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Abstract

We discuss the ‘continuity correction’ that should be applied to connect
the prices of discretely sampled American put options (i.e. Bermudan
options) and their continuously-sampled equivalents. Using a matched
asymptotic expansions approach we compute the correction and relate it
to that discussed by Broadie, Glasserman & Kou (Mathematical Finance
7, 325 (1997)) for barrier options. In the Bermudan case, the continuity
correction is an order of magnitude smaller than in the corresponding
barrier problem. We also show that the optimal exercise boundary in the
discrete case is slightly higher than in the continuously sampled case.

1 Introduction

In an earlier article [7], we discussed the continuity correction that should be
applied to discretely sampled barrier options when the number of sampling
(reset) dates is large. Broadie, Glasserman & Kou [1, 2] (referred to as BGK)
showed that the discretely sampled option can be valued approximately as if it
were continuously sampled but with a barrier level B adjusted up or down (for
up and down barrier contracts respectively) by multiplying it by e±βσ

√
T/m,

where the + sign is taken for an up option and the − sign for a down option;
here σ is the asset price volatility, m is the number of resets including the start
date, T is the life of the option and β = −ζ( 1

2 )/
√

2π ≈ 0.5826. The error in
their approximation is O(1/m). We revisited the problem using the method of
matched asymptotic expansions; this confirmed that the BGK approximation is
correct not only to the order stated but, in certain circumstances, is accurate
to O(1/m) (numerical tests suggest that it is more accurate still).

We now apply the same technique to the case of a Bermudan option, specif-
ically a put option that can be exercised at any one of a specified set of equally
spaced dates, with a reset interval of ∆T . With just one reset, a Bermudan put
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option can be reformulated as a compound option, but with more resets this
approach rapidly becomes less feasible. We are interested in the case when the
reset interval is small, which is also considered from a random-walk perspective
in [9], building on earlier work [4, 5] on sequential analysis. Our work is a new,
and potentially more accurate and more general, approach to these problems.

As in [7], we develop inner and outer expansions in terms of the small pa-
rameter ε = σ

√
∆T . Unlike the barrier case, where the outer correction is O(ε),

in the Bermudan case the correction is O(ε2), and we calculate this term ex-
plicitly. Such an expansion is of use in its own right, albeit rather less so than
for barrier options, because in the American case there is no explicit formula
for the continuously sampled option (in the barrier case, we were able to give
explicit expressions for the correction terms in the outer expansion in terms of
vanilla option values). However, there is also considerable interest in Monte-
Carlo approaches to American option valuation. Many of these necessarily use
a fairly small number of timesteps, in between which the asset price may be
simulated accurately; however, the optimal exercise policy is only applied at the
end of each timestep. The current results may, therefore, be used to ‘reverse-
engineer’ an accurate approximation to the continuously sampled price from
the discretely sampled one. Furthermore, the small magnitude of the correction
may be a reason why, even with a small number of timesteps, the Monte-Carlo
approximations are remarkably good.

We shall consider an American put with strike K, on an asset with constant
volatitity σ paying a dividend yield q in the standard Black–Scholes continuous-
time model with constant interest rate r. As in [7], we write Vcont(S, t) (resp.
Vd(S, t)) for the continuously (resp. discretely) sampled contract. We recall
that Vcont(S, t) satisfies the Black–Scholes equation

∂V

∂t
+ 1

2σ2S2 ∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0, S∗cont(t) < S < ∞, 0 < t < T,

where S∗cont(t) is the optimal exercise price of the contract, at which the smooth-
pasting conditions

Vcont = K − S,
∂Vcont

∂S
= −1

are applied. A schematic of the value surface is shown in Figure 1 (in which the
time axis measures time back from expiry).

We construct inner and outer expansions for the value of the discrete con-
tract; the outer expansion has the form

Vd(S, t) ∼ Vcont(S, t) + ε2V2(S, t) + O(ε3),

where V2(S, t) is the value of a barrier-style contract that pays nothing at expiry,
but pays a known negative amount, which we find, if the asset reaches the
optimal exercise price of the continuously sampled option (thus, as expected,
the discretely sampled option with its smaller set of exercise opportunities is
worth less than the continuously exercisable contract). We also show that the
correction ε2V2(S, t) can be written in terms of the American put value and its

2



Exercise

Hold

K

t′

S

Put value Payoff K − S

t = T

Figure 1: Schematic of the hold and exercise regions, and the value surface, for
an American put. See Section 2 for the definition of t′.

Delta (or its strike derivative), and we show how to generalise these two results
to other payoff structures. Lastly we construct the inner expansion, and in so
doing we make extensive use of a certain function h(x, τ) of the inner variables
(x, τ) defined in Section 2, and for convenience we summarise these properties
here. This function was introduced in [7] and further details can be found there.

1.1 The Spitzer function h(x, τ)

The Spitzer function h(x, τ) is the unique solution of the heat equation

∂h

∂τ
=

1
2

∂2h

∂x2
, −∞ < x < ∞, 0 < τ < 1,

with h(x, 0) = 0, x < 0, satisfying the ‘repeating condition’

h(x, 1) = h(x, 0) = H(x), say, x > 0,

and the growth conditions

h(x, τ) → 0, x → −∞, h(x, τ) ∼ x + O(1) as x → +∞.

If, at time τ = 1, the values h(x, 1−) for x < 0 are discarded and replaced with
0, then h(x, τ) can thereby be extended to a periodic function in τ with period
1. In fact, the asymptotic behaviour at x = +∞ is more precisely determined
as h(x, τ) ∼ x + β + o(1), where β is defined above, a fact which was crucial in
the analysis of [7]. We shall need the fact that h(x, 0) has a jump discontinuity,
from 0 to 1/

√
2, at x = 0.

We shall also need the function

h(1)(x, τ) =
∫ x

−∞
h(ξ, τ) dξ,
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which is a solution of the heat equation and has the asymptotic behaviour

h(1)(x, τ) ∼ 1
2
(x + β)2 +

1
2
τ − 1

8

with an error of o(1); Note that h(1) is not periodic, but instead increases by 1
2

over a period.

2 Problem formulation

We assume that the discretely sampled option is exercisable at N equally spaced
reset times t1, t2 = t1 + ∆T, . . . TN = T − ∆T , separated by an interval ∆T .
(If the interval from the current time until the first exercise date is also ∆T ,
we have ∆T = T/(N + 1), but we do not assume this.) At exercise dates,
the optimal behaviour for the option holder is to take the more valuable of the
continuation value and the payoff; in this way the value can be calculated by a
backward induction procedure. This translates into the condition

Vd(S, ti−) = max(Vd(S, ti+),K − S).

That is, as the Black–Scholes equation is solved backwards from expiry, when
we reach each exercise date we discard those option values below the payoff
and replace them with K − S. We write Si∗

d for the discrete optimal exercise
boundary; where it is not necessary, we suppress the superscript i. Note that
Vd(S, t) is continuous at S = Si∗

d , t = ti, although its S derivative (Delta) is
not. The discrete value surface is sketched in Figure 2.

As in [7], we first make the preliminary scaling

t = T − t′/σ2,

so that the time t′ is measured back from expiry and scaled with σ2.
The Black–Scholes equation to be solved is then

∂V

∂t′
=

1
2
S2 ∂2V

∂S2
+ α1S

∂V

∂S
− α2V, α1 = (r − q)/σ2, α2 = r/σ2. (1)

We recall that we have defined the small scaled exercise interval to be

ε2 = σ2∆T.

By differentiating the conditions

Vcont(S∗cont(t
′), t′) = K − S∗cont(t

′),
∂Vcont

∂S
(S∗cont(t

′), t′) = −1

with respect to t′ and using (1), we establish the useful results that

∂Vcont

∂t′

∣∣∣∣
S=S∗cont(t

′)
= 0.

∂2Vcont

∂S2

∣∣∣∣
S=S∗cont(t

′)
=

2 (α2K − (α2 − α1)S∗cont)
S∗2

;
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Figure 2: Schematic of the hold and exercise regions, and the value surface, for
a Bermudan put.

we denote the latter quantity, the Gamma of the continuously sampled option
at the exercise boundary,1 by γ∗cont(t′).

3 Approximate solution

The approximate solution consists of an outer expansion, valid far above S =
S∗cont(t

′), and an inner expansion near S = S∗cont(t
′) (we should in principle in-

clude another outer region far below S∗cont(t
′), but in view of the lack of practical

interest in this region we omit it). This enables us to compute the ‘effective
boundary conditions’ for the outer solution, from which we can subsequently
calculate the continuity correction to the Black–Scholes value. The timescale
for the inner region is O(ε2), and thus the price-scale in this region must be
O(ε) times the scale for S. We therefore define the inner variables (x, τ) near
S = S∗cont(t

′
i) and near a typical reset time t′i by

S/S∗cont(t
′) = 1 + εx, t′ = t′i + ε2τ,

which we use throughout. Note that S∗cont(t′) is not constant.

1Note that, provided that r > q so that the optimal exercise boundary tends to K as
t → T , we have

R∞
−∞ Γ(S, t) dS = 1 for all t < T ; the limiting Gamma at expiry is δ(S −K)

just as for the corresponding European option. If r < q the exercise boundary finishes at
S∗(T ) = rK/q and Γ(S, T ) has two delta-function components.
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3.1 Outer expansion

Away from the exercise boundary we pose the outer expansion

Vd(S, t′) ∼ Vcont(S, t′) + εV1(S, t′) + ε2V2(S, t) + O(ε3),

which we expect to be valid for S/S∗cont(t
′)− 1 À O(ε). Each of these functions

satisfies the Black–Scholes equation, and all except Vcont vanish at expiry.
By a Taylor expansion, the behaviour of this near the inner region is

Vcont + εV1 + ε2V2

∼ K − S∗cont(t
′)− (

S − S∗cont(t
′)

)
+

1
2
γ∗cont

(
S − S∗cont(t

′)
)2

+ ε
(
V ∗

1 + δ∗1(S − S∗cont(t
′))

)
+ ε2V ∗

2 + O(ε3)
∼ K − S∗ + ε (−S∗x + V ∗

1 )

+ ε2
(
−Ṡ∗τ +

1
2
S∗2γ∗x2 + S∗δ∗1x + V ∗

2

)
+ O(ε3), (2)

where we have written

S∗ = S∗cont(t
′
i), Ṡ∗ =

dS∗cont

dt′
(t′i),

V ∗
1 = V1(S∗cont(t

′
i), t

′
i), δ∗1 =

∂V1

∂S
(S∗cont(t

′
i), t

′
i),

γ∗ = γ∗cont(t
′), V ∗

2 = V2(S∗cont(t
′
i), t

′
i).

The origin of the term −Ṡ∗τ is in the expansion of K−S = K−S∗cont(t
′)(1+εx)

correct to O(ε2); apart from this, when we neglect O(ε3), it is sufficient to treat
S∗cont(t

′) and other such quantities as constants, equal to their value at t′i, in
this expansion. Were we to go to one more term, we would have to expand these
quantities as well. Note also that we do not perturb S∗cont(t′), which is assumed
known.

3.2 Inner expansion

Changing to the inner variables (x, τ), and writing Vd(S, t′) = v(x, τ), we have
the equation

∂v

∂τ
−ε

Ṡ∗

S∗
(1+εx)

∂v

∂x
=

1
2
(1+εx)2

∂2v

∂x2
+εα1(1+εx)

∂v

∂x
−ε2α2v, −∞ < x < ∞.

This equation is not exact, as the coefficient

1
S∗cont(t′)

dS∗

dt′
(t′)

has been replaced by Ṡ∗/S∗, its value at t′i; the error is O(ε3), however, and is
neglected. We expand the solution in the form

v(x, τ) ∼ v0(x, τ) + εv1(x, τ) + ε2v2(x, τ) + O(ε3).
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We now turn to the conditions on v(x, τ) at τ = 0 and τ = 1. Recall that (see
Figure 2) at optimal exercise price, v switches continuously from the exercise
value (equal to the payoff) to the hold value. We anticipate that the discrete
exercise value is close to the continuous one and write it as

x = x∗ ∼ x∗0 + εx∗1 + · · · ,

where x∗ depends parametrically on t′ but not on τ . We shall only2 compute
x∗0. We therefore have that, for x < x∗0,

v(x, 0) = K − S∗ − εS∗x,

this being the expansion of K − S in inner variables at τ = 0.
As for the corresponding inner barrier problem [7], we shall impose a kind

of periodicity on the inner solution. Except for the term −ε2Ṡ∗τ , which is due
to the coordinate change from (S, t′) to (x, τ), all the terms with which v(x, τ)
matches in (2) are independent of τ . Hence we require that, at τ = 1 and for
x > x∗0, the corresponding terms in the expansion of v return to their values at
τ = 0. This is why the Spitzer function is necessary for the inner solution.

The problem for v0(x, τ) is

∂v0

∂τ
=

1
2

∂2v0

∂x2
, −∞ < x < ∞,

with v0(x, 0) = K − S∗, x < x∗0, and v0 → K − S∗ as x → ∞. The unique
solution with periodic behaviour is the constant solution v0(x, τ) = K − S∗, all
others being ruled out by the analysis of Spitzer [10, 11, 7]. The problem for v1

is also relatively straightforward: it satisfies

∂v1

∂τ
=

1
2

∂2v1

∂x2
, −∞ < x < ∞,

with v1(x, 0) = −S∗x for x < x∗0, v1 ∼ −S∗x + V ∗
1 as x → ∞, and periodicity

as introduced above. A particular solution is v1(x, τ) = −S∗x, and as Spitzer’s
results preclude any addition to this function, this is exactly what v1 is. Thus,
we conclude that V ∗

1 = 0, thereby deriving the first effective boundary condition
for the outer expansion.

Before proceeding to v2, we show that, in the outer solution, V1(S, t′) ≡ 0.
This is so because V1 vanishes both at t′ = 0 and on the exercise boundary
S = Scont(t′), and hence by standard parabolic theory vanishes identically. This
simplifies matters, as some terms no longer appear in the matching.

Substituting for v0 and v1, the problem for v2 is

∂v2

∂τ
+ Ṡ∗ =

1
2

∂2v2

∂x2
− S∗2γ∗

2
, −∞ < x < ∞,

2Were we to go to O(ε3), we should be able to recover the time evolution of the free
boundary, showing that x∗1 = Ṡ∗ corresponding to the expansion S∗cont(t

′ + ε2) = S∗cont(t
′) +

ε2Ṡ∗ + o(ε2); this corresponds to saying that the inner problem ‘repeats itself’ in the moving
frame. However, the detailed calculations involved are very lengthy.
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with v2(x, 0) = 0 for x < x∗0 and the matching condition

v2(x, τ) ∼ −Ṡ∗τ +
1
2
S∗2γ∗x2 + V ∗

2 as x →∞.

A particular solution, which satisfies the initial condition for x < x∗0, is

v2(x, τ) = −Ṡ∗τ + S∗2γ∗
(

h(1)(x− x∗0, τ)− 1
2
τ

)
;

note that it (but not its derivative) is continuous at x = x∗0. Its asymptotic
behaviour as x →∞ is

−Ṡ∗τ + S∗2γ∗
(

1
2
(x− x∗0 + β)2 − 1

8

)
, (3)

and so this matches with the terms −Ṡ∗τ and 1
2S∗2γ∗x2 in the inner expansion

of the outer solution. Consequently, what remains after subtracting off the
particular solution must, by matching, tend to a constant, with no linear growth,
as there is no linear term in the inner expansion of the outer solution at this
order. This is the crux of the problem. It might appear possible to remove the
linear growth in (3) by adding an appropriate multiple of h(x − x∗0, τ), as was
the case for barrier options [7]. However, the optimality condition precludes
this course of action, because it would introduce a discontinuity in v(x, τ) at
x = x∗0, and this would correspond to suboptimal behaviour by the option
holder. Instead, we must choose x∗0 = β to eliminate the linear term in (3),
and in this way the leading-order correction to the optimal exercise boundary is
determined : it is at S = S∗cont(t

′
i)(1 + εβ + o(ε)). Once again, a version of the

BGK correction is seen to apply, at least to O(ε), although a result essentially
equivalent to this one was proved earlier in [4] for optimal stopping problems
with Brownian motion.

We can now determine the effective boundary condition for V2(S, t′), from
the constant term in the matching, as

V ∗
2 = −S∗2γ∗

8
,

which in the original financial variables implies a boundary value for V2 of

−1
4

(
rK

σ2
− qS∗cont(t

′)
σ2

)
.

We show below how to calculate V2.

3.3 The composite expansion

For practical purposes it is useful to construct a composite expansion, uniformly
valid, rather than the separate inner and outer expansions. Our outer expansion
has the form3

(
Vcont(S, t′) + ε2V2(S, t′) + O(ε3)

)H(S − S∗cont(t
′)),

3Again, we are neglecting the outer expansion that we should construct far below S = S∗cont.
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where H(·) is the Heaviside function. The inner expansion is

v0(x, τ) + εv1(x, τ) + ε2v2(x, τ)

= K − S∗ − εS∗x + ε2
(
−Ṡ∗τ + S∗2γ∗

(
h(1)(x− β, τ)− 1

2
τ

))

∼ K − S + ε2S∗2γ∗
(

h(1)

(
S − S∗(1 + εβ)

εS∗
,
t′ − ti

ε2

)
− 1

2
t′ − ti

ε2

)
+ O(ε3)

where ti = bt′c is the exercise date immediately before t′ (this is in scaled
time; in calendar time, it is the reset date immediately after t). The common
expansion is the outer limit of the inner solution or the inner limit of the outer
solution, namely

(
K − S +

1
2
γ∗

(
(S − S∗)2 − 1

4
S∗2

))
H(S − S∗cont(t

′)),

and then the composite expansion, ‘outer + inner − common’, is

Vcont(S, t′) + ε2V2(S, t′)H(S − S∗cont(t
′))

− 1
2
γ∗

(
(S − S∗)2 − 1

4
S∗2

)
H(S − S∗cont(t

′))

+ ε2S∗2γ∗
(

h(1)

(
S − S∗(1 + εβ)

εS∗
,
t′ − ti

ε2

)
− 1

2
t′ − ti

ε2

)
+ O(ε3),

where Vcont(S, t′) is understood to be equal to the payoff for S < S∗cont(t′).
Note that there is no need for the interval before the first reset time to

be equal to the reset interval ∆T : if it is not, we apply the outer expansion
unchanged, and the inner expansion with the appropriate value of τ (if this is
greater than 1, we continue to solve the diffusion equation for h(x, τ), without
resetting the values on the negative x axis to zero).

3.4 Calculating V2; financial interpretation of the correc-
tion

We now show how to calculate V2(S, t) (we revert to calendar time and unscaled
variables) in the case r > q, which is usual in practice. We showed above that,
as far as the outer expansion is concerned, the correction to the continuously-
sampled option value is the value of a contract that pays

−ε2S∗2(t)γ∗(t)
8

= −∆T

4
(rK − qS∗cont(t))

on S = S∗cont(t), and vanishes at expiry. (The boundary value is apparently
independent of σ; however, S∗cont itself does depend on σ, as does Vcont.) We
can write this boundary value as

−∆T

4
(r(K − S∗cont(t)) + (r − q)S∗cont(t)) = −∆T

4

(
rVcont(S, t)− (r − q)S

∂Vcont

∂S

)

S=S∗cont(t)

,
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and both the terms on the right are the values of tradable contracts (solutions
of the Black–Scholes equation) that vanish at expiry, as does V2. Consequently,
we have

V2(S, t) = −∆T

4

(
rVcont(S, t)− (r − q)S

∂Vcont

∂S
(S, t)

)

for all S > S∗cont(t). (Note that when q = 0 the correction is equivalent to a
barrier contract that pays a constant rebate of −rK∆T/4 (independently of σ)
if the asset falls to the continuously-sampled optimal exercise boundary, and
pays zero at expiry, i.e. a digital put with the exercise boundary as barrier). It
is easy to show that V2 is negative, which corresponds to the loss of value of a
discretely sampled option compared with its continuously-sampled counterpart.
Indeed, the expression for V2 approximately represents a quarter of the return
over the reset interval on a portfolio consisting of the value of the option in cash
and its delta-hedge in stock, although the financial meaning of this is not clear.

It is also possible to relate V2 to the strike-derivative of the American put.
We have the scaling invariance

Vcont(S, t) = Kw(S/K, t), S∗cont(t) = Ks∗(t),

from which we find that

Vcont = K
∂Vcont

∂K
+ S

∂Vcont

∂S
;

both the terms on the right satisfy the Black–Scholes equation and are hence
tradable. Hence, we can eliminate either Vcont or its Delta from the expression
for V2. For example, when q = 0 we have the expression

V2(S, t) = −r∆T

4
K

∂Vcont

∂K
,

a result bearing a distant analogy to the BGK correction for barrier options,
which is expressible in terms of the ‘barrier sensitivity’ of the original option.

3.5 Numerical illustration

By way of numerical illustration, we show how the error of the composite approx-
imation Vcomp(S, t), relative to a numerically computed price Vnum(S, t), for the
Bermudan contract (we used explicit finite differences with a space step of 0.002)
varies with the number of resets. Although it is simple to allow the time period
until the first reset to be different from the reset interval, in these illustrations it
is equal to ∆T . In Figure 3 we plot the relative error (Vcomp−Vnum)/Vnum; the
caption shows the parameter values used. We notice first the excellence of the
approximation, even for the extreme case N = 2. We also notice the gradient
discontinuity of the relative error at S = S∗cont(t) which is an inevitable feature
of the approximation (see [7] for a discussion of the corresponding situation for
barrier options). It should be noted that the presentation of relative, rather
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than absolute, errors magnifies the apparent jump: the magnitude of the dis-
continuity of the gradient of the relative error shown in Figure 3 is about 10−2,
which translates into an actual Delta discontinuity of about 0.25 times this (0.25
is the numerical value of the option at S = S∗cont(t)), i.e. well under 1% error
relative to the Delta of the continuously-sampled option, which is −1. (The
corresponding error in the Gamma will, however, be larger.) Lastly we note
that the relative (but not the absolute) error increases as S increases away from
S∗cont; we have no explanation for this, but note that the decrease in accuracy
is not significant.

We also computed the Bermudan exercise price numerically, and compared
it with the approximate value S∗cont(t)(1+εβ). No results are presented, because
for all N ≥ 2 the difference between the two was smaller than the grid size of the
numerical solution used to compute the continuously-sampled option (0.002).
Even with just one reset (that is, with one reset at t = 0.25, and the optimality
condition calculated as if t = 0 were an exercise date), the difference was only
0.0027. An illustration is given in Figure 4.
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Figure 3: Variation of relative error with number N of resets. Lifetime is T = 0.5
and the initial period is the same as the reset interval; r = 0.06, q = 0.02,
σ = 0.3, K = 1. For N = 2 we have ε = 0.1225; for N = 4, ε = 0.0949; for
N = 8, ε = 0.0707; for N = 16, ε = 0.0514; for N = 32, ε = 0.0369.
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Payoff
American exercise
approx exercise
American price
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S

Figure 4: Detail near the exercise boundary, showing the American price and its
exercise boundary S∗cont, the Bermudan price, the payoff, and the approxima-
tion S∗cont(1 + εβ) to the bermudan exercise price. Here T = 0.5 with 4 exercise
dates; other parameters as above.

4 Discussion

We have shown how to calculate the value of a Bermudan option via an approx-
imation based on the corresponding continuously-sampled American contract,
using the method of matched asymptotic expansions; we have given an explicit
expression for the correction. We stress that the approximation procedure is
systematic rather than ad hoc, and should converge as ε → 0 in the usual
asymptotic sense. The approximation is remarkably accurate, certainly good
enough for any reasonable practical purposes.

One such purpose is the Monte-Carlo valuation of American options. As it
stands, our method has the disadvantage that it requires a numerical compu-
tation of S∗cont(t) (for which there are now excellent approximations (see [3, 8]
and references therein). Although we have used finite-difference methods, an
increasingly popular alternative is Monte-Carlo valuation (see [6] for a review).
Apart from duality based methods, the majority of Monte-Carlo schemes for
American option valuation use some form of simulation of the exact asset price
path between discrete exercise opportunities, the optimal exercise boundary
being determined by backward recursion. This is essentially the valuation of a
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Bermudan option. It is a consequence of our results that such an approximation
procedure should be very accurate, even with a small number of relatively large
timesteps. Furthermore, given a good Bermudan Monte-Carlo price VBer and
exercise boundary S∗Ber(ti) (known only at discrete times), we can recover both
the continuously sampled price and its exercise boundary as follows. To find
the exercise boundary, we simply invert the formula S∗Ber(ti) = (1+ εβ)S∗cont(ti)
and interpolate between exercise dates.4 To find the price, we calculate both
the Bermudan option and either its Delta (probably needed for hedging pur-
poses) or its strike derivative, the latter by valuing the option with strike K
and strike K + δK (this should be relatively cheap, as we use the same set of
random numbers to calculate both prices). Assuming that the strike derivatives
of the continuously and discretely sampled options differ only by o(1) (in fact,
by O(ε2)), we can invert the approximate formula for VBer in terms of Vcont and
its strike derivative to find Vcont in terms of VBer and its strike derivative. It
is also worth pointing out that, as the correction is determined entirely by the
continuously-sampled contract, it can be used to compare Bermudan or Monte-
Carlo prices with different reset intervals: the difference between such prices is
proportional to the difference between their respective reset intervals, and this
may be a useful consistency check on numerical approximations.

It is straightforward to extend the analysis to payoffs other than American
puts. Suppose that the payoff is P (S) and, for simplicity, that P (S) is contin-
uous, has an interval where it vanishes (for an American put, this is [K,∞)),
and is such that the continuously sampled exercise boundary emanates from
one end of this interval. Then we only need modify various formulae as follows.
The smooth pasting conditions are Vcont(S, t) = P (S) and ∂Vcont/∂S = P ′(S)
at S = S∗cont(t), and the boundary Gamma at time ti is now

γ∗ = 2
(
α2P

∗ − α1S
∗P ′∗

)
/S∗2,

where P ∗ = P (S∗), P ′∗ = P ′(S∗), and S∗ is as before. The terms of the inner
expansion are then

v0(x, τ) = P ∗, v1(x, τ) = S∗P ′∗x, v2(x, τ) = Ṡ∗P ∗′τ+S∗2γ∗
(

h(1)(x, τ)− 1
2
τ

)
.

Lastly the effective boundary condition for the principal correction V2 is

ε2V ∗
2 = −∆T

4
(
rP ∗ − (r − q)S∗P ′∗

)
,

and as before the two parts of V2 can be found in terms of the continuous
contract and its Delta:

ε2V2(S, t) = −∆T

4

(
rVcont(S, t)− (r − q)S

∂Vcont

∂S

)
.

4Although we have not proved it, we conjecture that we have the more accurate approxi-
mation S∗Ber(ti+1) = (1+ εβ + ε2τṠ∗cont(ti)/S∗cont(ti))S

∗
cont(ti), the additional term stemming

from the coordinate change. Using this we have a discretisation of a first-order ordinary
differential equation for S∗cont(t).
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It is also straightforward to allow for more than one free boundary (as, for
example in the so-called Game option, which is simply an American-style option
with both upper and lower optimal exercise boundaries). The modifications
necessary to allow for local volatility or jump-diffusion models are as transparent
as they are for barrier options, although again there are no explicit solutions in
the continuous case. Finally, the extension to more than one asset dimension
may be expected to have the same general structure, the inner region now being
in a one-dimensional section normal to the optimal exercise surface, but the
details remain to be investigated.
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