the one dimensional problem

∂u

∂τ
=

∂2u

∂ρ2
+

n − 1
ρ

∂u

∂ρ
(32)

u(1, τ) = 1 (33)
u(∞, τ) = 0 (34)
u(ρ, 0) = 0 . (35)

We would like to have a solution to this problem, but with the bound-
ary condition at ρ = 1 being a function, φ(τ), of τ . Let us call the
solution to this modified problem û(ρ, τ).

Let us shift the space variable by

ρ = ξ + 1 . (36)

We have the partial differential equation,

∂u

∂τ
=

∂2u

∂ξ2
+

n − 1
ξ + 1

∂u

∂ξ
,

but the boundary condition at ρ = 1 is now the condition u(0, τ) = 1
at ξ = 0. If we make the same change of variable (36) in the problem
for û(ρ, τ) we have the heat equation

∂û

∂τ
=

∂2û

∂ξ2
+

n − 1
ξ + 1

∂û

∂ξ
,

with boundary condition û(0, τ) = φ(τ). The second and third bound-
ary conditions remain unchanged.

Taking the Laplace transform in τ of the u problem we can find
the solution ū, using bars to represent the Laplace transform. We also
take the Laplace transform of the û problem. Let s be the transform
variable, we can write the solution to the ¯̂u problem in terms of ū

¯̂u(ξ, s) = s φ(s) ū(ξ, s) .

Using the properties of Laplace transforms, and the convolution theo-
rem, this is equal to

¯̂u(ξ, s) = φ(s)
∂u

∂τ
(ξ, s) = L

[
φ(τ) ∗ ∂u

∂τ
(ξ, τ)

]
,

hence

û(ξ, τ) = φ(τ) ∗ ∂u

∂τ
(ξ, τ) =

∫ τ

0

φ(τ − η)
∂u

∂τ
(ξ, η) dη .

Alternatively we could choose to use

û(ξ, τ) =
∂φ

∂τ
(τ) ∗ u(ξ, τ) =

∫ τ

0

∂φ

∂τ
(η)u(ξ, τ − η) dη .
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4.1 One dimension

In one dimension we have, (20)

u(ξ, τ) = erfc
(

ξ

2
√

τ

)
.

We would like to set φ(τ) = eατ to simplify the option after we invert
the non-dimensionalizing transforms, hence

û(ξ, τ) =
ξ

2
√

π

∫ τ

0

eα(τ−η) η−3/2 e−ξ2/4η dη ,

in which we substitute y = η−1/2 to obtain

û(ξ, τ) =
ξeατ

√
π

∫ ∞

1/
√

τ

exp
[
−ξ2y2

4
− α

y2

]
dy .

We can solve this integral to obtain,
eατ

2

[
eξ

√
α erfc (d+) + e−ξ

√
α erfc (d−)

]
,

where
d± =

ξ

2
√

τ
±√

ατ . (37)

Writing this in terms of cumulative normals, N (.), instead of error
functions gives

û(ξ, τ) = eατ
[
eξ

√
α N

(
−√

2 d+

)
+ e−ξ

√
α N

(
−√

2 d−
)]

. (38)

4.2 Three dimensions

In three dimensions we have

u(ξ, τ) =
1

ξ + 1
erfc

(
ξ

2
√

τ

)
,

which is simply the one dimensional solution divided by a factor of
ξ + 1, so for the boundary condition φ(τ) = eατ we can solve the
convolution as in the one dimensional case to obtain,

û(ξ, τ) =
eατ

ξ + 1

[
eξ

√
α N

(
−√

2 d+

)
+ e−ξ

√
α N

(
−√

2 d−
)]

, (39)

where d± is as in (37). We can verify that this satisfies (16) when
n = 3.

4.3 Five dimensions

In five dimensions we convolve the solution (30) with the boundary
condition φ(τ) = eατ and find the solution,

û(ξ, τ) =
1

2(α − 1)(ξ + 1)3

(
− 2 ξ eξ+τ erfc

(
ξ

2
√

τ
+
√

τ

)

+ (α − 1 +
√

α ξ + αξ) eατ+ξ
√

α erfc (d+)

+ (α − 1 −√
α ξ + αξ) eατ−ξ

√
α erfc (d−)

)
,

(40)
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5 Reverse transformations

Now that we have the solution to some high dimensional problems we
transform our results back to the financial variable space. We inves-
tigate what classes of financial products we have obtained valuation
equations for.

In the case of a single underlying asset we can compare our results
with published results for single-asset American binary barrier options,
by which we mean an option that pays a cash amount at the time a
fixed barrier value is hit during the life of the option. Otherwise the
option expires worthless.

5.1 Single-asset American binary barrier option

If we take the convolution solution in one dimension (38) and re-
verse the change of variable (36), the transformation (5), the non-
dimensionalizations (2) and then choose α = b we cause the bτ term
in the exponent of (5) to cancel. By inspection of (13), b is always
positive, so the square roots that appear are not problematic. After
simplification we find the solution in financial variables to be

V (S, t) = E ea

[(
E e

S

)µ+

N(z) +
(

E e

S

)µ−

N
(
z − 2σ

√
b(T − t)

)]
.

where

µ± = −a ±
√

b and z =
log(Ee/S)
σ
√

T − t
+ σ

√
b(T − t) .

This is the solution to a cash-at-hit binary barrier option which pays
$Eea if the barrier located at $Ee is hit. This agrees with Rubinstein
and Reiner [1991].

5.2 General radial barrier option

Recall the transform (5),

v(x, τ) = ea.x−bτu(x, τ) .

We have obtained radially symmetric solutions for u. We made addi-
tional transformations to change x into an orthonormal basis z. We
have found solutions u(ρ, τ) where ρ2 =

∑
z2

i . In matrix notation this
is ρ2 = zT z. In terms of the x basis we have

ρ2 = (DQx)T (DQx) = xT Ax ,

using (9) and the facts that QTQ = 1 and A is symmetric.
Now, we can write

a.x = |a||x| cos θ

where θ is the angle between the two vectors a and x.

14



We have defined our option to have value u = 1 when ρ = 1 =
xT A2x = |Ax|. This is a barrier option which pays out when the
barrier is hit. Therefore, reversing the transformation we have, on the
boundary,

v(|Ax| = 1, τ) = e|a||x| cos θ−bτ .

Using Duhamel’s theorem we can construct options with payoffs of the
form

V = E e|a||x| cos θ ,

when the radial barrier is hit. Modifying the payoff to something more
financially intuitive is left for future research.

5.3 Three asset radial option

We take the three asset solution (39), and reverse the transformations,
as in the previous section. Note, from (7), that b is always a scalar so
we can choose α = b, and obtain,

V =
E ea.x

√
xTAx

[
e
√

b xTAxN(z) + e−
√

b xTAxN
(
z − 2σ

√
b(T − t)

)]
,

where

z =

√
xTAx − 1
σ
√

T − t
+ σ

√
b(T − t) .

6 Conclusion

We have derived analytic valuation expressions for multi-asset Amer-
ican style financial options. These “Radial Barrier Options” may be
of use in the financial markets, as benchmark cases for other numeri-
cal methods for high dimensional options, or as an approximation to
other, actively traded, financial options.

Hedging these options may be an interesting problem. In the case
of a single underlying asset they have the same hedging difficulties as
standard single-asset barrier options (Shaw [1998]). Investigating how
this problem applies in the multi-asset case may be worthwhile, as may
static hedging strategies.

Future research could also involve further modification of the bound-
ary conditions to define more intuitive financial options. It is also pos-
sible to price the radial equivalent of a double binary barrier option
using this approach.
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