
 
 
 
 
 
 
 
 
 
 
 
 

Information and the Cost of Capital 
 
      

 
 

David Easley  
Department of Economics 

Cornell University 
 
 

and  
 
 

Maureen O’Hara 
Johnson Graduate School of Management 

Cornell University 
 
 
 
 
 
 

February 2003 
 

*We would like to thank an anonymous referee, Anat Admati, Christopher Gadarowski, Jerry 
Hass, Soeren Hvidkjaer, Roger Ibbotson, Eugene Kandel, Karl Keiber, Wayne Ferson, Rene 
Stulz and seminar participants at Colorado, Columbia, Cornell, the European Finance 
Association Meetings (Berlin), Maryland, Michigan State, Ohio State, Rochester, University 
of Houston, and Yale for helpful comments.  The authors can be reached at 
dae3@cornell.edu and mo19@cornell.edu. 



Information and the Cost of Capital 
 
 

1. Introduction 

 Fundamental to a variety of corporate decisions is a firm’s cost of capital.  From 

determining the hurdle rate for investment projects to influencing the composition of the firm’s 

capital structure, the cost of capital influences the operations of the firm and its subsequent 

profitability.  Given this importance, it is not surprising that a wide range of policy prescriptions 

have been advanced to help companies lower this cost.  For example, Arthur Levitt, the former 

chairman of the Securities and Exchange Commission, suggests that “high quality accounting 

standards … improve liquidity [and] reduce capital costs”.1  The Nasdaq stock market argues 

that its trading system “most effectively enhances the attractiveness of a company’s stock to 

investors”.2  And investment banks routinely solicit underwriting business by arguing that their 

financial analysts will lower a company’s cost of capital by attracting greater institutional 

following to the stock.  While accounting standards, market microstructure, and financial 

analysts each clearly differ, these factors all can be thought of as influencing the information 

structure surrounding a company’s stock.3 

 Paradoxically, asset-pricing models include none of these factors in determining the 

required return for a company’s stock.  While more recent asset-pricing models (see Fama and 

French [1992; 1993]) admit the possibility that something other than market risk may affect 

required returns, these alternative factors do not include the role of information.  This exclusion 

is particularly puzzling given the presumed importance of market efficiency in asset pricing.  If 

information matters for the market, why then should it not also matter for the firms that are in it? 

 In this research we investigate the role of information in affecting a firm’s cost of capital.  

Our particular focus is on the specific roles played by public and private information. The 
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argument we develop here is that differences in the composition of information between public 

and private information affect the cost of capital, with investors demanding a higher return to 

hold stocks with greater private, and correspondingly less public, information.  This higher return 

reflects the fact that private information increases the risk to uninformed investors of holding the 

stock because informed investors are better able to shift their portfolio weights to incorporate 

new information.  This cross-sectional effect results in the uninformed traders always holding too 

much of stocks with bad news, and too little of stocks with good news. Holding more stocks 

cannot remove this risk because the uninformed are always on the wrong side; holding no stocks 

is sub-optimal because uninformed utility is higher holding some risky assets.  Moreover, the 

standard separation theorem that typically characterizes asset pricing models does not hold here 

because informed and uninformed investors perceive different risks and returns, and thus hold 

different portfolios.4 Private information thus induces a new form of systematic risk, and in 

equilibrium investors require compensation for this risk. 

 We develop our results in a multi-asset rational expectations equilibrium model that 

includes public and private information, and informed and uninformed investors.  Important 

features of the model are risk averse investors, a positive net supply (on average) of each risky 

asset, and incomplete markets.  We find a partially revealing rational expectations equilibrium in 

which assets generally command a risk premium.  The model demonstrates how in equilibrium 

the quantity and quality of information affects asset prices, resulting in cross-sectional differences 

in firms’ required returns.  What is particularly intriguing about the model is that it demonstrates a 

role for both public and private information to affect a firm’s required return.  This provides a 

rationale for how an individual firm can influence its cost of capital by choosing features like its 

accounting treatments, financial analyst coverage, and market microstructure.  We also show why 
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firms with little available information, such as IPOs, face high costs of capital:  in general, more 

information, even if it is privately held, is better than no information at all. 

 Prior researchers have investigated how private information affects asset prices in a 

variety of contexts.  Three streams of the literature are most relevant for our work here.  First, 

building from the classic analysis by Grossman and Stiglitz [1980], a number of authors have 

looked at the role of private information in rational expectations models.  Admati [1985] analyzed 

the effects of asymmetric information in a multi-asset model.  Her analysis focused on how an 

asset’s equilibrium price is affected by information on its own fundamentals and those of other 

assets.  Because agents in her model have diverse information, she finds that each agent has a 

different risk-return trade-off; a result very similar to our finding here that informed and 

uninformed investors hold different portfolios.  While Admati provides an elegant analysis of 

multi-asset equilibrium, her focus is not on the public versus private information issues we 

consider.  Wang [1993] showed in a two-asset multi-period model that asymmetric information 

induces two effects into asset prices.  First, uninformed investors require a risk premium to 

compensate them for the adverse selection problem that arises from trading with informed traders.  

Second, informed trading also makes prices more informative, thereby reducing the risk for the 

uninformed and lowering the risk premium.  The overall effect on the equilibrium required return 

in this model is ambiguous.  Because the model allows only one risky asset, it is not clear how, if 

at all, information affects cross-sectional returns, or how information affects portfolio selection.5  

One way to interpret our results is that holding the amount of information constant, the adverse 

selection effect prevails, so that in our multi-asset equilibrium cross-sectional effects arise.  

 Dow and Gorton [1995] provide an alternative analysis in which informed traders profit 

from their information, and consequently uninformed traders lose relative to the informed.  For 
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profitable informed trade to be possible it must not be possible for the uninformed to replicate 

the portfolio(s) of the informed.  We do this with the standard device of noise trade so that we 

can focus on the effect of private versus public information on the cost of capital.  Dow and 

Gorton instead restrict the uninformeds’ portfolios so that they cannot buy the market.  They do 

not consider public versus private information or the cost of capital, but their approach could also 

be used to address these issues.  

A second stream of related research considers the role of information when it is 

incomplete but not asymmetric.6  Of particular relevance here is Merton [1987] who investigates 

the capital market equilibrium when agents are unaware of the existence of certain assets.  In 

Merton’s model, all agents who know of an asset agree on its return distribution, but information 

is incomplete in the sense that not all agents know about every asset.  Merton shows that in 

equilibrium the value of a firm is always lower with incomplete information and a smaller 

investor base.  In our model, all investors know about every asset, but information is asymmetric:  

some investors know more than others about returns.  While both approaches lead to cross-

sectional differences in the cost of capital, there is an important difference with respect to their 

robustness to arbitrage. 

Finally, a third stream of related research considers the role of information disclosure by 

firms.  Disclosure essentially turns private information into public information, so this literature 

addresses the role of public information in affecting asset prices.  Diamond [1985] developed an 

equilibrium model in which public information makes all traders better off.  What drives this 

result is that information production is costly, and so disclosure by the firm obviates the need for 

each individual to expend resources on information gathering.7  While our model also shows a 

positive role for public information, our result arises because public information reduces the risk 
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to uninformed traders of holding the asset.  Diamond and Verrecchia [1991] consider a different 

risk issue by analyzing how disclosure affects the willingness of market makers to provide 

liquidity for a stock.  Using a Kyle [1985]-type model, they show that disclosure changes the 

risks to market makers, which in turn induces entry or exit by dealers.  In this model, disclosure 

can improve or worsen liquidity depending upon these dealer decisions. Our analysis does not 

consider dealers, but the models are related in that public information influences the riskiness of 

holding the stock.  Research by Fishman and Haggerty [1995] and Admati and Pfleiderer [2000]  

considers other important aspects of disclosure, such as the role of insiders and strategic issues in 

disclosure, but these issues are outside of the scope of the problem considered here.8 

What emerges from our research is a demonstration of why a firm’s information structure 

affects its equilibrium return.  This dictates that a firm’s cost of capital is also influenced by 

information, providing a linkage between asset pricing, corporate finance, and the information 

structure of corporate securities.  A particular empirical prediction of our model is that in 

comparing two stocks that are otherwise identical, the stock with more private information and 

less public information will have a larger expected excess return.  In a companion empirical 

paper (Easley, Hvidjkaer, and O’Hara [2002]) we test this prediction using a structural 

microstructure model to provide estimates of information-based trading for a large cross section 

of stocks.  Our findings there provide strong evidence of the effects we derive here.  Our model 

also develops a number of other empirical implications, as yet untested, on the effects of the 

dispersion of information, of the quantity of information, and of the quality of public and private 

information on a firm’s cost of capital.  We illustrate the potential magnitude of some of these 

effects through simple numerical examples. 
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This paper is organized as follows.  The next section develops a rational expectations 

model including many assets, many sources of uncertainty, and informed and uninformed 

traders.  We characterize the demands of the informed and uninformed traders, and we 

demonstrate that a non-revealing rational expectations equilibrium exists.  In Section 3, we then 

analyze the equilibrium and determine how the equilibrium return differs across stocks.  In this 

section, we derive our results on the specific influence of private and public information on asset 

returns.  Section 4 then considers the impact of various aspects of a firm’s information structure 

on its cost of capital.  Section 5 discusses some extensions and generalizations of our model.  

Section 6 is a conclusion. 

 

2.  Information and Asset Prices in Equilibrium 

 In this section, we develop a rational expectations equilibrium model in which both 

public and private information can affect asset values.  We first describe the information 

surrounding a company’s securities, and how this information is disseminated to traders.  We 

then derive demands for each asset by informed traders who know the private information and by 

uninformed traders who do not.  Because informed traders’ information affects their demands it 

is reflected in equilibrium prices.  In a rational expectations equilibrium, uninformed traders 

make correct inferences about this private information from prices. We solve for rational 

expectations equilibrium prices and derive the equilibrium required return for each asset.  This 

required return is the company’s cost of capital. 
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2.1  The Basic Structure 

 We consider a two-period model:  today when investors choose portfolios and tomorrow 

when the assets in these portfolios pay off.  There is one risk-free asset, money, which has a 

constant price of 1.  There are K risky stocks indexed by k = 1, …, K.  Future values, vk, are 

independently, normally distributed with mean kv  and precision kρ .  The per capita supply of 

stock k, kx , is also independently, normally distributed with mean kx  and precision kη .9   Stock 

prices, pk, are determined in the market.  Traders trade today at prices ( )1 k1, p ,..., p  per share and 

receive payoffs tomorrow of  per share. ~ ~
1 k1,v ,...,v

 

 



 Investors receive signals today about the future values of these stocks.  For stock k, there 

are Ik signals, where Ik is an integer.  These signals, , are drawn independently 

from a normal distribution with mean vk, the future value of stock k, and precision 

kk1 k 2 kIs ,s ,...,s

kγ .  Some of 

these signals are public and some are private.  The fraction of the signals about the value of stock 

k that are private is denoted αk; the fraction of the signals that are public is 1−αk.  All investors 

receive public signals before trade begins.  Private signals are received only by informed traders.  

We let µk be the fraction of traders who receive the private signals about stock k.  All of these 

random variables are independent and the investors know their distributions.10 

 Since the distributions are normal, and the signals are conditionally independent, the 

mean of any collection of signals is a sufficient statistic for the collection.  Let 

 

  ( )
k k k

k k

I I
k ki k k k ki k

i 1 i I 1
N s I , M s 1

α

α
α α

= = +
= =∑ ∑ kI−  
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be these sufficient statistics.  Note that Nk is normally distributed with mean vk and precision 

αkIkγk and Mk is normal with mean vk and precision (1-αk)Ikγk.  So by varying αk, we keep the 

total information content of signals constant while varying the amount of private versus public 

information. 

 There are J investors indexed by j = 1, …, J.  These investors all have CARA utility with 

coefficient of risk aversion δ>0.  These investors must in equilibrium hold the available supply 

of money and stocks.  Because the investors are risk averse, and the stocks are risky, the risk will 

be priced in equilibrium.  The question that we are interested in is how the distribution of 

information affects asset prices and thus expected returns. 

 

2.2  Investors’ Decision Problems 

 Each investor chooses his demands for assets k = 1, …, K to maximize his expected 

utility subject to his budget constraint.  The budget constraint today for typical investor j is 

+ =∑ jj j
k k

k
m p z m , where j

kz  is the number of shares of stock k he purchases, mj is the 

amount of money he holds and jm is his initial wealth.  His wealth tomorrow is the random 

variable 
j~ j j

k k
k

w v z= ∑ m+ .  Substituting from the budget constraint for jm , investor j’s 

wealth can be written as the sum of capital gains and initial wealth, ( )
j~ j j

k k k
k

w v p z= − +∑ m .   

Suppose that conditional on all of investor j’s information, he conjectures that the payoffs 

on stocks are independent and that the distribution of vk is normal with mean j
kv  and precision 
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j
kρ .  Then, because he has CARA utility and all distributions are normal, investor j’s objective 

function has a standard mean-variance expression.  He thus chooses a portfolio to solve 

 

  
( )

( )
Kj

k k 1

j j~ j

z

~Max E w 2 Var wδ
=

   
  −  
      

.      (1) 

 

So investor j’s demand function for asset k is 

 

  
( )−

−
=

j
j kk

k 1j
k

v p
z

δ ρ
.        (2) 

 

 The demand function for asset k in (2) depends upon investor j’s beliefs about the asset’s 

risk and return.  These beliefs differ depending upon whether the agent is informed or not.  We 

first consider these beliefs for informed investors.  It follows from Bayes Rule that if j is 

informed about asset k, then his predicted distribution for vk is Normal with conditional mean 

and precision given by 

 

  =
+

=
+

∑
KI

k k k ki
j i 1

k
k k K

v s
v

I

ρ γ

ρ γ
, j

K K KK Iρ ρ γ= +      (3) 

 

Thus, from (2) the demand for asset k by informed investor j is  

 

  
( )

=

=

+ − +
 

= ≡ 
 

∑
∑

k

k

I

k k k ki k k k k I
j* *i 1

k kik
i 1

v s p I
z D

ρ γ ρ γ

δ
kI s , p   (4) 
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 Solving for uninformed investors’ demands is more complicated.  These investors know 

the public signals, but not the private signals.  What they do know, however, is that the demands 

of the informed traders affect the equilibrium price, and so they rationally make inferences about 

the underlying information from the price.  To learn from the price, these investors must 

conjecture a form for the price function, and in equilibrium this conjecture must be correct.  

Suppose the uninformed conjecture the following price function 

 

  
+= =

= + + − +∑ ∑
k k

k k 1

I I

k k ki ki k
i 1 i I

kp av b s c s dx ex
α

α
    (5) 

 

where a, b, c, d, and e are coefficients to be determined. 

To compute the distribution of vk, conditional on pk, it is convenient to define the random 

variable kθ  to be 

 

 (

k k k

k k 1

I I

k k ki k ki
i I i 1

k k k
k k k k k k

p av c s x ( d e ) s
d )x x

b I I b I

α

αθ
α α α

+= =

− − + −
 

= = −  
 

∑ ∑
−   (6) 

 

What is important for our purposes is that the uninformed investors can compute kθ  and that kθ  

has mean vk.  Calculation shows that kθ  is normally distributed with mean  and precision kv

kθρ where 

 

  

−

−
    = +   
     

12
1

k k
k k k k

d 1
b I Iθρ η
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 Using this information, we can compute the conditional mean and variance from the 

perspective of the uninformed trader.  These are  

 

  
( )

k

k k

I

k k k ki k k
i I 1j
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k k k k k
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θ
α

θ
v
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Each uninformed trader’s demand for asset k is thus 

 

( )( )
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 (9) 

 

 In the next section, we show that there is a rational expectations equilibrium in which the 

conjectures used to compute these demands are correct. 

 

2.3  Equilibrium 

 In equilibrium, for each asset k, per capita supply must equal per capita demand or  

 

    (10) ( )
k k

k k

I I
* *

k k ki k k k ki k k
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α

µ µ
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 We find the equilibrium by solving equation (10) for pk and then verifying that pk is of 

the form conjectured in (5).  Proposition 1 characterizes this equilibrium. 

 

Proposition 1:  There exists a partially revealing rational expectations equilibrium in which, for 

each asset k, 
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Proof:  See Appendix. 

 

 The proposition demonstrates that there exists a rational expectations equilibrium in 

which prices are partially revealing.  So in equilibrium informed and uninformed investors will 

have differing expectations.   

 

3.  Information and Cross-Sectional Asset Returns 

 Having established the equilibrium, we turn in this section to an analysis of how the 

equilibrium return differs across stocks.  We show that this return depends on the information 

structure, with the levels of public and private information influencing the cross-sectional 

equilibrium return demanded by investors.  The random return per share to holding asset k is 
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vk−pk.  The expected return per share to holding asset k for an investor with information set I, 

price and public information for an uninformed investor or all information for an informed 

investor, is thus kk pIvE −][ .  The average return per share over time for this investor is 

][]][[ kkkk pvEpIvEE −=− , where the expectation is computed with respect to prior 

information.  This is common to all investors and is the return that an outside observer could 

compute per share for asset k.11  The following proposition describes this equilibrium risk 

premium on asset k. 

 

Proposition 2:  The expected return per share for stock k is given by 

 

  [ ] ( ) ( )
− =

+ − + + −
k

k k
k k k k k k k k k k

xE v p
1 I I 1 θ

δ
ρ α γ µ α γ µ ρ

. 

 

Proof:  See Appendix 

 

 Proposition 2 reveals a number of important properties of equilibrium asset returns.  

Inspecting the numerator reveals that the risk premium of a stock depends on agents’ risk 

preferences (δ ) and on the per capita supply kx  of the stock. Obviously, if agents are risk neutral 

(δ=0 ), then the asset’s underlying risk is not important to them, negating the need for any risk 

premium.  If agents are risk averse, then there is positive risk premium for asset k as long as the 

per capita supply of the asset is on average positive.12  It is important to note that kx  is the per 

capita number of shares of asset k and not the portfolio weight, or fraction of wealth invested in 

asset k.  In an economy with a large number of assets the portfolio weights for all assets are 

small, but this has no effect on the expected return given in Proposition 2.  Of course, if kx  = 0 
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for all stocks then there is no risk premium for any stock.  In such a world there is on average no 

per capita supply of any asset that needs to be held, so no agent has to bear any risk, and risk 

bearing is thus not rewarded.  Even market risk would not be priced in this uninteresting 

economy.  We focus instead on economies with assets that are in positive per capita supply and 

which thus have positive expected return. 

 The risk premium is also affected by the stock’s information structure.  The denominator 

shows the influence of traders’ prior beliefs and the effects of public and private information.  If 

information on the asset is perfect (perfect prior information, ρv = ∞, or perfect signals, γv = ∞), 

then asset k is risk free and its price is its expected future value.  When information is not perfect 

the risk premium is positive. The greater the uncertainty about the asset's value, the smaller is the 

precision, and the greater is the stock's risk premium. In the following analysis, we examine the 

economically interesting case in which δ > 0, kx  > 0, ρv < ∞ , γk < ∞ , and there is a positive 

expected return on stock k. 

 We are interested in cross-sectional variation in this return.  Most important is how the 

required return is affected by the amount of private information versus public information, i.e., 

αk.  Proposition 3 details this effect.13 

 

Proposition 3:  For any stock k, and provided µk < 1, shifting information from public to private 

increases the equilibrium required return, or 

 

  [ ] 0pv~E

k

k >
∂

−∂
α

 

 
Proof:  See Appendix 
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 The proposition shows that if private signals are truly private to some traders ( )<k 1µ  

then the required return is increasing in αk, the fraction of the signals about stock k that are 

private (when µk = 1, all available information is actually public).  This result has an important 

implication for cross-sectional returns:  in comparing two stocks that are otherwise identical, the 

stock with more private and less public information will have a larger expected excess return.  

This occurs because when information is private, rather than public, uninformed investors cannot 

perfectly infer the information from prices, and consequently they view the stock as being 

riskier.   

Cross-sectional returns on stocks will thus depend on the structure of information in each 

individual stock.  To the extent that information structures are correlated with other more easily 

observable variables, these variables may proxy for the effects of information structure in 

explaining the cross section of returns.  For example, if small firms have relatively more private 

and less public information than do large firms, then uninformed investors will view them as 

being more risky and they will have higher expected excess returns. 

 

3.1. A Numerical Example 

The potential magnitude of this effect can be illustrated by a simple numerical example.  

The specific value to attach to some of the model’s parameters is surely debatable.  As our focus 

is on the comparative effects of changes induced by a stock’s information structure, we adopt 

simple base levels for the model’s structural parameters.  Thus, we set the precisions of the 

random variables ηk, γk, and ρk = 1, the mean per capita supply kx =1, the risk aversion 

coefficient δ = 1, the number of signals Ik =10, and the fraction of informed traders µk = .2. The 

risk premium for stock k is then found by substituting these parameter values, and, the fraction of 
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signals that are public (αk), into the equation in Proposition 2.  We then compute percentage 

changes in the risk premium caused by changes in the fraction of signals that are public, αk.14   

Table 1 panel A shows how changes in αk  affect the company’s required excess return.15  

The example shows that changing αk by .1 changes the expected risk premium by approximately 

7.5%.  Note that this is the percentage change in the risk premium, not the absolute change.  

Thus, moving information from private to public can induce real effects on the equilibrium risk 

premium. 

 

4.  Mean-Variance Efficiency and the Risk Premium 

 The model above shows that in equilibrium asset returns include a risk premium that 

depends upon the information structure of each stock.  Thus, unlike in the standard CAPM 

pricing world, investors demand compensation for what can be viewed as factors idiosyncratic to 

each asset.  Yet, it is also true that investors in our model have utility functions defined over 

means and variances, and so they, too, seek mean-variance efficiency in their asset choices.  

What then leads to the different equilibrium outcomes?  In this section, we address this question 

by first discussing why this result is robust, and then turning to a more technical derivation of the 

mean-variance efficiency of our asymmetric information asset-pricing model. 

 

4.1 Investor Behavior and the Risk Premium 

 Let us first consider why this result is not eviscerated by the usual arguments advanced in 

asset pricing models.  For example, one might conjecture that this effect would be removed by 

the uninformed investors optimally diversifying, or by simply not holding stocks with a large 

amount of private information.  But this is not the case.  Uninformed investors chose not to avoid 
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this risk in equilibrium.  They are rational so they hold optimally diversified portfolios, but no 

matter how they diversify they lose relative to the informed traders.  To completely avoid this 

risk, the uninformed traders would have to hold only money, but this is not optimal; their utility 

is higher by holding the risky stocks.  Although the model has only one trading period it is easy 

to see that uninformed investors also would not choose to avoid this risk by buying and holding a 

fixed portfolio over time.  In each trading period in an inter-temporal model uninformed 

investors reevaluate their portfolios.  As prices change, they optimally change their holdings. 

 Could the uninformed arbitrage this effect away (or conversely, make arbitrage profits) 

by simply holding all high α stocks and shorting all low α stocks?  Again, the answer is no.  It is 

true that everyone, including the uninformed, know the α’s.  But the uninformed do not know the 

actual private information.  Holding all high α stocks is extremely risky for the uninformed 

because these stocks have both good and bad news.  The informed are able to buy more of the 

good news stocks, and hold less of (or even short) the bad news stocks, thereby allowing them to 

exploit their information; this option is not available to the uninformed.   

This property of our equilibrium highlights an important difference between our 

asymmetric information model and Merton’s [1987] incomplete information model.  In Merton’s 

model, arbitrage is possible, “if such stocks can be easily identified and if accurate estimation of 

the alphas (the excess returns) can be acquired at low cost … then professional money managers 

could improve performance by following a mechanical investment strategy titled towards these 

stocks.  If a sufficient quantity of such investments were undertaken then this extra excess return 

would disappear”.  In our model, everyone knows about the stocks, but they do not know what 

position to take.  The informed hold different weights of the assets in their portfolio than do the 

uninformed.  The uninformed cannot mimic the informed portfolio by holding all good 
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information stocks because they do not know the information value, and holding equal weights 

of all of the stocks does not remove this risk. 

The intuition for this result is similar to that of Rock’s IPO [1986] under-pricing 

explanation.  In that analysis, the uninformed bid for new issues and so do informed insiders.  

When the information is good, the insiders buy larger amounts, and the uninformed 

correspondingly get less.  When the information is bad, the insiders do not buy the new issue, 

and the uninformed end up holding most of it.  Because the uninformed know this will happen, 

in equilibrium they demand a higher expected return to compensate.  Here, the problem extends 

across all the assets in that private information will again influence the portfolio outcomes of the 

informed and uninformed.  Our result is that equilibrium asset returns will reflect this risk. 

 

4.2  Mean-Variance Efficiency 

The differing information that traders have results in differing perceptions of the efficient 

mean-standard deviation (of wealth) frontier.  This causes informed and uninformed traders to 

select different portfolios, even though each investor is maximizing the same utility function 

defined over means and variances.  To illustrate how this affects the equilibrium, we first look 

heuristically at the portfolio choice problem for any trader j, represented graphically by Figure 

1.16  

The perceived efficient frontier is linear, with a slope determined by the trader’s 

perception of mean returns ( j
kv )  and standard deviations ( )( )1/ 2j

kρ
−

 for assets.  For an economy 

with one risky asset (and one risk-less asset), the slope of this frontier according to trader j is 
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( )( 1 / 2j j
1 1 1v p ρ− ) .  The trader’s indifference curves in expected wealth ( )w —standard deviation 

of wealth (σw) space have slope wδσ

ρ1
I >

.   

 If there is any private information about the risky asset, then in equilibrium informed 

traders have a larger precision;    for informed trader I and uninformed trader U, 

respectively.  The expected value of the asset depends on the information that informed traders 

receive, and uninformed traders partially infer from price.  On average, these expected values are 

both equal to the prior expected value of the asset, 

ρ1
U

1 UE v E v v   = =    .  Figure 2 shows the 

average portfolio choices of informed and uninformed traders denoted by XI and XU. 

On average, informed traders take on more risk by holding more of the risky asset.  

Informed traders’ beliefs about mean returns are more responsive to signals than are uninformed 

traders’ beliefs.  So when there is good news, the informed hold even more of the risky asset, and 

when there is bad news their holdings are reduced by more than are the uninformed traders’ 

holdings.  If the news is bad enough, the informed hold less of the risky asset than do the 

uninformed.  This effect is captured in Figure 3, where IG and IB (UG and UB) are the efficient 

frontiers for informed (uninformed) traders given good news and bad news, respectively. 

 

4.3  Mean-Variance Efficiency and the Market Portfolio 

 An important feature of the portfolios above is that each trader’s portfolio is mean-

variance efficient, but the portfolios differ between informed and uninformed traders.  In 

symmetric information models such as the CAPM, traders know the same information, hold the 

market portfolio (if they have a common risk aversion coefficient), and this market portfolio is 

also mean-variance efficient.  Here, traders disagree on the amount of each asset to hold.  But it 
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remains the case that in equilibrium the demands of the informed and uninformed must sum to 

the actual amount of assets in the economy, and so the market portfolio is defined by 

.  The following Proposition shows that the market portfolio is mean-variance 

efficient with respect to average beliefs. 

( )k
k k k 1x x ==

 

Proposition 4:  The market portfolio is mean-variance efficient for average conditional beliefs: 

 

  

( )( )

( )

M I I u u M
k k k k k k k

M I u
k k k k k

v v 1 v

1

kµ ρ µ ρ

ρ µ ρ µ ρ

= + −

= + −

ρ

 

 
 
Proof:  See Appendix. 

 

 Thus, the market also achieves mean-variance efficiency even though there is 

disagreement among the investors over this optimal trade-off for individual assets. This result is 

reminiscent of Lintner’s [1974] finding that with heterogeneous investors the market portfolio is 

efficient with respect to the average belief across investors.  In our asymmetric beliefs setting, 

this efficiency is defined “as if” there were a representative agent with CARA preferences, risk 

aversion δ, and beliefs ( )M M
k kv ,ρ .  But there is, in fact, no such agent in the economy, and more 

importantly, it is not even possible to hold the market portfolio as it depends on the 

(unobservable) realization of the random supply shock.   

 What investors do know is the average market portfolio, or simply the expectation kx .  

And investors could hold this average market portfolio should they choose to do so. Would this 

strategy remove the cross-sectional information effects we found in our equilibrium asset 
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returns? That is, rather than try to pick assets in a world where others know more, would an 

uninformed investor be better off just holding this average portfolio in much the same way that 

all investors hold the market in CAPM?  To address this question, we first need to show that this 

average market portfolio is mean-variance efficient. 

 

Proposition 5:  The average market portfolio kx  is mean-variance efficient with respect to 

unconditional means ( kv ) , prices ( )kp  and M
kρ . 

 

Proof:  See Appendix 

 

 Although the average market portfolio is mean-variance efficient with respect to some 

beliefs and prices, it is not optimal for any trader.  To see this, we need only compute an 

investor’s expected utility when he holds ( )kx  and compare this to his utility when he holds the 

optimal portfolio ( *
k )x .  The difference in mean minus 2

δ  times variance for these portfolios 

is17 

 

 ( )( ) ( ) ( ) ( )
K 1 2 2j j* *

k k k k kk k
k 1

E[U ] E[U*] v p x x x x 0
2
δ ρ

−

=

− = − − − + −∑  
 < . (11) 

 

To see that (11) is negative, note that it is maximized at *
k kx x=  using *

kx  from (9). 

 A simple interpretation of equation (11) is that it measures “how badly” the CAPM does 

in an asymmetric information world.  A trader holding the average market portfolio does worse 

than an uninformed trader who selects his asset holdings via standard maximization techniques.  
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This divergence in performance increases with greater risk aversion, with more private 

information, and with greater aggregate supply shock randomness; it is tempered with greater 

precision of information.  But this shortfall in performance should not unexpected.  If 

information is symmetric, there is nothing to be learned, and the market price is not informative.  

With asymmetric information, even uninformed traders learn, albeit imperfectly, from public 

information and from the equilibrium price function.  Ignoring this data to hold an “average” 

portfolio cannot do as well. 

 

4.4  Equilibrium Portfolios of Informed and Uninformed Investors 

Another way to see this effect is to compute the equilibrium portfolios of informed and 

uninformed investors.  Let U
kZ  be the per capita demand for stock k by uninformed traders, and 

let I
kZ  be the per capita demand for stock k by informed traders.  Stocks are riskier for 

uninformed traders than they are for informed traders, and so one might expect this risk 

difference to affect how much of any stock they hold.  To determine this, we first calculate the 

difference in holdings of asset k by the informed and uninformed 

 

[ ] ( )
k kI

I U 1k
i k k k k k k k k k

k k k k k ki 1
Z Z s p I x x

I I

α
θ

θ θ
ρ δγ ρ α γ ρ δ

α µ γ α
−

=

     
− = − + − + −            

∑  (12) 

 

It is easy to see that −I
k

U
kZ Z  is normally distributed with a strictly positive mean.  Using this 

fact, we can calculate the difference in average holdings of asset k by the informed and 

uninformed, or 
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      (13) (~I U 1
kk k k k k k kE Z Z E v p I 0θδ α γ ρ−   − = − − >    

)

 

The positive sign in equation (13) dictates that the informed investors are holding on average 

more of each risky asset than are the uninformed investors.  How much more depends on the risk 

aversion coefficient, the expected return, the difference in precisions of the informed and 

uninformed traders’ information, and the model’s structural parameters.   

 The potential magnitude of this effect can be illustrated in our numerical example. 

Specifying the parameter values as before (Ik =10, µk=.2, ηk=γk=ρk=1, δ=1, kx =1), we fix 

αk=.5.  The optimal holdings of the informed and uninformed are determined by their demand 

functions and the equilibrium price, with the difference in these holdings given by equation (13).  

Solving for these informed and uninformed per capita holdings yields and 

.  So on average an informed trader holds almost 75% more of this asset than the 

uninformed trader holds, a nontrivial difference by any metric. 

27.][ IZE 1=

73.][ =UZE

 Returning to the model, an interesting question is how does the composition of 

information affect the average stock holdings of informed and uninformed investors?  The 

composition of information is captured by αk, or the fraction of signals that are private.  

Calculation shows 

 

  
I u
k k

k

E Z Z
0

α

 ∂ −  >
∂

 

 

So if more of the information about asset k is private, then the difference in average holdings of 

the informed and uninformed of asset k increases. 
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 Again, the numerical example can illustrate this effect.  Suppose we now let αk=.8 and 

we compare the resulting holdings with our base case holdings when αk=.5.  Calculation shows 

that now and .  So now, on average an informed trader holds almost 

three times as much of this asset than the uninformed trader holds. 

49.1][ =IZE  51.][ =UZE

Earlier we argued that informed traders are able to capitalize on their private information 

by shifting their portfolios relative to those of the uninformed. This private news is captured by 

the sum of the private signals, , with good news raising this value and bad news lowering 

it.  We can determine how private news affects the actual portfolios of informed and uninformed 

investors in the model by calculating  

=
∑
k kI

i
i 1

s
α

( )

=

∂ −
>

∂ ∑
k k

I U
k k

I
i

i 1

Z Z
0

s
α        (14) 

Good private information raises the informed’s holding of asset k relative to the uninformed, 

while bad private news has the opposite effect.  Thus, while on average the informed hold more 

of the risky asset k than do the uninformed, their actual holding in any period will be more or 

less than the uninformed’s holding depending upon their specific private information. 

 How does the value of public information affect these portfolios?  Because all traders see 

the public news, one might conjecture that it has no effect, but this is incorrect.  To see why, note 

that the public information is .  Again, positive public news raises this value, and 

negative public news lowers it.  Computing the impact of public news on the holdings of the 

informed and uninformed, we find 

= +
∑

k

k k

I
i

i I 1
s

α
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Thus, good public information lowers the holdings of asset k by informed traders relative to the 

uninformed holdings.  The reason this occurs is that good public news has more of a positive 

effect on the uninformed’s beliefs than it does on the informed beliefs.  This induces the 

uninformed to hold relatively more of the asset, which closes the gap between the informed and 

uninformed holdings. 

 The portfolio changes induced by public and private news demonstrate the channel by 

which information affects cross-sectional asset returns.  In the next section, we investigate this 

linkage in more detail by looking at the role played by the characteristics of public and private 

information.  

 

5.  Information and the Cost of Capital 

Our analysis thus far reveals that the distribution of private information affects the return 

investors require to hold any stock in equilibrium.  Viewing this result from the perspective of 

the firm, a firm whose stock has relatively more private information and less public information 

thus faces a higher cost of equity capital.18  We now turn to understanding the factors that 

increase or decrease this cost of capital. 

 In our model, the dispersion of private information is captured by the variable µk, the 

fraction of traders who receive the private information.  A higher value of µk, means that more 

traders know the information, and in equilibrium this influences the risk premium of the stock 

through two channels.  First, the stock is less risky for informed traders than it is for uninformed 

traders.  Thus, on average, informed traders hold greater amounts of the stock.  So if more 
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traders are informed then, on average, demand for the stock increases, the price increases, and 

the firm’s cost of capital falls.  Second, there is an indirect effect on the cost of capital through 

the revelation of information by the stock price.  If more traders are informed, then their 

information is revealed with greater precision to the uninformed.  This makes the stock less risky 

for the uninformed and this further reduces the cost of capital. 

These risk premium effects are captured by the comparative static result 

( ) 0
~~

<
∂

−∂

k

kk pvE
µ

.     (16) 

This finding demonstrates that a greater dispersion of private information lowers the required 

risk premium, and thus lowers a company's cost of capital.   

This theoretical result highlights the complex role that information plays in equilibrium. 

While the informed benefit from knowing private information, they also must contend with the 

fact that their own trades impound this information into the stock price.  The more informed 

agents there are, the more informative are their collective trades, and the more information is 

reflected in the equilibrium price.  If all agents become informed, then as discussed in 

Proposition 3, all information is essentially public and there is no risk premium for private 

information.  

 These effects can be illustrated by our numerical example.  Fixing the parameter values 

as before (Ik =10, αk=.5, ηk=γk=ρk=1, δ=1, 1kx = ), we consider how changes in µk affect the 

risk premium.  Table 1 panel B shows percentage changes in the company’s required excess 

return generated by changes in µk.  The example shows that this effect is non-linear. Thus, when 

µk is small (say .2), increasing the fraction of informed traders (µk =.4) generates a large change 

in the firm’s required excess return; in our example, the percentage fall is on the order of 20%.  

 27



When there are many informed traders (µk =.6), increasing their representation in the population 

further (say to µk = .8) has a smaller effect and generates a fall in the risk premium of less than 

5%. 

Taken together, our results on the existence and dispersion of information suggest that 

firms could lower their cost of capital by either reducing the extent of private information or by 

increasing its dispersion across traders.  There are several potential ways of doing so. For 

example, firms could disclose information to the market that would otherwise be privately 

known.  The optimal amount of disclosure by firms has been investigated by numerous authors 

in numerous contexts but our analysis here shows why this lowers the cost of capital: substituting 

public for private information lowers the risk premium investors demand in equilibrium.  

Botosan [1997] provides empirical evidence on this effect by showing that for a sample of firms 

with low analyst following, greater disclosure reduces the cost of capital by an average of 28 

basis points.  Brown, Finn and Hillegeist [2001] show that the quality of firm’s disclosures is 

negatively correlated with the level of information-based trade in its stock.  This result, 

combined with the results of Easley, Hvidkjaer and O’Hara [2001], showing that the level of 

information-based trade directly affects the firm’s cost of capital, demonstrates how disclosures 

affect the cost of capital. 

It may be, however, that firms do not know the underlying private information, and so are 

unable to disclose it to the market.  Alternatively, even if they do know it, the moral hazard 

problems of self-reporting information may lead the market to be dubious of any such 

disclosures.  But firms can encourage greater scrutiny of the company by financial analysts, who 

may aid in the both the development and dissemination of information.19  It is also in the 

company's best interest to increase the quality of the information on the firm.  Returning to the 
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risk premium in Proposition 2, it is straightforward to show that the precision of both public and 

private information affects the required return, or 

( )∂ −
<k k

k

E v p
0

γ
     (17) 

Returning to the numerical example, we can investigate this effect by considering how 

changes in γk  affect the firm’s excess risk premium.  Table 1 Panel C shows that the quality of 

information exerts a large effect on the risk premium.  Thus, increasing the precision of 

information from γk =.8 to γk = .9 reduces the risk premium by more than 10%.  When 

information precision is already high, increasing γk has a smaller, but still significant effect on 

the risk premium. 

This finding reinforces the role played by analysts in affecting asset returns.  The forecast 

of any one analyst may have low precision, but the collective forecast of many analysts should 

be much more accurate.  Thus, companies benefit from having many analysts because analysts 

increase the precision of information and this lowers the companies’ cost of capital.   

These findings suggest an important role for the accuracy of accounting information in 

asset pricing.  Here greater precision will directly lower a company's cost of capital because it 

will reduce the riskiness of the asset to the uninformed.  This finding is consistent with the 

extensive accounting literature documenting the effects of accounting treatments on stock prices.  

Given that accounting changes do not affect the company's underlying business or economic 

profits, standard asset pricing models would not suggest any impact on stock prices. Our model 

demonstrates why this reasoning is wrong; because information affects asset prices, the quantity 

and quality of that information is very relevant for asset price behavior. 
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An interesting feature of our model is that the life cycle of a firm may also influence its 

cost of capital.  In particular, it seems reasonable that a firm with a long operating history will be 

better known by investors.  This is captured in our model by the prior belief, in that investors will 

have a greater prior precision if they know more about the firm.  In our model, the precision of 

the prior belief has a direct effect on the risk premium given by 

( ) 0
~

<
∂
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ρ

      (18) 

Thus, the greater the prior precision, the lower the cost of capital.  This finding is consistent with 

the oft-observed regularity that more established firms find it easier, and cheaper, to raise funds 

in the market. 

 This finding is also consistent with the empirical results of Coval and Moskowitz [1999] 

and Huberman [2000] who find that money managers and investors are more comfortable 

holding “local” stocks, or stocks with which they have more familiarity.  In our setting, local 

investors may feel that they have greater prior precision about local companies, and thus they 

require less of a risk premium to hold such assets.20 

 What of firms who are at the other end of the spectrum, the firms who are entering the 

market for the first time?  Certainly, the effect in equation (17) would suggest that the low prior 

precision on those firms would increase the cost they face in raising capital.21  But these firms 

face other problems as well.  In particular, it may be that for some firms, there is little public 

information available.  In our analysis thus far, we have considered the cross-sectional 

differences that arise when firms have the same total amount of information, but the composition 

of information between public and private sources may differ.  For new firms, however, it seems 

likely that there is less information overall, and what information exists is more likely to be 

private.  How, then, does this affect the cost of capital? 
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 One way to address this question is to consider the role of private information in 

isolation.  That is, if there were no public information, would a firm be better off having some 

private information or no private information?  Proposition 6 demonstrates that having 

information is always better than not having information. 

 

Proposition 6:  Suppose =k 1.α  Then, for any firm k,  

~
k k

k

E v p
0

I

 
∂ − 

  <
∂

  

Proof:  See Appendix 

 

The result in Proposition 6 may appear paradoxical; in a world with no public 

information, having some private information will lower a firm's cost of capital relative to what 

it would be if there were no private information.  One might have conjectured that uninformed 

investors would prefer a stock with no informed traders, but this is not the case.  This is because 

of the effect that information has on the asset's equilibrium price.  With some traders informed, 

this price will be more informative, and this lowers the risk for the uninformed.  Of course, the 

risk and thus the firm’s cost of capital will be even lower if the information is public (this is our 

finding in Proposition 3).  But given the choice of no information, or only private information, 

the firm’s cost of capital is lower in a world in which someone knows something. 

This distinction between the existence of information in general, and the distribution of 

private and public information in particular, provides a way to reconcile our findings with those 

of previous models of the effects of information on asset prices.  In a model with one risky and 

one risk-less asset, Wang [1997] found that private information did not generally result in a risk 
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premium for the risky asset. This finding is consistent with the intuition behind Proposition 6 in 

which some information is better than none.  In our model with many assets and public and 

private information, we find that there is a risk premium, and that it varies within the cross-

section of stocks.  These cross-sectional effects arise because of the portfolio channel discussed 

earlier.  In general, one would expect that both effects would be present to some extent, but in 

any multi-asset world these cross-sectional effects will be present.   

This dichotomous role of information may also explain the impact of insider trading laws 

on a company’s cost of capital.  The Manne [1966] argument against insider trading prohibitions 

essentially viewed some information, even if it were private, as better than no information at all 

(again our Proposition 6 result). Bhattacharya and Daouk [2000] in a comprehensive empirical 

study of 103 countries, however, estimate that the enforcement of insider trading prohibitions 

reduces the cost of capital by between 0.3% and 6.0%.   Assuming that the effect of these laws is 

to turn at least some of the private information into public information then this effect is 

predicted by our model:  reducing the risk of informed trading, and correspondingly increasing 

the amount of public information, reduces the risk premium uninformed traders demand to hold 

the stock.22 

Finally, we consider one other effect on the company's cost of capital.  As shown in 

Proposition 2, the level of risk aversion enters into the determination of the risk premium.  The 

risk aversion level is not stock specific, and so it is not within the purview of a company to 

influence it.  However, it is straightforward to show that increases in the risk aversion parameter 

will directly increase the risk premium demanded by investors.   

This has two implications for our analysis.  First, if the level of risk aversion changes 

over time, then we might expect to find the dispersion of cross-sectional returns changing as 
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well.  This occurs because investors need even greater compensation to hold stocks with more 

private information when the risk aversion parameter increases, and conversely they need less 

compensation when it falls.  Such changes in cross-sectional return dispersion seem consistent 

with actual asset price behavior.  Second, if risk-aversion is time varying, then this may explain 

the cycles we observe in firms coming to market. It is well known that IPOs exhibit a "feast or 

famine" cycle, with firms typically clustering together in coming to market.  Since IPO firms 

have greater private information and low information precision overall, our model would predict 

a high risk premium to induce investors to hold them.  An increase in overall risk aversion will 

cause this premium to increase even more, thereby inducing some firms to wait for the "better 

market conditions" consistent with a lower risk aversion level. 

 

6.  Extensions and Generalizations 

In this paper we use a simple rational expectations model to make our arguments.  A 

natural concern is that the simplicity of the model, while useful for illustrative purposes, is 

chimerical; that in a fuller model, the results we are interested in would no longer hold.  In this 

section, we address this issue by considering how some extensions and generalizations to the 

model affect our results. 

 

A. Multi-period effects 

 The model here incorporates two-periods, today and tomorrow.  Allowing for multiple 

periods complicates the analysis, but for at least some reasonable specifications does not affect 

our results. For example, it is fairly straightforward to demonstrate that if new information 

arrives every period and information is independent across periods, then our results are 
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unchanged.  In this world, agents essentially solve the same decision problem period after period 

that they solve here, and so the resulting equilibrium remains the same. 

 This need not be true for every information structure.  If private information once 

revealed now reduces permanently the private information over the lifetime of a stock, then one 

could get the paradoxical result that high information stocks are less risky to hold since the risk 

decreases over time faster than the risk of low information stocks.  Again, while conceptually 

possible, we do not find this economically plausible.  To the extent that information revealed 

today reduces information asymmetry tomorrow, then we would expect this to diminish, but not 

remove, the effects outlined here. 

 

B. Interpretations of the Asset Structure 

 The asset structure we analyze results in some asset specific risks being less than 

completely diversifiable.  Such an outcome also arises in asset pricing models in which factors 

such as HML (the book to market effect) or size are priced.  What allows those risks and the 

information risk we derive here to be priced is simply that agents must be compensated for risk, 

and the asset structure is not sufficient to remove the risk.23   While this incompleteness can arise 

naturally from the nature of the assets in the economy, it can also arise if some investors are 

constrained in the assets that they can hold.  Such participation constraints motivate Merton’s 

[1987] analysis of asset pricing with incomplete information about the set of available assets.  

This idea has since been explored extensively by several authors including Basak and Cuoco 

[1998] and Shapiro [2000].  A similar limited participation explanation is used to explain the 

results on home bias in asset portfolios (see, for example, Stulz [1981]).  While we do not use a 

participation argument here, such a constraint could also result in information risks being priced. 
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C.  Endogeneous Information Acquisition 

In our analysis the fraction of the investing population that is informed and the number of 

signals that they observe are exogenously given. Many of our conclusions are generated from 

comparative statics results about these variables. An alternative approach would be to allow 

investors to choose whether to become informed or not, or more generally to choose the number 

of signals they observe. Given some cost of becoming informed, or some cost per signal, the 

equilibrium fraction of informed investors, or the number of signals observed per investor, could 

be derived. The relevant comparative statics results would then be about the effect of the cost of 

information on the cost of capital. 

We believe that this would be an interesting alternative approach, but we have not done it 

here for three reasons. First, it is not clear to us how to model the market for information. 

Assuming that individuals buy information in a competitive market at some fixed price pretends 

that the market for information is like any other competitive market in which the good is 

competitively supplied and in which only purchasers have access to the good. But information 

can be both consumed and given away. Alternatively, one could view the cost of information as 

the value of the time it takes an investor to collect and interpret information. These costs surely 

differ across investors. Second, we believe that these costs differ so much that assuming 

investors to be informed or not is a reasonable approximation. Some investors, perhaps insiders 

and institutions, are always more informed than the typical retail trader, who could not become 

informed at any reasonable cost. Third, in order to decide whether to become informed about a 

stock an investor has to compute the ex ante value of his equilibrium decision problem when he 

is informed or not. When there is no excess return on assets this is straightforward; it is much 
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more complex when there are excess returns.  This added complexity makes closed-form 

solutions difficult to obtain and we believe detracts from the point of our analysis. 

 

7.  Conclusions 

 We have developed an asset pricing model in which both public and private information 

affect asset returns.  Because the return investors demand determines a firm’s cost of equity 

capital, our analysis provides the linkage between a firm’s information structure and its cost of 

capital.  We have demonstrated that investors demand a higher return to hold stocks with greater 

private information.  This higher return reflects the fact that private information increases the 

risk to uninformed investors of holding the stock because informed investors are better able to 

shift their portfolio weights to incorporate new information.  Private information thus induces a 

form of systematic risk, and in equilibrium investors require compensation for bearing this risk. 

 An important implication of our research is that firms can influence their cost of capital 

by affecting the precision and quantity of information available to investors.  This can be 

accomplished by a firm’s selection of its accounting standards, as well as through its corporate 

disclosure policies.  Attracting an active analyst following for a company can also reduce a 

company’s cost of capital, at least to the extent that analysts provide credible information about 

the company.  Yet another way to influence its information structure is through the firm’s choice 

of where to list their securities for trading.  Because investors learn from prices, the 

microstructure of where a firm’s securities trades can influence how well and how quickly new 

information is impounded in the stock price.  These factors suggest that a firm’s cost of capital is 

determined, at least partially, by corporate decisions unrelated to its product market decisions. 
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 Our findings here raise a number of issues for further study.  If, as our analysis suggests, 

the quality of information affects asset pricing, then how information is provided to the markets 

is clearly important.  Recently, the SEC has considered allowing individual investors access to 

IPO electronic road shows, has proposed tighter restrictions on what companies can disclose 

privately to analysts, and has pondered whether internet investment chat rooms are positive or 

negative influences for stock prices.  While addressing each of these topics is beyond our focus 

here, the framework we develop does provide a way to consider how particular market practices 

affect equilibrium asset pricing.  Our results also raise interesting questions about security 

market design and the cost of capital. In particular, how transparency of trades and orders 

influence the informativeness of stock prices, or even how the speed of the trading system affects 

information flows to investors, seem important directions for future research. 
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Appendix 

Proof of Proposition 1 

 It is sufficient to show that there is a solution to the market clearing equation (10) of the 

form given in the statement of the proposition.  Substituting into (10) for demand by informed 

and uninformed traders gives 
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 Both θk and ρθk involve coefficients from the conjectured price equation (5) in the form 

of  
 
 

d
b

.  Substituting in for θk in (20) from (6) and simplifying shows that 
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So by (6) and (7) 
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Substituting (21) and (22) into (20) and solving for the coefficients yields the price equation and 

coefficients given in the proposition.  This equation is of the conjectured form (5) so it is a 

rational expectations equilibrium. 

 

Proof of Proposition 2 

 The expected return on stock k is, by Proposition 1, 

 

[ ]
= = +

 
− = − − − + −∑ ∑ 

 

k k k

k k

I I
k k k k ki ki k k

i 1 i I 1
E v p E v av b s c s dx ex .

α

α
 

 

The mean of each ski is kv  and the mean of xk is kx , so 
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Using the coefficients from Proposition 1, computation shows that 
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Proof of Proposition 3 

 Using the result of Proposition 2, calculation shows that 
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Proof of Proposition 4 

 The future wealth from a portfolio of stocks ( )1 kz z ,...,z=  is w v  where 

 is normally distributed with some mean 
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 The equilibrium prices ( )k

k k 1p =  in Proposition 1 can be rewritten as 
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where ( )I I
k kv ,ρ  are beliefs of the informed traders given in (3) and (4), and ( U U

k kv , )ρ  are beliefs 

of the uninformed traders given in (8) and (9). 

 Substituting equilibrium prices into (23) and using the definition of average beliefs 

( m m
k kv , )ρ , we have 
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Letting λ δ= , we see that the market portfolio ( )k
k k 1x =  is mean-variance efficient. 

 

Proof of Proposition 5 

 Unconditional prices are 
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 Substituting in unconditional prices, we have 

 

  k kx xδ
λ

 =  
 

. 

 

Letting λ = δ, we see that ( )kx  is mean-variance efficient. 
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Proof of Proposition 6 

 Using the form of the expected return from Proposition 2, calculation shows that at αk = 1, 
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Figure 1 
The Efficient Frontier for Trader j 

 

Trader j’s
optimum

( )( )1 / 2j j
1 1 1 ww v p p mσ= − +
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This figure shows the risk-return trade-off confronting an investor j.  The perceived efficient 
frontier is linear, with a slope determined by the trader’s perception of mean returns and standard 
deviations for assets.  For an economy with one risky asset (and one riskless asset) the slope of 

this frontier according to trader j is ( )( )1 / 2j j
11 1v p ρ− .   
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Figure 2 
Efficient Frontiers for Informed and Uninformed Traders 
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This graph shows that the average efficient frontier is different for informed and uninformed 
traders. The frontier for the informed trader is above that of the uninformed trader because the 
informed trader knows more about the asset, and so faces a lower risk-return tradeoff.  XI and XU 
denote the average portfolio choices of informed and uninformed traders.  The uninformed 
trader’s optimal holding of the risky asset is less than that of the informed trader because the 
uninformed trader faces greater risk in holding the asset. 
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Figure 3 
The Effect of Good and Bad News on Portfolios of Informed and Uninformed 
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T
informed and uninformed traders.  These efficient frontiers are given by IG and IB (UG and UB) 
for informed (uninformed) traders given Good news and Bad news, respectively. Informed 
traders’ beliefs about mean return are more responsive to signals than are uninformed traders’ 
beliefs.  So when there is good news, the informed hold even more of the risky asset, and when 
there is bad news their holdings are reduced by more than are the uninformed traders’ holdings.  
If the news is bad enough, the informed hold less of the risky asset than do the uninformed.   
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Table 1 
Numerical Example:  The Affect of Parameters on Excess Return 

 
 

Panel A 
 

αk 0  .2  .4  .6  .8  1.0 
%∆ERk  15.6  15.5  15.6  15.9  16.4  
 
 

Panel B 
 

µk 0  .2  .4  .6  .8  1.0 
%∆ERk  -27.8  -21.7  -10.2  -4.6  -2.2  
 
 

Panel C 
 

γk   .8  .9  1.0  1.1  1.2 
%∆ERk    -11.3  -10.3  -9.5  -8.8  
 
 
This table illustrates the percentage change in expected excess return (%∆ERk) for stock k 
generated by changes in the fraction of signals that are private (αk), the fraction of traders who 
are informed (µk), and the precision of signals (γk).  In each panel, the parameters other than the 
parameter of interest are fixed at k k k k k1, 1, x 1, I 10,ρ γ η δ= = = = = =  k .2µ =  and k .5.α =  
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FOOTNOTES 
 
1 Remarks by Arthur Levitt, Inter-American Development Bank, September 29, 1997.  Also cited 

in Admati and Pfleiderer (2000). 

2 See the Nasdaq website, www.nasdaq.com.  See also Masulis and Shiva Kumar [2002]. 

3 Indeed, Arthur Levitt argues even further:  “Quality information is the lifeblood of strong, 

vibrant markets.  Without it, liquidity dries up.  Fair and efficient markets cease to exist.”  

See remarks at Economic Club of Washington, April 6, 2000. 

4 The informed traders will hold different weights of each asset in their portfolios depending on 

the information they learn.  The uninformed don’t know the information, so they are 

unable to replicate these optimal weights, and will end up holding a different portfolio 

than that of the informed traders. 

5 Another important difference between our work and that of Wang[1993] or Admati [1985] is 

that these authors do not consider the role of public information.  As we show here, 

increasing the quantity of public information about an asset can affect the asset’s 

equilibrium required return. 

6 Yet another stream of research in this area considers the effects of uncertainty about and 

estimation of return distribution parameters.  This estimation risk raises the required 

return for investors, (see Barry and Brown [1984]; and Coles, Lowenstein and Suay 

[1995]).  See also Basak and Cuoco [1998] and Shaapiro [2000] for more development of 

the investor recognition hypothesis. 

7 Diamond [1985] notes that in his model “an even better arrangement would be an agreement 

among traders to all refrain from acquiring any new information, or a tax on information 
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acquisition”.  In our model, more information is always better than less information so 

that this effect does not arise.  

8 Fishman and Haggerty [1995] investigate how disclosure affects the utility of corporate insiders 

and outsiders.  They find that mandatory disclosure can make insiders better off, even 

when insiders do not actually know any value-relevant information.  Admati and 

Pfleiderer [2000] provide a very interesting analysis of the externality that disclosure 

imposes on firms.  Because one firm’s disclosure may be informative for other firms, it is 

cheaper for a firm to let others do costly disclosure.  Without required disclosure, 

therefore, there may be an under-provision of public information. 

9 Assuming random net supply is a standard modeling device in rational expectations models.  

One theoretical interpretation is that this approximates noise trading in the market.  A 

more practical example of this concept is the current switch for portfolio managers 

toward using float-based indices from shares-outstanding indices. This shift is occurring 

because for many stocks, the actual number of shares that trades in the market is a more 

meaningful number than is the number of shares that exist.  Determining this “float” 

essentially means finding the distribution of shares that trade in a given stock (a random 

variable), rather than taking the supply as given. 

10 More precisely, the signals ski  are independent conditional on vk. 

11 This average expected return per share is common across investors.  Informed and uninformed 

investors do earn differing returns, but they do so by purchasing differing amounts of the 

asset based on their differing information. 

12 This result also illustrates a feature that our approach and Merton’s [1987] approach have in 

common.  In his world increasing the investor base allows risk to be shared more widely 
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and so raises the value of the firm.  Here reducing the per capita supply has a similar 

affect.  

13 We treat αk and Ik as continuous variables, ignoring integer constraints on αkIk and (1-αk)Ik.  

Equivalent results could be obtained by changing αkIk and (1-αk)Ik in integer units. 

14 These changes do not depend on the level of per capita supply.  We have set it in this example 

only because we will need the per capita supply parameter for other examples and we 

want the examples to be consistent. 

15 Note that the example focuses on changes to a stock’s risk premium.  A firm’s cost of equity 

capital will generally be the risk premium added on to some riskless rate, which is not 

specified in our model.  This riskless rate is exogenous to the firm and so our analysis 

focuses on the firm specific risk premium. 

16 The same analysis holds for multiple assets as long as markets are incomplete. 

17 This is the difference of mean-variances.  The difference in expected utilities is given by the 

increasing transformation, −exp(−δz), of the terms in (11). 

18 If we consider two firms that are identical except for the fraction of information that is private, 

we see that the equilibrium expected return per share is higher for the firm with more 

private information. 

19 Whether analysts actually uncover new information, or simply disseminate what is already 

known to at least some traders is a subject of debate.  Note, however, that in our model 

just disseminating information would increase µk, and this would lower the firm's cost of 

capital.  For a discussion of information and analysts, see Easley, O'Hara and Paperman 

[1998]. 
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20 Such geographical preferences may also lend insight into the well-known phenomena of home 

country bias.  If domestic investors feel that they have greater prior precision for 

domestic stocks, then they may view domestic stocks as having a lower risk-return trade-

off than they face with foreign stocks.  See Brennan and Cao [1997] for an analysis of 

this effect. 

21 Since most new firms are also small firms, this effect would also be consistent with the 

empirical regularity that small firms returns are higher than would be predicted by a 

standard CAPM.  Indeed,  Ibbotson Associates (2000; page 141) notes that “Based on 

historical return data on NYSE decile portfolios, the smaller deciles have had returns that 

are not fully explained by the CAPM.  This return in excess of CAPM grows larger as 

one moves from the largest companies to the smallest.”  Such an effect could be 

explained by the information issues we highlight here.   

22 This argument assumes that the total amount of information is held constant.  If enforcement 

of insider trading laws changes the amount of information produced, other effects need to 

be considered. 

23 Fama and French [1992], for example, argue that HML and size proxy for firm risk 

sensitivities to factors such as distress risk.   
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