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Readers of “Bad Beta, Good Beta” (henceforth BBGB, Campbell and Vuolteenaho,
2004) have expressed a number of questions and concerns about the empirical results
in that paper. This appendix presents a subset of empirical exercises we have per-
formed to examine the robustness of our empirical results and is designed to address
those concerns.

The first section briefly reviews the econometrics of predictive regressions, and
then asks whether our findings might be driven by finite-sample bias in the predictive
equations of our vector autoregressive model. The second section discusses the
evolution of betas over time, and asks whether it is reasonable to work with a model in
which betas are fixed in each of two subsamples as we do in BBGB. The third section
asks whether our results would be affected if we estimated a conditional rather than an
unconditional asset pricing model. The fourth section explores the sensitivity of the
BBGB results to changes in the parameter p, which is a constant of loglinearization in
our loglinear approximate asset pricing framework. The fifth section asks whether the
BBGB results are robust to changes in the data frequency from monthly to quarterly
or annual. The sixth section considers alternative VAR specifications with additional
explanatory variables that have been suggested by readers.

1 Finite-sample bias

The asset pricing model in BBGB relies on a vector autoregression (VAR) that gen-
erates estimates of innovations in two components of market returns: discount-rate
news, the discounted value of revisions in future return forecasts; and cash-flow news,
the residual component of the current return innovation. There are two well known
biases that might affect these VAR estimates.

First, since the work of Kendall (1953) it has been understood that the estimates of
persistent autoregressive coefficients are biased downwards in finite samples when the
mean of the persistent process must also be estimated. This is relevant for forecasting
variables such as the term spread, the price-earnings ratio, and the value spread whose
autoregressive coefficients are estimated at 0.879, 0.994, and 0.991 respectively in our

monthly VAR system over the period 1929:1-2001:12.

Second, Stambaugh (1999) has pointed out that the estimated coefficients of re-
turns on persistent forecasting variables are biased downward (upward) when return



innovations are positively (negatively) correlated with the innovations to the fore-
casting variables. Related to this, the usual ¢ test for statistical significance of
the forecasting variable has incorrect size as pointed out by Cavanagh, Elliott, and
Stock (1995). Several authors have documented the important effect of this bias
in regressions of stock returns on price-dividend or price-earnings ratios, and have
suggested alternative ways to correct it (Campbell and Yogo 2003, Lewellen 2003,
Polk, Thompson, and Vuolteenaho 2003, Torous, Valkanov, and Yan 2003).

It seems unlikely a priori that these biases could explain the results reported in
BBGB. First, the variability of dicsount-rate news is generated by nonzero predictive
coefficients together with large persistence estimates for the explanatory variables.
The Stambaugh bias in predictive coefficients increases the variability of dicsount-
rate news while the Kendall bias in persistence estimates reduces it, and the sign of
the total bias is not clear. Second, the results in BBGB depend on the finding that
growth stock returns are correlated with discount-rate news. This in turn depends
on the finding that the value spread predicts returns on the market. While the value
spread is persistent, its innovations are only weakly correlated with market returns
and thus the Stambaugh bias should be modest for this variable.

As a way to explore the potential effects of this bias, we now report the results of
a simple Monte Carlo study. We take the estimated VAR coefficients as the true data
generating process and generate repeated samples. We use these samples to estimate
new VAR systems and calculate various statistics. The difference between the mean
of these statistics and the statistic in the data generating process is a measure of
bias. Of course, this measure depends on the maintained data generating process so
it should be taken merely as indicative in small samples.

Table 1 reports the estimated VAR coefficients (also shown in Table 2 of the
BBGB paper) along with the bias in these coefficients estimated from 2500 samples.
The bias in each coefficient is shown in curly brackets. The table illustrates both the
Kendall bias in the persistent autoregressive coefficients for the forecasting variables,
and the Stambaugh bias in the coefficient of stock returns on the price-earnings ratio.
The bias in this coefficient is -0.005 as compared with a point estimate of -0.014.
There is, however, only a negligible bias in the coefficient of stock returns on the
value spread (-0.001 as compared with a point estimate of -0.013). This bias is small
because innovations in the value spread are almost uncorrelated with stock returns
as shown in Tables 1 and 2 of BBGB.

Table 2 reports statistics that describe the cash-flow and discount-rate news terms



(also shown in Table 3 of BBGB), along with the bias in these statistics. There is
very little bias in the estimated volatilities of cash-flow and discount-rate news, shown
in the top panel. The most important bias shown in this table is upward bias in the
negative coefficients of cash-flow and discount-rate news on the value spread. This
upward bias makes the estimated coefficients closer to zero than the true coefficients,
and thus understates the relevance of the value spread for the news terms. In other
words, this bias works against the results reported in BBGB.

Tables 3 and 4 report the estimated cash-flow and discount-rate betas of growth
and value stocks in the early and modern sample periods, 1929:1-1963:6 and 1963:7—
2001:12. These betas are also shown in Tables 4 and 5 of BBGB. In addition, Tables
3 and 4 here report the biases in the betas. In the early period, value stocks have
higher betas than growth stocks; the difference in cash-flow betas is biased downwards,
while the difference in discount-rate betas has little consistent pattern. In the modern
period, value stocks still have higher cash-flow betas, and the positive difference is
biased downwards; but growth stocks now have higher discount-rate betas, and the
negative difference is biased upwards. In other words, all the biases in the modern
period work to shrink the beta differences across growth and value stocks towards
zero. The results in the paper therefore tend to understate these beta differences.

Table 5 studies the effects of these biases on the prices of risk estimated in Tables
6 and 7 of the paper. There is little bias in the early period, and a strong downward
bias in the premium for cash-flow beta in the modern period. The main conclusion
of BBGB is that cash-flow beta has a much higher premium than discount-rate beta.
This conclusion is if anything strengthened by the consideration of finite-sample bias.

2 The evolution of betas over time

BBGB estimates fixed betas in each of two subperiods. In other words betas are
assumed to be constant except in 1963, when they change discretely in the middle
of the year. An alternative view is that betas might have changed continuously
during our sample period. Inferences about the time variation in betas are of course
challenging due to the relatively large standard errors of individual portfolios’ betas.
Table 6 reports the subperiod beta standard errors that take into account the full
estimation uncertainty in the news terms (these standard errors are omitted from
BBGB to save space).



To explore the possibility that cash-flow and discount-rate betas vary continuously,
in Figure 1 we show an alternative view of their time-series evolution. We first esti-
mate a time-series of cash-flow and discount-rate betas for the 25 M E and BE/ME
portfolios using a 120-month window. The series in Figure 1 are constructed from the
estimated betas as follows: The value-minus-growth series, denoted by a solid line
and triangles in the figure, is the equal-weight average of the five extreme value (high
BE/ME) portfolios’ betas less the equal-weight average of the five extreme growth
(low BE/MFE) portfolios” betas. The small-minus-big series, denoted by a solid
line, is constructed as the equal-weight average of the five extreme small (low MFE)
portfolios” betas less the equal-weight average of the five extreme large (high M FE)
portfolios’ betas. The top panel shows the cash-flow betas and the bottom panel
discount-rate betas. The dates on the horizontal axes are centered with respect to
the estimation window.

Two patterns stand out in the top panel of Figure 1. First, for the majority of
our sample period, the higher-frequency movements in cash-flow betas of value-minus-
growth and small-minus-big appear correlated, the small stocks’ cash-flow betas pos-
sibly leading the value stocks’ cash-flow betas. This pattern is strongly reversed
in the 1990’s, during which the cash-flow betas of small stocks clearly diverge from
those of the value stocks. Second, over the entire period, the cash-flow betas of
small stocks drifted down relative to those of large stocks, while the cash-flow betas
of value stocks remain considerably higher than those of growth stocks (.15 higher
at the beginning of the sample and .17 higher at the end). Much of the variation
in these betas occurred during the first decade after World War II, with comparative
stability of betas thereafter until the late 1990’s.

The bottom panel of Figure 1 shows the time-series evolution of discount-rate
betas. The first obvious trend in the figure is the steady and large decline in the
discount-rate betas of value stocks relative to those of growth stocks. Over the full
sample, the value-minus-growth beta declines from .31 to -.86. There is no similar
trend for the discount-rate beta of small-minus-big, for which the time series begins
at .37 and ends at .62. As for cash-flow betas, the discount-rate betas of value-minus-
growth and small-minus-big strongly diverge during the nineties.

We believe that our practice of simply splitting the sample into two subperiods at
1963:6, and then assuming that the betas are constant for subperiods, is a reasonable
and parsimonious approximation of reality. However, to alleviate any concerns that
any of our results are due to thise approximation, we perform a number of experiments



with time-varying betas in the next section.

3 Conditional pricing results

One concern about the results in BBGB might be that the estimated preference
parameters appear rather different in the first and second subsamples. The point
estimate of risk aversion, in the model with a restricted zero-beta rate and risk price
for discount-rate news, is 3.6 in the first subsample and almost 24 in the second
subsample. Even if betas and the variance of the market return have changed over
time, one would hope that the underlying preferences of investors have remained
stable.

To address this concern, we have estimated a version of our model that allows
for changing betas and variances across the two subsamples, but imposes a constant
coefficient of relative risk aversion. This model is not rejected at the 5% level, and the
implied risk aversion coefficient is approximately six. Also, if we allow for different
risk-aversion coefficients for the subsamples, we cannot reject the hypothesis that the
two parameters are the same.

Another way to come at this issue, while simultaneously addressing the issue of
continuous time variation in betas, is to estimate the preference parameters from a
conditional model. We do this using two alternative approaches. Our first approach
is illustrated in Figure 2. The figure shows the smoothed conditional premium
on covi(7; 41, Naores1) and cove(ri i1, —Narpri+1), with the ICAPM predicting a
premium of v on the former and a unit premium on the latter. The graph is produced
in three steps as follows. First, we run three sets of 45 time-series regressions on
a constant, time trend, and the lagged VAR state variables, i.e., three regressions
per test asset. The dependent variables in these regressions are simple excess return
on the test assets (Rf;), (Nory + Nore—1) R, and (Nprt + Nprt—1) R, Second,
each month we regress the forecast values of excess return on the forecast values of
the two covariances, excluding the constant and thus restricting the zero-beta rate
to equal the risk-free rate. Third, we plot the five-year moving averages of these
cross-sectional regression coefficients in Figure 2.

The lower line in Figure 2 is the estimated risk price for the discount-rate beta,
divided by the variance of market returns. If our ICAPM holds exactly, this should



be a horizontal line with a height of one. The upper line is the estimated risk price
for the cash-flow beta, again divided by the variance of market returns. According
to our ICAPM, this should be a horizontal line with a height of . The traditional
CAPM implies that both lines should have the same height. Figure 2 shows that
the scaled price of discount-rate risk has a long-term average very close to one, with
substantial variations around this average, while the scaled price of cash-flow risk
has a long-term average around six, again with substantial shorter-term variations.
During the period 1935-1955 the two lines are close to one another, illustrating the
good performance of the CAPM in this period. For most of the period since 1960
the two lines have diverged substantially, but there is no sign of a trend or other
low-frequency instability in the risk prices.

Our second approach allows us to perform a formal asset-pricing test while allow-
ing for continuously time-varying betas. We proceed as follows. First, we estimate
covariances covy(r;¢, Nopt + Nepi—1) and covi(rt, —Nprt — Nprt—1) for each test
asset using a rolling three-year (36 months) window. This three-year window will
restrict the subsequent asset-pricing tests to the post-1931:1 period, but we (as al-
ways) estimate the market VAR using the full 1928:12-2001:12 sample. We use these
rolling covariance estimates as instruments that predict future covariances.

Second, we regress the realized cross products (Nog:+Nepi—1)Tit, and (—Npprt—
Nprt—1)ri+ on the corresponding lagged (¢ —2) rolling covariance estimates and port-
folio dummies in two pooled regressions. We lag the data by two months to avoid
any overlap between the instruments and the dependent variables. On the one hand,
the approach is flexible: Portfolio dummies are included to allow for portfolio-specific
average covariances. On the other hand, we increase the power of the test by spec-
ifying a common predictive coefficient on past covariance across time and portfolios.
We define conditional covariances (Covpr and coverp) as the fitted values of those
regressions.

Third, in period-by-period cross-sectional regressions, we regress the realized sim-
ple excess returns on the fitted conditional covariances, applying the restrictions im-
plied by particular model. The data are aligned such that the realized simple excess
returns for month ¢ are regressed on forecasts of cross products for time t, where the
forecast is formed using time ¢ — 2 rolling covariance estimate.

Table 7 shows the results of this exercise using the 25 M E- and BE /M E- sorted
portfolios and 20 risk-sorted portfolios as the test assets. As in all the other pricing-
test tables, we report the results for an unrestricted factor model, the two-beta
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ICAPM, and the CAPM. The second column for each model constrains the zero-
beta rate (R.;) to equal the risk-free rate (R,f), i.e. the cross-sectional regressions
omit the intercept. “Two-beta ICAPM” constrains the coefficient on covpg to equal
one. “CAPM” constrains the coefficient on covpg to equal that on coveop.

In summary, allowing for continuous time variation in the covariances produces
results that are very similar to the sub-period results reported in BBGB. The risk pre-
mium on cash-flow covariance is much higher than that on discount-rate covariance.
The implied risk aversion parameter is high but reasonable, with point-estimates be-
tween 8 and 11. The two-beta model fits very well even with the ICAPM restrictions,
while CAPM fits poorly and is rejected by the pricing error tests.

In unreported experiments, we have also reproduced Table 7 for subperiods (while
still estimating the VAR using the full-period data.) The two-beta model passes
the asset-pricing tests with flying colors, while the CAPM performs poorly in the
latter subsample. Furthermore, when using continuously time-varying betas and the
covariance (instead of beta) formulation, the preference parameter - appears quite
stable across subsamples. Estimated +’s range from 4 to 16 in the early sample
and from 7 to 12 in the modern sample, depending on whether the zero-beta rate is
assumed to equal the risk-free rate.

4 Sensitivity of results to changes in p

An important parameter in our model is p, a coefficient of loglinearization defined
by Campbell and Shiller’s (1988) approximation of the log return on an asset as a
linear function of log prices and log dividends on the asset. The standard formula
forpisp=1 / (1 + exp(d; — pt)). When the dividend-price ratio is constant, then
p = P/(P+ D), the ratio of the ex-dividend to the cum-dividend stock price.

BBGB follows Campbell (1993, 1996) and applies the Campbell-Shiller method
to the wealth of an investor. In this application p is linked to the investor’s average
consumption-wealth ratio. To understand this, consider a mutual fund that reinvests
dividends and a mutual-fund investor who finances her consumption by redeeming a
fraction of her mutual-fund shares every year. Effectively, the investor’s consump-
tion is now a dividend paid by the fund and the investor’s wealth (the value of her
remaining mutual fund shares) is now the ex-dividend price of the fund. Thus the



Campbell-Shiller approximation describes a portfolio strategy as well as an underlying
asset and the average consumption-wealth ratio generated by the strategy determines
the discount coefficient p = 1/(1 + C/W).

BBGB assumes p = 0.95 per year, corresponding to an average consumption-
wealth ratio of 5.3%. This number is similar to the typical payout rate of endowments
and foundations. Here, we explore the sensitivity of the BBGB results to variation in
p between 0.93 (corresponding to an average consumption-wealth ratio of 7.5%) and
0.97 (corresponding to an average ratio of 3.1%). Tables 8 and 9 report estimated
beta premiums and cross-sectional R? statistics for alternative asset pricing models,
for p values of 0.93, 0.94, 0.96, and 0.97, over the early and modern subsamples.

As p varies the decomposition of market returns into cash-flow and discount-
rate news varies, but of course the sum of these two news components must remain
unchanged. Thus the value of p makes no difference in the CAPM, where both
components of the market return are restricted to have the same price of risk. In
the two-beta ICAPM the risk price of discount-rate beta is restricted to equal the
variance of the market return so this risk price is unaffected by the value of p, which
only affects the risk price of cash-flow beta and the overall fit of the model. In an
unrestricted two-factor model both risk prices may vary with the value of p, which
implies that the overall fit of the model is relatively insensitive to p.

The value of p makes very little difference to any of the results in the early sub-
sample. In the modern subsample the fit of the two-beta ICAPM is sensitive to p
if the zero-beta rate is restricted to equal the Treasury bill rate, because then the
zero-beta rate and risk price of discount-rate beta are both restricted so changes in
the estimate of discount-rate news affect the fit of the model. The fit of the two-beta
ICAPM is much less sensitive to p if the model allows a free zero-beta rate, for then
it offsets changes in the estimate of discount-rate news with changes in the zero-beta
rate. The model with free factor risk prices is very insensitive to p and always es-
timates a price of cash-flow beta much higher than the price of discount-rate beta,
supporting the main claim of BBGB.

Overall, the results in Tables 8 and 9 show that the main results of BBGB are
robust to reasonable variation in the parameter p.



5 Data frequency

BBGB estimates a monthly VAR. Some readers have been curious whether the results
would be similar if we had used lower-frequency data. Table 10 reports results for a
quarterly VAR and an annual VAR. Asset pricing tests are conducted only over the
full sample for annual data, since subsample results are tenuous when we have lower-
frequency estimates of cash-flow and discount-rate news. The results are consistent
with BBGB in that the estimated premiums for cash-flow betas are always higher than
those for discount-rate betas, although the differences are smaller and less statistically
significant because they are estimated over the full sample period and low-frequency
data rather than the modern subsample and high-frequency data.

We have also performed the subperiod experiments for quarterly data. The sub-
period point estimates obtained from quarterly data are very similar to those obtained
from monthly data.

6 Sensitivity to changes in VAR state variables

Our basic VAR includes the return on a market stock index, the term spread, the
smoothed price-earnings ratio, and the value spread. It omits two other variables that
are often used to predict stock returns: the Treasury bill rate and the log dividend-
price ratio. In Tables 11 and 12 we report asset pricing tests, for the early and
modern subsamples, when we include these other variables in the VAR system. The
results are very similar to those reported in BBGB. The BBGB results are, based
on our experience, robust to adding many other known return predictors to the VAR
system.

The results are also robust to estimating the VAR using real (instead of excess)
market returns. Luis Viceira has pointed out that using excess stock returns in the
VAR rather than real returns (given the particular version of the Campbell-Shiller
loglinearization) is only correct if real interest rates are constant. We do not use real
returns for the monthly tests because we believe that the monthly inflation data are
too poorly measured and that the real interest rate is relatively constant. However,
since the measurement error in inflation is likely to be less severe for quarterly and
annual data, we have repeated our quarterly and annual tests using real market



returns as the object of the Campbell-Shiller decomposition. The results are very
similar to those obtained using quarterly and annual excess returns.

Finally, it should be remembered that our results depend critically on the inclu-
sion of the small-stock value spread in our aggregate VAR system. If we exclude
this variable we no longer find a large difference between the cash-flow betas of value
stocks and growth stocks. BBGB contains a detailed discussion of various reasons
why the small-stock value spread should predict market returns. Further motivation
is provided by the ICAPM itself. We know that value stocks outperform growth
stocks, particularly among smaller stocks, and that this cannot be explained by the
traditional static CAPM. If the ICAPM is to explain this anomaly, then small growth
stocks must have intertemporal hedging value that offsets their low returns; that is,
their returns must be negatively correlated with innovations to investment opportu-
nities. In order to evaluate this hypothesis it is natural to ask whether a long moving
average of small growth stock returns predicts investment opportunities. This is
exactly what we do when we include the small-stock value spread in our forecasting
model for market returns. In short, the small-stock value spread is not an arbitrary
forecasting variable but one that is suggested by the asset pricing theory we are trying
to test.
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Table 1: VAR parameter and bias estimates

The table shows the OLS parameter estimates for a first-order VAR model including
a constant, the log excess market return (7§,), term yield spread (T'Y"), price-earnings
ratio (PE), and small-stock value spread (V.S). Each set of three rows corresponds
to a different dependent variable. The first five columns report coefficients on the
five explanatory variables, and the remaining columns show R? and F statistics.
Bootstrap bias estimates in {curly brackets} are produced from 2500 realizations
generated under the assumptions that the estimated VAR is the true data generating
process. Sample period for the dependent variables is 1929:1-2001:12, 876 monthly
data points.

constant 7§, TY, PE, VS, R*% F

M 062 094 006 -014 -013 257 5.34
{016}  {-.002} {000} {-.005} {-.001}

TY,. .046 046 879  -.036  .082 8241 1.02x:°
{021} {003} {-.008} {-.007} {.001}

PE.,, 019 519 002 994  -.003 99.06 2.29xu?
{0.011} {-.001} {.000} {-.003} {-.001}

VS 014 ~005 002 .000  .991  98.40 1.34x:?

{009}  {-.000} {000} {000} {-.006}
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Table 2: Bias in cash-flow and discount-rate news

The table shows the properties of cash-flow news (N¢r) and discount-rate news (Npg)
implied by the VAR model of Table 1. The upper-left section of the table shows the
covariance matrix of the news terms. The upper-right section shows the correlation
matrix of the news terms with standard deviations on the diagonal. The lower-
left section shows the correlation of shocks to individual state variables with the
news terms. The lower right section shows the functions (el” 4 el’A,el’A) that
map the state-variable shocks to cash-flow and discount-rate news. We define A =
pL(I — pI')~1, where T is the estimated VAR transition matrix from Table 1 and
p is set to .95 per annum. 7§, is the excess log return on the CRSP value-weight
index. TY is the term yield spread. PFE is the log ratio of S&P 500’s price to
S&P 500’s ten-year moving average of earnings. VS is the small-stock value-spread,
the difference in log book-to-markets of value and growth stocks. Bootstrap bias
estimates in {curly brackets} are produced from 2500 realizations generated under
the assumptions that the estimated VAR is the true data generating process.

News covariance Ncor Npr News corr/std  Nep Npr
Ner .00064 .00015 Ner .0252 114
{.00004} {.00007} {.0005} {.0085}
Npr .00015 .00267 Npr 114 .0517
{.00007} {.00008} {.0085} {.0002}
Shock correlations Ngpg Npr Functions Ncr Npr
4, shock .352 -.890 %, shock .602 -.398
{-.027} {.000} {-.003} {-.003}
TY shock 128 .042 TY shock 011 011
{-.003} {.002} {.000}  {.000}
PFE shock -.204 -.925 PFE shock -.883 -.883
{-.028} {-.002} {-.005} {-.005}
V'S shock -.493 -.186 V'S shock -.283 -.283
{.153} {.060} {.064}  {.064}
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Table 3: Bias in cash-flow and discount-rate betas, early sample

The table shows the estimated cash-flow (G,r) and discount-rate betas (Gpp) for
the 25 M E- and BE /M E-sorted portfolios. “Growth” denotes the lowest BE/ME,
“value” the highest BE/ME, “small” the lowest M E, and “large” the highest M E
stocks.  “Diff.” is the difference between the extreme cells. Bootstrap bias esti-
mates in {curly brackets} are produced from 2500 realizations generated under the
assumptions that the estimated VAR of Table 1 is the true data generating process.
Estimates are for the 1929:1-1963:6 period.

Borp  Growth 2 3 4 Value  Diff.
Small .53 .46 40 42 49 -.04
{-26}  {-27} {22} {-25} {-31} {-.05}
2 .30 .34 .36 .38 45 .16
{-17}  {-18} {-.18} {-.20} {-.25} {-.08}
3 .30 .28 31 .35 47 18
{-15}  {-12} {11} {-17} {-22} {-.07}
4 .20 .26 31 .35 .50 .30
{-ory {-11} {11} {-17} {-22} {-.07}
Large .20 19 .28 33 40 19
{-or} {-07} {10} {-12} {-.15} {-.08}
Diff. -.33 -.26 -.12 -.09 -.10
{15} {11} {09} {05} {.05)
Bpr  Growth 2 3 4 Value  Diff.
Small 1.32 1.46 1.32 1.27 1.27 -.06
{.09} {-13} {-.03} {-.06} {.02} {-.07}
2 1.04 1.15 1.09 1.25 1.25 21
{-02}  {-.06} {-.06} {-.03} {-.00} {.02}
3 1.13 1.01 1.08 1.05 1.27 14
{(-10}  {-03} {07} {-02} {-01} {.09}
4 .87 97 97 1.06 1.36 .49
{-01}  {-.05} {-.01} {-.00} {-.01} {-.00}
Large .88 .82 .87 1.06 1.18 31
{-.04}  {-01} {12} {08 {10} {07}
Diff. -.45 -.64 -43 -.21 -.08

(19) {17} {12} {08} {10}
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Table 4: Bias in cash-flow and discount-rate betas, modern sample

The table shows the estimated cash-flow (ﬂCF) and discount-rate betas (ﬁ pr) for
the 25 M E- and BE /M E-sorted portfolios. “Growth” denotes the lowest BE/ME,
“value” the highest BE/ME, “small” the lowest M E, and “large” the highest M E
stocks.  “Diff.” is the difference between the extreme cells. Bootstrap bias esti-
mates in {curly brackets} are produced from 2500 realizations generated under the
assumptions that the estimated VAR of Table 1 is the true data generating process.
Estimates are for the 1963:7-2001:12 period.

Borp  Growth 2 3 4 Value  Diff.
Small .06 .07 .09 .09 13 .07
{-01}  {-.02} {-.04} {-.04} {-.06} {-.05}
2 .04 .08 10 11 A2 .09
{.01} {-.02} {-.04} {-.04} {-.05} {-.05}
3 .03 .09 A1 12 13 .09
{.01} {-.01} {-.03} {-.04} {-.03} {-.04}
4 .03 10 A1 A1 13 10
{.03} {-01} {-.02} {-.02} {-.01} {-.04}
Large .03 .08 .09 A1 A1 .09
{.04} {01} {01} {-01} {-.01} {-.04}
Diff. -.03 .02 -.01 .02 -.01
{11} {10} {.08} {.09} {.08}
Bpr  Growth 2 3 4 Value  Diff.
Small 1.66 1.37 1.18 1.12 1.12 -.54
{-32}  {-24} {-19} {-21} {-.22} {09}
2 1.54 1.22 1.07 .96 1.03 -.92
{-20} {-16} {-.14} {-10} {-.11} {.10}
3 1.41 1.11 .95 .82 94 =47
{-14}  {-11} {-.10} {-.05} {-.10} {.05}
4 1.27 1.05 .89 .79 .87 -41
(-11}  {-09} {04} {-01} {-04} {.08}
Large 1.00 87 .74 .63 .68 -.33
{-.09}  {-.05} {-.00} {01} {-04} {.05}
Diff. -.66 -.50 -.44 -.49 -.44

(14} {13} {10} {11} {.08}
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Table 5: Bias in factor premia
The table shows premia point estimates and bias estimates for an unrestricted factor
model, the two-beta ICAPM, and the CAPM. The test assets are the 25 M E- and
BE/M E- sorted portfolios and 20 risk-sorted portfolios. The second column per
model constrains the zero-beta rate (R.;) to equal the risk-free rate (R,f). Esti-
mates are from a cross-sectional regression of average simple excess test-asset returns
(monthly in fractions) on an intercept and estimated cash-flow (84r) and discount-
rate betas (B pr)- Bias estimates in {curly brackets} are produced from 2500 sim-
ulated realizations assuming that the estimated VAR is the true data generating

process.

1929:1-1963:6 Factor model Two-beta ICAPM CAPM

Ry less R.¢ (go) .0042 0 .0023 0 .0023 0
{-.0013} {0} {.0012} {0} {.0002} {0}

301; premium (¢;)  .0173 .0069 .0083 0148 .0051 .0067
{-.0193} {-.0100} {-.0046} {.0035} {.0005} {.0009}

BDR premium (go)  -.0003 .0066 .0041 .0041 .0051 .0067
{.0061} {.0026} {-.0000} {-.0000} {.0005} {.0009}

1963:7-2001:12 Factor model Two-beta ICAPM CAPM

R less R.r (go) .0009 0 -.0009 0 .0069 0
{.0058} {0} {.0061} {0} {.0012} {0}

BCF premium (g;) .0529 .0572 .0575 .0483 -.0007 .0051
{-.0568} {-.0461} {-.0589} {-.0347} {-.0013} {.0005}

BDR premium (go)  .0007 .0012 .0020 .0020 -.0007 .0051

{-.0005} {.0051} {-.0000} {-.0000} {-.0013} {.0005}
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Table 6: Subperiod betas for the 25 ME and BE/ME portfolios
The table shows the estimates of cash-flow betas (BC ) and discount-rate betas (B DR
for Davis, Fama, and French’s (2000) 25 size- and book-to-market-sorted portfolios
for the two subperiods (1929:1-1963:6 and 1963:7-2001:12). The standard errors (in
parentheses) take into account the full estimation uncertainty in the news terms.

1929:1-1963:6

Bor Growth 2 3 4 Value Diff.
Small 53 (28) 46 (24) 40 (23) 42 (22) 49 (25 -04 (07)
2 30 (18) 34 (29) .36 (18) .38 (200 45 (24) .16 (.08)
3 30 (18) 28  (27) .31 (18) .35 (.19) 47 (24) .18  (.08)
4 20 (14) 26 (26) 31 (17) .35 (19) 50 (26) .30 (.12)
Large .20 (.14) .19 (.14) .28 (.16) .33 (.20) .40 (24) .19 (.11)
Diff. -33 (15) -26 (11) -12 (.09) -09 (.05) -10 (.05)

Bpr Growth 2 3 4 Value Diff.
Small 1.32 (31) 146 (28) 1.32 (26) 1.27 (25) 127 (28) -06 (.15)
2 104 (200 L15 (20) 1.09 (200 1.25 (22) 1.25 (.26) .21 (.11)
3 113 (19) 101 (18) 1.08 (18) 1.05 (.20) 127 (.25) .14 (.09)
4 87 (15) 97  (17) .97 (18) 1.06 (.20) 1.36 (27) .49 (.14)
Large .88 (.14) .82 (.15) .87 (.16) 1.06 (.20) 118 (.25) .31 (.13)
Diff. -45 (20) -64 (17) -43 (13) -21 (.09) -08 (.10)

1963:7-2001:12

Bor Growth 2 3 4 Value Diff.
Small .06 (24) .07 (19) .09 (16) .09 (14 .13 (14) .07 (.13)
2 04 (24) .08 (18) .10 (14) .11 (13) .12 (14) .09 (.13)
3 03 (22) .09 (15) .11 (13) .12 (12) .13 (13) .09 (.14)
4 03 (20) .10 (15) .11 (12) .11 (11) 13 (12) .10 (.12)
Large .03 (14) .08 (12) .09 (11) .11  (10) .11  (.10) .09 (.09)
Diff. -.03 (1) .02 (10) -0l (08) .02 (.08) -0l (07)

Bpr Growth 2 3 4 Value Diff.
Small 1.66 (26) 1.37 (21) LIS (17) 112 (16) 1.12 (.15) -54 (.14)
2 154 (.25) 122 (19) 107 (16) .96 (.14) 1.03 (.15) -52 (.14)
3 141 (23) 111 (16) .95 (.14) .82 (.13) .94 (.14) -47 (.15)
4 127 (21) 105 (15) .89 (13) .79 (13) .87 (.14) -4l (.14)
Large 1.00 (.15) .87 (13) .74 (12) .63 (11) .68 (11) -33 (.11)
Diff. .66 (.14) -50 (13) -44 (10) -49 (11) -44 (.10)




Table 7: Asset-pricing tests with time-varying betas

The table shows premia estimated from the full 1932:1-2001:12 sample for an unre-
stricted factor model, the two-beta ICAPM, and the CAPM. The test assets are
the 25 M E- and BE /M E- sorted portfolios and 20 risk-sorted portfolios. The test
is performed as follows. First, we estimate covariances covy(r; s, Nopr + Nopi—1)
and cov¢(ri++1, —Nprt — Nprt—1) for each test asset using a rolling three-year (36
months) window. Second, we regress the realized cross products (Nepi+ Nepi—1)7it,
and (—Npgrt — Nprt—1)ri: on the corresponding lagged (¢ — 2) rolling covariance es-
timate and protfolio dummies in two pooled regressions. =~ We define conditional
covariances (Covpr and coverp) as the fitted values of those regressions.  Third,
in period-by-period cross-sectional regressions, we regress the realized simple excess
returns on the fitted conditional covariances, applying the restrictions implied by
particular model. Fourth, we report the time-series average coefficients in the table.
The second column per model constrains the zero-beta rate (R.;) to equal the risk-
free rate (R,f), i.e. the cross-sectional regressions omit the intercept. ”Two-beta
ICAPM” constrains the coefficient on covpp equal to one. "CAPM” constrains the
coefficient on covppr equal that on covgp. R? is from a cross-sectional regression
of average portfolio return on the average covariances. Standard errors and critical
values [A] are conditional on the estimated news series and (B) incorporating full
estimation uncertainty of the news terms. The test rejects if the pricing error is
higher than the listed 5% critical value.

Parameter Factor model Two-beta ICAPM CAPM
R less R, ¢ .0039 0 .0012 0 .0055 0
Std. err. A [.0021] N/A [.0023] N/A [.0021] N/A
Std. err. B (.0021) N/A  (.0025) N/A (.0021) N/A
COVop premium 11.55 12.91 10.46 14.71 77 2.96
Std. err. A [4.08] [4.18] [4.21] 8.49] [1.06] [.77]
Std. err. B (7.75)  (7.69) (6.47) (12.65) (1.09) (.79)
COVpR premium -.36 1.28 1.00 1.00 7 2.96
Std. err. A [1.23] [.98] N/A N/A [1.06] [.77]
Std. err. B (1.54)  (1.41) N/A N/A (1.09) (.79)
R? 75.71% 67.44% 69.43%  60.60% 36.75% 24.18%
Pricing error .0090 .0110 .0083 .0143 .0260 .0252

5% critic. val. A [.0137]  [.0192] [.0292]  [0742]  [.0157] [.0194]
5% critic. val. B (.0170) (.0244) (.0294) (.1576)  (.0152) (.0191)
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Table 8: Sensitivity to changes in rho, early subsample
The table shows premia estimated from the 1929:1-1963:6 sample for an unrestricted
factor model, the two-beta ICAPM, and the CAPM. The test assets are the 25
ME- and BE/ME- sorted portfolios and 20 risk-sorted portfolios. The second
column per model constrains the zero-beta rate (R.;) to equal the risk-free rate (R, f).
Estimates are from a cross-sectional regression of average simple excess test-asset
returns (monthly in fractions) on an intercept and estimated cash-flow (8.p) and
discount-rate betas (BDR). The panels vary p = [0.93,0.94,0.96, 0.97].

p=0.93 Factor model ~ Two-beta ICAPM CAPM
R less Ry¢ (g0) .0042 0 .0023 0 .0023 0

Bep premium (gp) .0168  .0065  .0074 0123 0051  .0067
Bpr premium (g2) -.0021  .0070  .0041 .0041 .0051  .0067

R? 48.29% 40.26% 45.59%  39.13%  44.52% 40.26%
p=10.94 Factor model = Two-beta ICAPM CAPM
R less Ryr (g0) .0042 0 .0023 0 .0023 0

~

Bep premium (gp) .0170  .0069  .0077 0133 0051  .0067
Bpr premium (g2) -.0013  .0066  .0041 .0041 .0051  .0067

R? 48.21% 40.26% 45.70%  38.70%  44.52% 40.26%
p=10.96 Factor model =~ Two-beta ICAPM CAPM
R less Ryr (g0) .0041 0 .0024 0 .0023 0

~

Bop premium (gy) 0175 0067  .0090  .0172  .0051  .0067
Bpr premium (go) .0006 0067  .0041 0041  .0051  .0067

R? 47.92% 40.26% 46.03%  36.63%  44.52% 40.26%
p=0.97 Factor model = Two-beta ICAPM CAPM
R less Ryr (g0) .0040 0 .0025 0 .0023 0

~

Bep premium (¢p)  .0177  .0066  .0101 0212 .0051  .0067
Bpp premium (g5) 0016 0067  .0041  .0041 0051  .0067
R? 47.71% 40.26% 46.26%  33.60%  44.52% 40.26%
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Table 9: Sensitivity to changes in rho, modern subsample
The table shows premia estimated from the 1963:7-2001:12 sample for an unrestricted
factor model, the two-beta ICAPM, and the CAPM. The test assets are the 25
ME- and BE/ME- sorted portfolios and 20 risk-sorted portfolios. ~The second
column per model constrains the zero-beta rate (R.;) to equal the risk-free rate (R, f).
Estimates are from a cross-sectional regression of average simple excess test-asset
returns (monthly in fractions) on an intercept and estimated cash-flow (8.p) and
discount-rate betas (BDR). The panels vary p = [0.93,0.94,0.96, 0.97].

p=10.93 Factor model =~ Two-beta ICAPM CAPM
R less Ryr (g0) .0007 0 -.0016 0 .0069 0

Bep premium (g;) 0487  .0516  .0325 0239 -.0007  .0051
Bpr premium (go) -.0033  -.0032  .0020 .0020  -.0007  .0051

R? 53.15% 52.86% 11.17%  9.38%  3.10% -61.57%
p=0.94 Factor model = Two-beta ICAPM CAPM
R less Ry¢ (g0) .0008 0 -.0025 0 .0069 0

~

Beop premium (g1)  .0506 .0542 .0498 .0317  -.0007  .0051
Bpgr premium (g2) -.0013  -.0011  .0020 0020  -.0007  .0051

R? 52.67% 52.29% 32.13% 25.76% 3.10% -61.57%
p=0.96 Factor model =~ Two-beta ICAPM CAPM
R less Ryr (go) .0010 0 .0022 0 .0069 0

~

Bop premium (gy) 0555  .0608  .0503  .0842  -.0007  .0051
Bpp premium (g) 0029 .0037  .0020  .0020  -.0007 .0051

R? 51.41% 50.69% 50.41% -7.20% 3.10% -61.57%
p=0.97 Factor model  Two-beta ICAPM CAPM
R less R.r (go) .0012 0 .0045 0 .0069 0

~

Bop premium (gy) 0587 0654  .0325  -.0078  -.0007  .0051
Bpg premium (g5) 0053 0064  .0020  .0020  -.0007 .0051
R? 50.54% 49.47% 42.36% -371.76% 3.10% -61.57%
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Table 10: Sensitivity of the asset-pricing tests to data frequency

The table shows estimated premia for an unrestricted factor model, the two-beta
ICAPM, and the CAPM. The test assets are the 25 M E- and BE/M E- sorted
portfolios and 20 risk-sorted portfolios. The second column per model constrains the
zero-beta rate (R.;) to equal the risk-free rate (R, ;). Estimates are from a cross-
sectional regression of average simple excess test-asset returns (monthly in fractions)
on an intercept and estimated cash-flow (BC r) and discount-rate betas (ﬁ pr).- The
first panel use quarterly data (1929:3-2001:12) and the second panel uses annual data
(1930:5-2001:5). The thrid and fourth panels use subsamples of quarterly data, with
the break point at 1963:6. The VAR that genererates the news terms is always
estimated from the full sample.

Full quarterly Factor model  Two-beta ICAPM CAPM
Ry less Ry¢ (go) .0119 0 .0029 0 .0090 0

Bcp premium (g) 1321 1251 .0492 0658 0114  .0185
Bpp premium (go) -.0097 0022 0115  .0115  .0114  .0185

R? 59.91% 42.48% 36.34% 34.56% 27.99% 17.60%
Full annual Factor model Two-beta ICAPM CAPM
R less Ryr (g0) .0269 0 .0058 0 .0004 0

~

Beop premium (g1)  .4908 4439 .3555 3851 .0988 .0991
Bpr premium (g2)  .0059 .0390 .0496 .0496 .0988 0991

R? 75.61% 73.21% 73.12% 72.85% 61.28% 61.27%
Early quarterly Factor model = Two-beta ICAPM CAPM
R less Ryr (g0) .0104 0 .0086 0 .0093 0

~

Bep premium (gq) 0370 .0268  .0112 .0386 0143  .0209
Bpp premium (go) 0069 0001 0159  .0159  .0143  .0209

R? 47.10% 37.06% 46.33% 35.17%  46.55% 36.50%
Modern quarterly Factor model = Two-beta ICAPM CAPM
R less Ryr (go) .0008 0 -.0096 0 .0227 0

~

Bep premium (gp)  .1900 4439  .2102 1203 -.0045  .0175
Bpp premium (g5) -.0019 0390 0077 .0077  -.0045 0175
R? 69.95% 69.90% 56.65% 41.31% 5.21% -69.67%
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Table 11: Alternative VAR specification, early sample
The table shows premia estimated from the 1929:1-1963:6 sample for an unrestricted
factor model, the two-beta ICAPM, and the CAPM. The news terms are estimated
using a VAR model that includes T-bill yield and log dividend yield in the VAR state
vector, in addition to the variables in the base-case specification (market’s excess re-
turn, term yield spread, log price-earnings ratio, and the small-stock value spread).
The VAR estimation period is 1928:12-2001:12. The test assets are the 25 M E- and
BE/M E- sorted portfolios and 20 risk-sorted portfolios. The second column per
model constrains the zero-beta rate (R.;) to equal the risk-free rate (R,;). Esti-
mates are from a cross-sectional regression of average simple excess test-asset returns
(monthly in fractions) on an intercept and estimated cash-flow (8,r) and discount-
rate betas (/BDR). Standard errors and critical values [A] are conditional on the
estimated news series and (B) incorporating full estimation uncertainty of the news
terms. The test rejects if the pricing error is higher than the listed 5% critical value.

Parameter Factor model Two-beta ICAPM CAPM

R less Ryr (g0) .0038 0 .0024 0 .0024 0
% per annum 4.57% 0% 2.90% 0% 2.82% 0%
Std. err. A [0028] N/A  [0025] N/A  [0028] N/A
Std. err. B (0028) N/A  (.0030) N/A  (.0028) N/A
Beop premium (g1)  .0175 .0056 .0086 .0160 .0051 .0068
% per annum 21.03% 6.72% 10.36% 19.23%  6.14% 8.12%
Std. err. A (0292 [0285] [0183] [.0170]  [0046] [.0034]
Std. err. B (.0403) (.0371) (.0305) (.0615)  (.0046) (.0034)
Bpr premium (g2) .0002  .0071  .0041 .0041 .0051  .0068
% per annum 26%  8.52% 4.8T%  4.8T%  6.14% 8.12%
Std. err. A [.0093] [.0078] [.0005]  [.0005]  [.0046] [.0034]
Std. err. B (.0098) (.0078) (.0005)  (.0005) (.0046) (.0034)
R? 47.31% 40.24% 45.87T%  37.64%  44.82% 40.21%
Pricing error .0120 .0127 .0120 .0134 .0126 .0126
5% critic. val. A [020]  [021]  [022]  [30]  [.021]  [.027]

5% critic. val. B (.020)  (.024)  (.031)  (.085)  (.021)  (.027)

22



Table 12: Alternative VAR specification, modern sample
The table shows premia estimated from the 1963:7-2001:12 sample for an unrestricted
factor model, the two-beta ICAPM, and the CAPM. The news terms are estimated
using a VAR model that includes T-bill yield and log dividend yield in the VAR state
vector, in addition to the variables in the base-case specification (market’s excess re-
turn, term yield spread, log price-earnings ratio, and the small-stock value spread).
The VAR estimation period is 1928:12-2001:12. The test assets are the 25 M E- and
BE/M E- sorted portfolios and 20 risk-sorted portfolios. The second column per
model constrains the zero-beta rate (R.;) to equal the risk-free rate (R,;). Esti-
mates are from a cross-sectional regression of average simple excess test-asset returns
(monthly in fractions) on an intercept and estimated cash-flow (8,r) and discount-
rate betas (/BDR). Standard errors and critical values [A] are conditional on the
estimated news series and (B) incorporating full estimation uncertainty of the news
terms. The test rejects if the pricing error is higher than the listed 5% critical value.

Parameter Factor model Two-beta ICAPM CAPM

Rap less Ryy (go)  -0006 0 -.0039 0 20069 0

% per annum -.76% 0% -4.66% 0% 8.26% 0%
Std. err. A [0030] N/A  [0032] N/A  [.0026] N/A
Std. err. B (.0034) N/A  (.0038) N/A  (.0026) N/A
Beop premium (g1)  .0262 0247 .0281 0154 -.0007  .0050
% per annum 31.47% 29.65% 33.67%  18.49% -.84% 6.05%
Std. err. A [.0116] [.0095] [.0118]  [.0129]  [.0032] [.0022]
Std. err. B (0201) (.0224) (.0206) (.0222) (.0032) (.0022)
Bpr premium (go) -.0012 -.0014  .0020 .0020  -.0007  .0050
% per annum 8%  1.44% 2.43%  2.43%  -84%  6.05%
Std. err. A L0035] [0033] [0002] [.0002] [.0032] [.0022]
Std. err. B (0075) (.0084) (.0002) (.0002) (.0032) (.0022)
R? 66.88% 66.62% 47.10% 32.95%  3.16% -63.32%
Pricing error .0179 .0183 0281 .0327 .0593 .0887
5% critic. val. A [.035]  [.049]  [062]  [097]  [.031]  [.044]

5% critic. val. B (.044)  (.087)  (.072)  (.313)  (.031)  (.044)
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Cash-flow beta
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Discount-rate beta
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Figure 1: Time-series evolution of cash-flow and discount-rate betas of value-minus-
growth and small-minus-big.

First, we estimate the cash-flow betas (/BCF) and discount-rate betas (BCF)
for the 25 ME and BE/ME portfolios using a 120-month moving window. The
value-minus-growth series, denoted by a solid line and triangles, is then constructed
as the equal-weight average of the five extreme value (high BE/ME) portfolios’
betas less that of the five extreme growth (low BE/ME) portfolios’ betas. The
small-minus-big series, denoted by a solid line, is constructed as the equal-weight
average of the five extreme small (low MFE) portfolios’ betas less that of the five
extreme large (high MFE) portfolios’ betas. The top panel shows the estimated
cash-flow and the bottom panel estimated discount-rate betas. Dates on the
horizontal axis denote the midpoint of the estimation window.
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Figure 2: Conditional risk premia for cash-flow and discount-rate betas.

We show the smoothed conditional premium on [.p (top line) and Bpp (bot-
tom line), both scaled by the market’s conditional volatility. The horizontal lines
are time-series averages. First, we run three sets of 45 time-series regressions on
a constant, time trend, and the lagged VAR state variables, where the dependent
variables are (1) excess return on the test assets (Rf;), (2) (Ners + Nori-1) RSy,
and (3) (Npry¢ + Nprt—1)R5;. Then, each month, we regress the fitted values of (1)
on the fitted values of (2) and (3), and plot the five-year moving averages of these
cross-sectional coefficients. 25



