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Summary. In this paper we present an asymptotic analysis of an American call
option where the diffusion term (volatility) is small compared to the drift terms
(interest rate and continuous dividend yield). We show that in the limit where
diffusion is negligible, relative to drift, then, at leading order, the American call’s
behaviour is the same as a perpetual American call option (except in a boundary
layer about the option’s expiry date).

1 Introduction

The free boundary formulation for the American call option is analysed using asymp-

totic analysis. We make the key assumption that ε2 = σ2

|r−q| � 1 is a small parameter
and use this in our expansion. We do not reduce the problem to the heat equation.

Previous analyses include [2] and [1]. The first uses the Green’s function for the
heat equation to convert the boundary value problem to an integral equation, which
is then solved asymptotically for times close to expiry. In [1] various asymptotic
limits of the heat equation form of the problem are investigated.

In Section 2 we present an asymptotic analysis of the European call option,
which we then extend in Section 3 to the American call option.

1.1 Problem Formulation

The Black–Scholes equation for the value, V (S, t), of a European call option is,

∂V

∂t
+ 1

2
σ2S2 ∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0, (1)

with the final (or payoff) condition at the option’s expiry date T

V (S, T ) = max (S − E, 0), (2)

where S is the price of the underlying risky asset, σ is the volatility of S, r is the
constant risk-free interest rate, q 6= r is the constant, continuous dividend yield on
S and t denotes time.
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An American option can be exercised at any time up to and including the expiry
date T . The option value problem can be formulated, after [3], as a free boundary
problem where S∗(t) represents the location of the free boundary at time t. The
problem for the American option is the same as that defined by (1) and (2), with
the additional (free boundary) conditions that

V (S∗(t), t) = S∗(t)− E (3)

∂

∂S
V (S∗(t), t) = 1. (4)

1.2 Non-dimensionalization

We assume r 6= q throughout and introduce the following transformations,

V = EV̄ , S = ES̄ and τ = (T − t)|r − q| , (5)

and parameters,

ε2 =
σ2

|r − q| and k =
r

|r − q| , (6)

to write the European problem (1)–(2) in non-dimensional form as

V̄τ = 1
2
ε2S̄2V̄S̄S̄ + S̄V̄S̄ − kV̄

V̄ (S̄, 0) = max(S̄ − 1, 0),

where we have used subscripts to indicate partial derivatives, that is V̄τ means
∂V̄ /∂τ . The American problem will be non-dimensionalized using the same trans-
formations and parameters later in this paper.

2 European Call Option

We use the transformation
V̄ = e−kτU

and expand the solution using

U ∼ U0 + ε2U1 + . . .

At leading order, we obtain the first order hyperbolic equation

U0,τ − S̄U0,S = 0

with Cauchy data U0(S̄, 0) = max(S̄ − 1, 0). The method of characteristics implies
that

U0 = max(S̄eτ − 1, 0) .

Note that U0’s first derivative with respect to S̄ is not continuous along the charac-
teristic S̄eτ , and hence that its second S̄ derivative involves a delta-function along
this characteristic. Specifically, in an O(ε) region about this characteristic, the sec-
ond S̄ partial derivative of ε2U0 is O(1) rather than O(ε2).

Writing this in terms of V̄ gives

V0 = e−kτ max(S̄eτ − 1, 0). (7)

The assumption that the second derivative is small is not valid along the discounted
strike value, therefore we look for an inner region here.
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2.1 Inner Solution

We transform to an inner variable, keeping our time-like τ , but use a space-like inner
variable x, defined by

S̄ = e−τ + εx .

If we then use an expansion of the form

U ∼ εU0 + ε2U1 + . . .

equations for the leading and first order equations reduce to

U0,τ̄ = U0,ζζ U0(ζ, 0) = max(ζ, 0)

U1,τ̄ = U1,ζζ + 2ζU0,ζζ U1(ζ, 0) = 0,

where ζ and τ̄ are defined by

ζ = eτx and τ̄ = 1
2
τ .

Solving the equations for U0 and U1 and expressing the solution in terms of the
original non-dimensional variables we find that

V̄ ∼
(
S̄eτ(1−k) − e−kτ

)
N

[
1

ε
√

τ
(S̄eτ − 1)

]
+

ε

2

√
τ

2π

(
e−kτ + S̄e(1−k)τ

)
exp

(
− (S̄eτ−1)2

2ε2τ

)
,

(8)

where N[.] is the cumulative normal distribution function. The first term matches
the outer solution automatically and the second term is always exponentially small
away from the inner region, so we can leave it in the solution always and recover (7)
in the outer region.

Verifying that this solution coincides with a suitable Taylor expansion of the ex-
act Black–Scholes is a worthwhile exercise. This also enables us to find an expansion
valid when r = q.

3 American Call Option

3.1 Case r > q

When we non-dimensionalize the American call option problem formulated in (1)–
(4), using the transformations (5) and parameters (6) we get,

V̄τ = 1
2
ε2S̄2V̄S̄S̄ + S̄V̄S̄ − kV̄

V̄ (S̄, 0) = max(S̄ − 1, 0)

V̄ (S∗, τ) = S∗ − 1

V̄S̄(S∗, τ) = 1.

In the limit ε � 1, when we expand in a regular asymptotic expansion in powers of
ε and consider the leading order (first order hyperbolic) term, we find that there are
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two distinct regions, dependent on the boundary conditions involved. Let us denote
the boundary between these regions by Ŝ(τ). We call 0 < S̄ < Ŝ the lower region
and denote the option value by V̄ lower(S̄, τ), the solution found is the same as in the
European case for r > q, as given in (8).

We call Ŝ < S̄ < S∗ the upper region, where the option value is given by
V̄ upper(S̄, τ). In this region the problem given after the asymptotic expansion is
solved using conditions (3) and (4) from the free boundary rather than the terminal
condition (2) used in the lower region.

Asymptotic Expansion

We make an asymptotic expansion, assuming that 0 < ε2 � 1. We look for the
generally valid outer solution. Let us expand as before

V̄ upper ∼ V̄ upper
0 + ε2V̄ upper

1 + . . . ,

and also expand the free boundary as

S∗ ∼ S∗0 + ε2S∗1 + . . . .

To leading order we have the first order hyperbolic equation

V̄ upper
0,τ − S̄V̄ upper

0,S̄
= −kV̄ upper

0 ,

which we solve using non-dimensionalized boundary conditions on the free boundary,

V̄ upper
0 (S∗, τ) = S∗ − 1 and V̄ upper

0,S̄
(S∗, τ) = 1 .

The first term in the expansion for the free boundary is time independent,

S∗0 =
k − 1

k
, (9)

and the value of the option is approximated by

V̄ upper
0 (S̄, τ) =

1

k − 1

(
S̄

S∗0

)k

for Ŝ < S̄ < S∗0 ,

where the critical characteristic dividing the two regions is given by Ŝ = S∗0e−τ . Note
that there is no time dependence in the value of the option in the upper region.

V̄ lower
0 and V̄ upper

0 , and their first derivatives with respect to S̄, are equal when
evaluated on the critical characteristic Ŝ where the two regions meet.

If we analyse the ε2 terms in the asymptotic expansions we find that the V̄ upper

is independent of τ . In the original variables we have

V upper(S, t) ∼ E

[
r

q
− 1− 1

2
σ2 Er

(r − q)2
log

(
qS

rE

)](
qS

rE

) r
r−q

, (10)

and the location of the free boundary is given by

S∗ ∼ Er

q

(
1 +

σ2

2(r − q)

)
. (11)
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3.2 Case r < q

We non-dimensionalize the American call option problem formulated in (1)–(4) using
same transformations and non-dimensional parameters as in the European case and
the American r > q case. Making an asymptotic expansion in powers of ε we find
that there is only one region within which the leading order solution is V0 ≡ 0 and
the free boundary is equal to the strike of the option S∗0 = 1. If we use the inner
variable y = (S̄ − 1)/ε2 and also expand the boundary conditions as Taylor series
we can find the asymptotic solution to O(ε2). We state, in dimensional variables,
the value of the option,

V ∼ σ2E

2(q − r)
exp

(
2(q − r)

σ2E
(S − E)− 1

)
, (12)

and the free boundary

S∗ ∼ E

(
1 +

σ2

2(q − r)

)
. (13)

3.3 Perpetual American Call Option

The perpetual American call option has no expiry date, so has no time dependence
in the problem formulation, or problem solution. Let V∞(S) indicate the value of
the perpetual option. In dimensional variables, we have the ordinary differential
equation

1
2
σ2S2 d2V∞

dS2
+ (r − q)S

dV∞
dS

− rV∞ = 0

with boundary conditions

V∞(0) = 0, V∞(S∗) = S∗ − E and
dV∞
dS

(S∗) = 1.

When r > q and 0 < ε2 � 1 and we take the limit as ε2 → 0 we find that the
option value is equal to (10) and the boundary matches (11).

When r < q, in the limit as ε2 → 0 we can confirm that V∞(S) tends to (12)
and the expression for the free boundary tends to (13).

4 Conclusions

We have found time independent asymptotic expansions for the location of the free

boundary of the American call option using the small parameter ε2 = σ2

|r−q| � 1.

We have shown that in the limit as ε2 → 0 these equations match the limit of the
solution to the perpetual American call problem (except in a boundary layer about
the option’s expiry date).
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