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Abstract

When the asset market is incomplete, there typically exist taxes on trades in
assets that are Pareto improving. The fiscal policy is anonymous, it is fully and
correctly anticipated by traders, and it results in ex post Pareto optimal alloca-
tions; as such, it improves over previously proposed constrained interventions.
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1 Introduction

Ever since Arrow [1] and Debreu [7] stated definitively and demonstrated the
theorems of classical welfare economics, the focus has been on possible sources
of failure of the Pareto optimality of competitive equilibrium allocations. Com-
plete markets in elementary securities or in contingent commodities allow the
theorems of welfare economics to encompass economies with uncertainty, as in
Arrow [2] or Debreu [9]. The absence of a complete asset market is a well-
recognized reason for the Pareto suboptimality of competitive allocations.

Competitive equilibrium allocations in economies with an incomplete asset
market are suboptimal in a strong sense: Pareto improvement is possible even
under the restrictions implied by the incompleteness. Constrained suboptimal-
ity, defined in Diamond [10], was formally shown in Hart [23], and then proved
robust or generic in Geanakoplos and Polemarchakis [18] and Citanna, Kajii
and Villanacci [6], which extended the argument. Constrained suboptimality is
a positive argument for intervention in competitive market economies, which is
compelling when intervention is compatible with the structural characteristics
that underlie the incompleteness; it is anonymous; it results in ex-post Pareto
optimal allocations of commodities; and it is anticipated by traders in markets
for assets.

Compatibility restricts alternative allocations, but it is hard to assess or
make precise when reasons for the incompleteness of the asset markets are not
made formally explicit; it is commonly taken to require that interventions take
the asset structure as given. Anonymity economizes on information and com-
plexity, and it circumvents incentive-compatibility constraints; ex-post optimal-
ity guarantees against further intervention or deviations; anticipation allows for
repeated intervention.

A variety of intervention policies and corresponding notions of constrained
suboptimality have been introduced in the literature, all compatible with the in-
completeness of the asset market. The robust constrained suboptimality results
obtained to date — Geanakoplos and Polemarchakis [18] for individual port-
folio reallocations, Herings and Polemarchakis [24] for rationing in asset and
spot commodity markets, Citanna, Kajii and Villanacci [6] for lump-sum taxes
and transfers — fail at least one of the above-mentioned criteria: for instance,
portfolio reallocations or lump-sum taxes and transfers are not anonymous, a
fact emphasized in Kajii [27] , and rationing does not yield ex-post optimal
allocations of commodities 1.

Here, the instruments of intervention are linear taxes or subsidies on the
purchase of assets. The main result is that if the asset market is sufficiently in-
complete, generically, there exist Pareto improving fiscal policies. The taxation
of assets is anonymous; the resulting allocation of commodities is ex-post Pareto
optimal, and there are no ex-post constraints on asset trades enforced by shut-
ting down financial markets; intervention is compatible with the incompleteness

1The introduction of new assets or the alteration of asset payoffs in Cass and Citanna [5]
and Elul [15], [16] preserves anonymity, but either it reduces incompleteness or it requires
state-contingent policies.
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of the asset market; and it does not require the announcement of future or state-
contingent taxes or subsidies, which could be subject to credibility constraints.

The argument is easy to understand. With portfolio reallocation policies,
as in Geanakoplos and Polemarchakis [18], individual asset holdings are confis-
cated and redistributed in order to control the state-contingent distribution of
wealth. Here, a redistribution of portfolio holdings is induced through taxes,
with possibly negative tax rates or subsidies, on trades in asset: asset holdings
are indirectly controlled by creating a bid-ask spread –that, nevertheless, at
times can be negative. The core of the technical argument consists in bypassing
the nondifferentiabilities and nonconvexities that taxes and subsidies create.

Taxation has been extensively studied as a policy instrument. Since Dupuit
[14], and through Hotelling [25], Boiteux [4] and Debreu [8], economists have
established that commodity taxation, whether through a quantity tax or a tax
ad valorem or excise with a rebate, generates a welfare burden on individuals
at a competitive equilibrium, the “deadweight loss triangle” in textbooks.

The interest in taxation arises from the presence of distortions, such as exter-
nalities, public goods or, here, incomplete hedging opportunities 2. The taxation
of asset trades affects the holdings of assets and, as a consequence, the distribu-
tion of state-contingent wealth, which, in economies with multiple commodities,
may affect relative prices in spot markets; indeed, Pareto improvements require
changes in the relative prices of commodities, which rules out identical, homo-
thetic state-contingent preferences that insulate spot commodity markets from
variations in the distribution of wealth. In the presence of multiple commodi-
ties, with numéraire assets and for a generic choice of utilities and endowments,
ad valorem taxes on asset prices and uniform rebates in fact have an effective
welfare-controlling effect; this requires that the number of independent policy
tools (the number of assets subject to taxation) be at least as large as the number
of policy objectives (the levels of utility of individuals) and that state-contingent
marginal valuations of revenue by individuals be sufficiently dispersed.

In the economies of this paper information is symmetric and the differen-
tial taxation of assets is designed to affect the distribution of state-contingent
revenue; taxation applies to all trades, whether “speculative ”or not 3.

Though taxation is anonymous, Pareto improving intervention requires in-
formation about the fundamentals of the economy — here, the preferences and
endowments of individuals. It is then an issue whether the information re-

2Following Ramsey [30], several authors characterized optimal commodity taxes, among
them Diamond and Mirrlees [11] and Guesnerie [21], while others, among them Feldstein [17]
and Guesnerie [20] studied the possibility of tax reform — Auerbach [3] and Mirrlees [29]
survey the literature. Also, Diamond and Mirrlees [12] looked into the implication of market
incompleteness on optimal commodity taxes, and recently Geanakoplos and Polemarchakis[19]
showed that also in economies with externalities, anonymous Pareto improving commodity
taxes exist generically.

3There have been other arguments for the taxation of trades in assets. Tobin [33], [34]
advocated the taxation of financial transactions and emphasized the impact of the financial
system on macroeconomic performance. The argument there concerned, however, the taxation
of speculative transactions and it was designed to curb destabilizing volatility in a dynamic
context, as in Dow and Rahi [13] or Stiglitz [32].
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quired for determining the welfare consequences of taxation can be obtained
from market data, in particular from equilibrium prices. The argument in [28]
is that market data, namely, the equilibrium prices of commodities and assets
as endowments vary, suffices to identify the profile of utilities. Evidently, this
is demanding, and the result only establishes that identification is possible “in
principle.”Further work should then investigate the implementation of Pareto-
improving taxes on asset trades.

2 Economies

The economy is of pure exchange, with finitely many individuals and commodi-
ties, two periods and uncertainty. Uncertainty is described by states of the world
s ∈ S = {1, . . . , S}, with S ≥ 2. Physical commodities are l ∈ L = {1, . . . , L},
also with L ≥ 2. At a state of the world s, commodities are indexed by (l, s), and
a bundle of commodities is a strictly positive real vector xs = (. . . , xl,s, . . .)′;
across states of the world, a bundle of commodities is x = (. . . , xs, . . .)′.

Individuals are i ∈ I = {1, . . . , I}, with I ≥ 2. The preferences of an individ-
ual are described by the ordinal utility function ui, with domain the consump-
tion set of strictly positive bundles of commodities across states of the world;
the endowment of the individual is ei, a bundle of commodities across states
of the world. The utility function is smooth, differentially strictly increasing:
Dui � 0, and differentially strictly quasi-concave: if b �= 0 and Duib = 0, then
b′D2uib < 0, while, along a sequence of consumption plans, (xn � 0 : n =
1, 2, . . . , ), if limn→∞ xn = x �� 0, then limn→∞(‖Dui(xn)‖)−1x′

nDui(xn) = 0
4; the endowment is assumed strictly positive: ei � 0.

The preferences of an individual may, but need not, admit a von Neumann-
Morgenstern representation, (vi, πi), where vi is a state-independent cardinal
utility index, πi = (. . . , πi

s, . . .) is a (subjective) probability measure on the set
of states of the world, and ui = Eπivi; alternatively, preferences may have an
additively separable representation, (. . . , ui, . . .), where ui

s, is a state-dependent
cardinal utility index, and ui =

∑
s∈S ui

s.
Commodities are traded in spot markets after the resolution of uncertainty.

Prices of commodities at a state of the world are a row vector ps = (1, . . . , pl,s,
. . .) � 0: commodity l = 1 is the numé raire, and prices are strictly positive;
across states of the world, prices of commodities are p = (. . . , ps, . . .). At a state
of the world, the value of the a bundle of commodities xs at prices of commodities
ps is psxs; across states of the world, the expenditures associated with a bundle
of commodities x at prices of commodities p are p ⊗ x = (. . . , psxs, . . .). The
multiplicity of commodities and the diversity of individuals guarantee that spot
markets for commodities are active.

Financial assets are a ∈ A = {1, . . . , A}, a finite, nonempty set. They
are exchanged prior to the resolution of uncertainty, and they are employed to

4The boundary condition on the utility function is satisfied if the closure of the indifference
surface through a consumption plan is contained in the interior of the consumption set, a
stronger condition.
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transfer revenue across states of the world, and they are in zero net supply. A
portfolio of assets is y = (. . . , ya, . . .)′. At a state of the world, the payoff of an
asset is ra,s, denominated in units of the numéraire commodity; across states of
the world, the payoffs of an asset are ra = (. . . , ra,s, . . .)′. The asset payoffs at
a state of the world s are Rs = (. . . , ra,s, . . .), and the matrix of asset payoffs is

R = (. . . , ra, . . .) = (. . . , Rs, . . .)′.

The column span of the matrix of asset payoffs is [R], the subspace of attainable
reallocations of revenue across states of the world. Prices of assets are q =
(1, . . . , qa, . . .). Assumptions on the payoffs of assets are standard: there are no
redundant assets, dim[R] = A; the asset market is active, A ≥ 2; and the payoffs
of asset a = 1 is positive, r1 > 0.

The following additional assumption is strong, but it serves to yield a strong
result: anonymous Pareto improving taxes — we discuss it in Section 5.

Assumption 1. The asset market is sufficiently incomplete:

min{A − 1, S − A} ≥ I.

An allocation of commodities is �x = (. . . , xi, . . .), such that xi ≥ 0 for
every individual. Aggregate consumption is xa =

∑
i∈I xi, while the aggregate

endowment is ea =
∑

i∈I ei. An allocation of commodities is feasible if xa = ea.
An allocation of portfolios of assets is �y = (. . . , yi, . . .); the aggregate portfolio
is ya =

∑
i∈I yi. An allocation of portfolios of assets is feasible if ya = 0.

The excess demand of an individual is the row vector zi = (..., zi
s, ...), where

zi
s = xi

s − ei
s.

The set of economies

Economies are identified by ω = (u, e) ∈ Ω, the utility functions endowments oh
individuals. The space of utilities is endowed with the topology of C2−uniform
convergence over compact sets, while the space of endowments has the standard
Euclidean structure.

Quadratic perturbations of utilities will be used to establish density in the
main proposition. For an economy ω ∈ Ω and given an equilibrium consumption
plan x∗, a perturbed utility for an individual i is a function

ui
(xi∗,ρ,ε)(x

i,M i) = ui(xi) + (1/2)ερ(xi)[(xi − xi∗)′M i(xi − xi∗)],

where: xi∗ is the equilibrium individual consumption plan; ε > 0 is a scalar;
ρ(xi) is a bump function5; and M i is a symmetric, LS–dimensional matrix —
details on these perturbations are in Citanna, Kajii and Villanacci [6]. The sec-
ond derivative of this function with respect to xi is exactly equal to D2ui(xi) +
εM i in a small open neighborhood of the equilibrium allocation xi∗. The vec-
tor of quadratic perturbations is M = (...,M i, ...), while ui(xi,M i) denotes
ui

(xi∗,ρ,ε)(x
i,M i). A generic set of economies is an open and dense subset of Ω;

a property holds generically if it holds for a generic set.
5Gullemin and Pollack [22], Chapter 1.

4



3 Fiscal policy and equilibrium

Taxation of asset purchases is introduced in the economy. Rates of taxation or
subsidy on the purchase of assets are t = (. . . , ta, . . .), with ta > −1 for all a ∈ A.
Then, the purchase prices of assets are (1+ t)⊗ q = (. . . , (1+ ta)qa, . . .). Taxing
both purchases and sales does not entail any essential change; in order to ease
notation, the focus here is on the taxation of purchases. The value of a portfolio
of assets y at prices of assets q and rates of taxation t is ((1 + t) ⊗ q)y+ − qy−,
where ya,+ = max{0, ya}, while ya,− = max{0,−ya}, and y+ = (. . . , ya,+, . . .),
while y− = (. . . , ya,−, . . .). Note that no individual can simultaneously buy and
sell an asset. This restriction is void when the tax ta is nonnegative, but it
is needed when the buyer receives a subsidy, or arbitrage opportunities could
arise.

Aggregate fiscal revenue from the taxation of assets is T =
∑

i∈I(t⊗q)yi
+. It

is distributed across individuals according to a fixed scheme δ = (. . . , δi, . . .) �
0, with

∑
i∈I δi = 1 — the uniform distribution scheme is δ = (. . . , (1/I), . . .);

the revenue of an individual is δiT. Fiscal policy is conducted through the vector
of tax rates t ∈ T , where T is an open neighborhood of zero, of dimension A —
aggregate fiscal revenue, T, is determined endogenously, as a residual.

With taxes, the optimization problem of an individual is

maxx,y ui(x),

s.t. ((1 + t) ⊗ q)y+ − qy− − δiT ≤ 0,

p ⊗
(
x − ei

)
≤ Ry.

Definition 1. A competitive equilibrium with fiscal policy t consists of a feasible
allocation and prices of commodities and assets and fiscal revenue, (�x, �y, p, q, T ),
such that, for every individual, (xi, yi) is a solution to the optimization problem.

A competitive equilibrium in the standard sense corresponds here to a com-
petitive equilibrium with inactive fiscal policy, t = 0. At a competitive equi-
librium where fiscal policy is inactive and rates of taxation vanish, there is no
fiscal revenue and the distribution scheme is immaterial.

3.1 Regularity and the existence of equilibria

We define, for every individual, the function F i by

F i =



F i
I

F i
II

F i
III

F i
IV


=



Dxiui(xi,M i) − λi ⊗ p

λiR − µiqi

((1 + t) ⊗ q)yi
+ − qyi

− − δiT

−p ⊗ (xi − ei) + Ryi


,
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where

qi
a =


(1 + ta)qa, if yi

a ≥ 0,

qa if yi
a < 0,

and λi = (. . . , λi
s, . . .) � 0 and µi > 0 are Lagrange multipliers associated

with the budget constraints across states of the world and the asset market,
respectively, and λi ⊗ p = (. . . , λi

sps, . . .).
Across individuals, we define the function F 0 by

F 0 =


F 0

V

F 0
V I

F 0
V II

 =


x̃a − ẽa

ỹa

T − (t ⊗ q)ya
+

 ,

where x̃a is the aggregate demand for commodities and ẽa the aggregate endow-
ment of commodities other than the numéraire across states of the world, ỹa is
the aggregate demand for assets other than the numéraire, and ya

+ =
∑

i∈I yi
+.

Finally, we define the function F as F = (. . . , F i, . . . , F 0)′; elements of
the domain of the function are (ξ, t, ω) = (�x, �y, λ, µ, p, q, T, t, u, e), where ξ =
(�x, �y, λ, µ, p, q, T ) are endogenous variables, with λ = (. . . , λi, . . .), and µ =
(. . . , µi, . . .). The domain of endogenous variables is Ξ, an open set of dimension
N = (ILS + IA + IS + I + S(L − 1) + (A − 1) + 1), which coincides with the
dimension of the range of the function F.

The zeros of the function F i represent the Kuhn-Tucker conditions for the in-
dividual optimization problem when t = 0. For an economy ω ∈ Ω, a competitive
equilibrium with inactive fiscal policy, t = 0, augmented with the associated La-
grange multipliers of the budget constraints of individuals, is then determined
as a solution to the system of equations F(0,ω)(ξ) = 0. The argument in [18]
applies and shows that competitive equilibria with inactive fiscal policy exist:
F−1

(0,ω)(0) �= ∅.
In general, F i does not correspond to the Kuhn-Tucker conditions when

t �= 0 : when ta < 0, the budget constraint is not convex; while, in addition,
if at a solution to the optimization problem of an individual, yi

a = 0 for some
a, then the optimum occurs at a kink and the equations that characterize the
optimum are not smooth. However, both the potential lack of differentiability
or the lack of convexity problems can be bypassed, as long as t is restricted
to a neighborhood of t = 0, if the equilibrium with inactive fiscal policy is
locally unique and all individuals trade all assets or yi

a �= 0. This condition, a
key element of the analysis, holds generically as is summarized in the following
standard lemma — items 1 and 26.

6The proof of Lemma 1 is standard and therefore we omit it; it follows immediately from
the analogous argument in Geanakoplos and Polemarchakis [19]. We state item 3 here, but we
use it only later, in the proof of density; it is this item that requires the condition (S−A) ≥ I
that appears in Assumption 1, and we discuss it in Section 5.
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Lemma 1. There exists a generic subset of economies Ω0, such that, for every
economy ω ∈ Ω0,

1. the function F(0,ω) is transverse to 0: dim[DξF(0,ω)] = N ; and, at a com-
petitive equilibrium with inactive fiscal policy,

2. every individual trades every asset:

F(0,ω)(ξ) = 0 ⇒ yi
a �= 0, a ∈ A, i ∈ I,

and

3. the matrix 

...

λi ⊗ zi

...


=



...

. . . λi
sz

i
s . . .

...


has full row rank, I.

In Lemma 1, as well as in the next lemma, genericity refers to perturbations
only in endowments. By continuity, Lemma 1 implies that, for small enough t,
the zeros of F represent competitive equilibria with fiscal policy t, and that the
equations F(t,ω)(ξ) = 0 are smooth and determine, locally, the welfare impact
of taxes on asset trades.

Lemma 2. For every economy ω ∈ Ω0, there exists an open set of fiscal policies,
Oω ⊂ T , such that 0 ∈ Oω, and if t ∈ Oω, then competitive equilibria ξ ∈ Ξ
with fiscal policy t for the economy ω exist and are obtained as solutions to the
system of equations F(t,ω)(ξ) = 0. They are locally smooth functions of the fiscal
policy parameters ζ and of the quadratic perturbations M :

dξ = −(DξF )−1(DtFdt + DMFdM).

Notice that, once the function F is restricted to the open and dense subset
Ω0, one gets as a consequence that yi

a �= 0 at all equilibria with t = 0, and there
is no need to impose this condition as an additional restriction on the domain
of F. While F may still be nondifferentiable for some combination (ξ, ω) in its
domain, it will be smooth at those pairs (ξ, ω) for which ω ∈ Ω0, (t ∈ Oω)
and F(t,ω)(ξ) = 0, which is all that it is needed for the analysis. The reader
should keep this in mind when openness of the subset of economies in Ω0 where
a Pareto-improving fiscal policy exist will be proved.
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4 Pareto improving fiscal policy

Let u(�x) = (. . . , ui(xi), . . .) be the vector of utilities associated with an alloca-
tion of commodities. An allocation of commodities, �x = (. . . , xi, . . .), is strictly
Pareto superior to another, �x′ = (. . . , xi′, . . .), if u(�x) � u(�x′).

Definition 2. A feasible allocation of commodities is strictly constrained Pareto
suboptimal if there exists a strictly Pareto superior, competitive equilibrium al-
location with fiscal policy.

Constrained interventions are restricted to the taxation of trades in assets
and to the distribution of fiscal revenue.

Proposition (Constrained suboptimality) Generically, every competitive equi-
librium allocation with inactive fiscal policy is strictly constrained Pareto subop-
timal. The fiscal policy that implements the strict Pareto improvement can be
chosen to involve no fiscal revenue.

The proof of the Proposition follows the reasoning developed in Citanna,
Kajii and Villanacci [6]; that is,

Φ̃(ξ, t, ω) =

 DξF DtF

Dξu 0


represents the derivative of the equilibrium system and of the utility vector at
t = 0. An equilibrium is constrained suboptimal if the row rank of Φ̃(ξ, t, ω) is
full 7. Constrained suboptimality is nothing but a violation of the first order
conditions for a vector maximum or it obtains when u is a submersion on the
equilibrium set. The rank condition on Φ̃(ξ, t, ω) is indeed equivalent to showing
that the system defined by

Fopt(ξ, b; t, ω) =

 b1DF̃ + b2Du

‖b‖ − 1

 = 0,

where (b1, b2) is a vector of dimension N +I, has no solution (ξ, b) at F(ζ,ω)(ξ) =

0, for any given ω. DF̃ is nothing but an appropriately chosen submatrix of the
derivative matrix DF. Hence if a planner were to choose t (a tax policy) to
maximize the utility vector u (the social welfare) subject to F̃ = 0, the value
t = 0 would not satisfy the first order conditions for an optimum: b1Du +
b2DF̃ = 0 is not solved at t = 0, and hence a tax reform (a change in taxes
and redistributions) would do better. Constrained suboptimality is equivalent
to the existence of a feasible direction of tax reforms in the sense of Guillemin
and Pollack [20].

7Citanna, Kajii and Villanacci [6], Proposition 1.
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Constrained suboptimality holds for a generic subset of economies in Ω. In
order to show density, and using the quadratic, finite-dimensional parametriza-
tion M of utility functions, it suffices to show8 that the matrix Db,MFopt =
(DbFopt,DMFopt) has full row rank.

5 Discussion

Market incompleteness The natural requirement that the number of policy
instruments exceed the number of policy targets is the object of Assumption 1:
instruments are taxes on trades in assets and the rebate, while targets are the
utility levels of individuals at equilibrium. If Pareto improvement may involve
fiscal revenue, it actually suffices that A ≥ I; if intervention must satisfy fiscal
balance, T = 0, the argument requires that A ≥ I + 1.

Sufficient market incompleteness relative to the number of individuals, S −
A ≥ I, also in Assumption 1, is used to prove item 3 in Lemma 1. The matrix
represents the relative commodity price effects of tax reforms. Indeed, for a
marginal change of policy instruments or tax rates ∆t, and fixing ∆q = 0 and
∆yi = 0, the change in individual i’s indirect utility induced via a relative spot
prices change is ∆ui =

(
λiZi

)
⊗ Dtp∆t. Then, item 3 of Lemma 1 guarantees

that there is sufficient variation of utilities due to these price effects, and asset
trade taxation yields controllable utility changes. While Geanakoplos and Pole-
marchakis [18] used item 3, Lemma 1, it did not require S − A ≥ I since the
no-arbitrage equations need not be satisfied by a direct portfolio reallocation
policy.

Since S > A, Assumption 1 implies that LS > I, a condition used in
Geanakoplos and Polemarchakis [18] to establish the constrained inefficiency
of financial equilibrium when the planner changes asset holdings directly and
must take into account the initial asset prices 9. Kajii [26] shows that Pareto im-
provement through anonymous direct asset reallocations can be obtained only if
indeed the planner must take into account the initial asset prices, but this condi-
tion is not sufficient, and gives a counterexample. Here, anonymity is obtained
with the additional condition of sufficient incompleteness, and suggests that,
once no-arbitrage equations as well as initial asset prices are taken into account,
but with the slack provided by taxes, portfolio reallocations are anonymous.

Taxation of both purchases and sales of the numéraire asset gives more
degrees of freedom, and it allows one to derive generic Pareto improvements
under the less stringent condition min{A,S − A} ≥ I — the proof mimics that
of the Proposition and we omit it. Evidently, the taxation of both purchases
and sales for an asset other than the numéraire is redundant, since the asset
price can adjust as the tax rates change and, thus, effectively nullify one of the
tax instruments in each market.

8Citanna, Kajii and Villanacci [6], Proposition 3.
9That is, portfolio reallocations must be balanced not only in terms of the units of assets

redistributed, but also in value, where their value is computed at the initial equilibrium prices.
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The following example illustrates the effects of asset trade taxation. There
are two individuals, two consumption goods and two assets. The intertemporal
von Neumann - Morgenstern utility function of an individual is

ui = x1,1 + δiEs>1

[
(αi) ln x1,s + (1 − αi) ln x2,s

]
, δi > 0, 0 < αi < 1,

and his endowment is ei = (ei
1,1, (e

i
1,2, e

i
2,2), . . . , (e

i
1,S , ei

2,S)) � 0.This is a slight
deviation from the general specification, as utility for consumption at s = 1
is quasi-linear in the numéraire commodity at s = 1, where there is no utility
for good l = 2. Optimal consumption at s > 1 is then given by xi

1,s = αimi
s

and xi
2,s = (1 − αi)mi

s, where mi
s = ei

1,s + p2,se
i
2,s + rsy

i is the revenue of the
individual after the resolution of uncertainty. Then, using commodity market
clearing we get spot equilibrium prices

p2,s =
1∑

i αiei
2,s

[∑
i

[(1 − αi)ei
1,s − αirsy

i]

]
.

Importantly, since equilibrium in the market for assets requires that
∑

i yi
a = 0,

the distribution of holdings of assets and, more generally, the distribution of
revenue, affect relative prices only if individuals are heterogeneous: α1 �= α2.
The indirect utility function is

ũi = ei
1,1 −

∑
a

qi
ayi

a + δiEs

[
ln mi

s − (1 − αi) ln p2,s

]
+ const.,

where qi
a has been previously defined. Since the utility function is quasi-linear,

it is not necessary to specify the distribution of fiscal revenue T . The marginal
utility of revenue for the individual at a state of the world is

λi
s =

1
mi

s

,

and
∂ũi

∂yi
a

= −qi
a + δiEs>1λ

i
sra,s,

while
∂ũi

∂qa
= −yi

a and
∂ũi

∂p2,s
= −δiλi

s

[
(1 − αi)

ps
mi

s − ei
2,s

]
.

The optimization of individuals in the market for assets requires that

∂ũi

∂ya
= 0 or − qi

a + δiEsλ
i
sra,s = 0.

Given the rates of taxation of assets, ta, after substitution, the equilibrium
conditions reduce to a system of two polynomial equations in two unknowns, y2

1

and y2
1 . ??? With inactive fiscal policy, the equations that determine equilibrium

are
δ1Es>1λ

1
sra,s = δ2Es>1λ

2
sra,s, a = 1, 2.
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For generic values of the preference parameters and endowments of individuals,
at equilibrium every individual trades every asset: yi

a �= 0, and, as a conse-
quence, the equilibrium is locally a smooth function of the rates of taxation of
assets, ta. Since

dũ =

 dũ1

dũ2

 =

 ∂ũ1

∂t1
∂ũ1

∂t2

∂ũ2

∂t1
∂ũ2

∂t2


 dt1

dt2

 ,

Pareto improving taxes exist if the matrix ∂ũ1

∂t1
∂ũ1

∂t2

∂ũ2

∂t1
∂ũ2

∂t2


has full row rank or, since here the matrix is square, if the determinant does
not vanish. But,

∂ũi

∂ta
=

∑
a′

[
∂ũi

∂yi
a′

∂yi
a′

∂ta
+

∂ũi

∂qi
a′

∂qi
a′

∂ta

]
+

∑
s

∂ũi

∂ps

∂ps

∂y2
a

∂y2
a

∂ta

and, by direct substitution at ta = 0,

∂ũi

∂ta
= −

∑
a′

yi
a′

∂qi
a′

∂ta
− Es>1λ

i
s

[
(1 − αi)

ps
τ i
s − ei

2,s

]
∂ps

∂y2
a

∂y2
a

∂ta
.

In the absence of relative price effects: ∂ps/∂y2
a = 0, the argument for Pareto

improving taxes fails since at equilibrium
∑

i ∂ũi/∂ta = 0. But, generically in
the parameters, the system of polynomial equations that determine equilibrium
augmented by the polynomial equation that determines a vanishing determinant
for the matrix of coefficients has no solution; equivalently, at equilibrium, the
determinant does not vanish and Pareto improving taxes exist.

Negative tax rates Pareto improving taxes cannot be guaranteed to be non-
negative, and they are guaranteed to be negative when we impose the fiscal
balance requirement T = 0 10. Negative asset trading tax rates limit their de-
centralization through markets, as certain trades must then be prohibited in
order to avoid unbounded tax arbitrage profits. Here, we ban these arbitrage
trades by definition of ya,+ and ya,−, since no individual can be simultaneously
on both sides of an asset market. The following numerical example shows that
sometimes Pareto improving tax rates can be negative even if T is not restricted
to be zero.

10We thank an anonymous referee for pointing out to us that negative taxes are found in
the U.S. tax code: for example, when a worker’s contribution to a 401(k) plan is deducted at
the marginal tax rate in effect when he works, but later withdrawals are taxed at the lower
marginal tax rate in effect in retirement.
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In the example, there is no aggregate risk, utilities are von Neumann-Morgen-
stern, homothetic, and individuals are heterogeneous both in endowments and
preferences. Setting I = 2 = A and S = 4, the Proposition applies assuming
that tax revenues are not restricted to be zero, since S − A = 2 ≥ I = 2 and
A = 2 ≥ I = 2, which is enough as discussed above. Further, L = 2, and
utilities are of the form

ui(xi) =
∑

s

πi
s(α

i
s ln xi

1,s + (1 − αi
s) ln xi

2,s),

with πi = π, for every individual. Heterogeneity in α’s guarantees that spot
commodity prices depend on the wealth distribution, not just on aggregate
wealth. For every commodity and every state of the world,

∑
i ei

l,s = 1. The
asset payoff vectors are r1 = (1, 0, 0, 0)′ and r2 = (0, 1, 1, 1)′. Asset 2 is a discount
bond.

With no taxes, the individual budget constraint is q1y1 + q2y2 = 0. Buying
asset 1 then corresponds to selling asset 2, i.e., borrowing money, while selling
it corresponds to buying asset 2 or lending. Hence, while taxes are on the
purchases of assets, this can be interpreted as taxing purchases and sales of
asset a = 2 only. Then, other things equal, a tax t1 > 0 corresponds to an
increase in the borrowing rate (from 1/q2 to (1 + t1)(1/q2)), while a tax t2 > 0
corresponds to a decrease in the lending rate (from 1/q2 to [1/(1 + t2)](1/q2) ).
The actual change in the rate depends of course on the resulting after-tax q2.

For normalization purposes, q1 = 1 and p1,s = 1 at every state of the world.
In the example, the parameters of the economy are set as follows:

π = (5, 1/3, 1/3, 1/3), α2 = 1 − α1,

α1
s =


1/3 s odd,

2/3 s even,
e1
s =


(1/2, 3/10) s ≤ 2,

(3/10, 1/2) s > 2.

At the computed no tax equilibrium y1
2 = 0.0153 and q2 = 0.1844 –so i = 1 is a

lender and i = 2 a borrower– and utilities are u1 = −4.9463 and u2 = −2.8891.
After taxes of t1 = −0.16 and t2 = 0.07 are introduced, the new equilibrium
has a price of q2 = 0.1842, unchanged y1

2 (obviously, y1
1 changes), and utilities

of u1 = −4.9462 and u2 = −2.8890.11 Changes in endowments do not affect the
11We compute equilibria by first solving for optimal consumption, which is xi

1,s = αi
smi

s and

xi
2,s = (1 − αi

s)m
i
s/p2,s, where mi

s = ei
1,s + p2,sei

2,s + rsyi is state-contingent income. Then,

the commodity price p2,s and, therefore, Lagrange multipliers λi
s are computed as a function

of 1’s holdings of asset a = 2, and of the price of this second asset, y1
2 , q2. Since Lagrange

multipliers µi can also be determined as a function of y1
2 , q, equilibrium computation boils

down to solving by norm minimization the system of no arbitrage equations for asset a = 2 and
the two individuals, in the unknowns y1

2 and q2, with positivity constraints on consumption
through the individual rationality constraints. Programming was done using the ‘fmincon’
routine of MatLab v. 6.0. Numerical errors are below 1/109.
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sign of tax changes, and Pareto improving taxes may be robustly negative. To
guarantee that t ∈ Oω, tax rates and corresponding utility changes are nonzero,
but small. With a change in certainty equivalent of less than 1/103, this example
is obviously not meant to try and assess the quantitative importance of our
results, which remains to be assessed.

6 Proofs

Lemma 2 For any given ω ∈ Ω0, one parametrizes the utility using M, the
quadratic perturbation term, and considers the associated finite-dimensional
parametrization (M, e) where M = 0 at the initial ω. F−1

(0,ω)(0) �= ∅ for all ω

and Lemma 1, item 1 (regularity) allow the application of the Implicit Function
Theorem to claim that the system of equations F(t,ω′)(ξ) = 0 has a solution,
where (ξ, t, ω′) ∈ N(ξ,0,ω), an open neighborhood centered at (ξ, 0, ω), with ξ ∈
F−1

(0,ω)(0). Standard compactness of F−1
(0,ω)(0) implies that #F−1

(0,ω)(0) = K < ∞,

and so the existence of finitely many such neighborhoods, N(ξk,0,ω), one for each
ξk ∈ F−1

(0,ω)(0), k ∈ K. Projecting N(ξk,0,ω) onto T , and taking the intersection
over k, one gets an open set O′

ω ⊂ T around t = 0, such that F(t,ω)(ξ) = 0 has
finitely many, locally unique smooth solutions ξk(t;ω) for each t ∈ O′

ω .
To establish that a competitive equilibrium with fiscal policy exists, we want

to show that, for t ∈ Oω ⊂ O′
ω, the unique solution to the optimization problems

of individuals obtains at F(t,ω)(ξ) = 0.If not, there exists a sequence {tn}∞n=1 ⊂
O′

ω with limn→∞ tn = 0 and, for each n, individuals in ∈ I whose optimization
problem with fiscal policy tn at prices pn, qn have portfolios ỹin

n different from
the portfolios yin

n , where pn, qn and yin
n are part of ξn such that F(tn,ω)(ξn) = 0.

Passing to a subsequence if necessary, in = i for some i ∈ I, and ỹi
a,n′ ỹi

a,n′′ ≥ 0,

and yi
a,n′yi

a,n′′ � 0, all a ∈ A; such a subsequence exists since the sets of
individuals and assets are finite. The solutions to the optimization problems
of individuals converge, or limn→∞ ỹi

n = ỹi, by compactness of the budget set
at t1 and the fact that ...Similarly, limn→∞ yi

n = yi, where yi is part of ξ such
that F(0,ω)(ξ) = 0, by continuity of ξ(t;ω) = (ξk(t;ω))k∈K ; and yi

a �= 0,for all
a ∈ A by Lemma 1, item 2. Since at t = 0 the budget set of the individual is
convex, and utility is strictly concave, ỹi = yi, so that ỹi

ayi
a > 0,all a ∈ A. At

any n, if ỹi
a,nyi

a,n ≥ 0, all a ∈ A, then, by definition of the optimization problem
with fiscal policy and by strict concavity of utility, ỹi

n = yi
n, a contradiction with

ỹi
n �= yi

n; then, there exists ā with ỹi
ā,nyi

ā,n < 0. Taking limits, we have ỹi
āyi

ā ≤ 0,
again a contradiction, establishing the existence of competitive equilibrium with
fiscal policy for t ∈ Oω. �

Constrained suboptimality The vector of coefficients in Fopt = 0 is b =
(b1, b2) = (α, β, γ, δ, ε, θ, b2)′. With these coefficients, Fopt = 0 writes as the
system of equations
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α αiD2ui − γi\P + δĨ + bi
2Dui = 0, all i (i)

β γiW + (0 ε) = 0, all i (ii)

γ −αi(0 P ′) + βiW ′ = 0, all i (iii)

δ
∑

i(α
iΛi + γi\Zi) = 0, (iv)

ε
∑

i(µ
iβi

a − γi,0yi
a) = 0, all a > 1 (v)

θ −
∑

i(1/I)γi,0 + θ = 0, (vi.a)∑
i[β

i
aµiqaI(yi

a,+) − γi,0qayi
a,+] + θqa

∑
i yi

a,+ = 0, all a (vi.b)

b2 −γi,0 + θ = 0, all i (vi.c)

b′2b2 − 1 = 0, (vii)

where γi = (γi,0, γi\), and the following notation has been used: Ĩ = diag[0
IL−1, ..., 0 IL−1]S(L−1)×SL is an S(L − 1) × SL block-diagonal matrix formed
by S blocks, each corresponding to an (L − 1) × L –dimensional matrix, with
a first column of zeros and the L − 1 –dimensional identity matrix; P =
diag[p1, ..., pS ]S×SL, Zi = −diag[zi\

1 , ..., z
i\
S ]S×S(L−1), Λi = −diag[λi

1(0, IL−1)′,
..., λi

S(0, IL−1)′]SL×S(L−1) and µiQi = −µidiag[q1I(yi
1,+), ..., qAI(yi

A,+)]A×A; a
backslash, \, on a variable denotes that the first component has been deleted,
and I(yi

a,+) = 1 if yi
a > 0, and is zero otherwise.

For I objectives (the utility vector) and one budget constraint (equation
(V II)), there are a total of (1 + A) instruments, (T, t); hence the requirement
that (1 + A) ≥ (1 + I), or A ≥ I; for fiscal revenue to vanish, T = 0, the
requirement is that A ≥ 1 + I.

Equation (vii) must be true for otherwise, in a generic set of economies, this
would contradict the regularity of the original incomplete markets equilibrium,
Lemma 1, item 1. The first column displays the matching of variables to equa-
tions. Of equations (vi) , only equations (vi.a) and (vi.b) should be counted
when fiscal policy allows for fiscal revenue; only (vi.b) should be counted when
T = 0. The number of equations, at least (N + A), is greater than the number
of variables b under Assumption 1 and the remaining variables ξ are matched
by the equations F = 0, in number N. Therefore, that system, generically, has
no solution as long as Db,MFopt has full rank, as previously stated.

The quadratic finite-dimensional parametrization of utility used to compute
DMFopt allows one to perturb the Hessian of the utility function without altering
its gradient at any equilibrium point. For an economy ω ∈ Ω0, equilibria are
locally finite, by Lemma 2, so that this construction is well-defined.

It is now possible to demonstrate the results concerning constrained subop-
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timality. To this end, we need an additional lemma.

Lemma 3. Constrained suboptimality is dense: for a dense subset of economies,
Ω∗∗ of Ω0, Fopt = 0 has no solution.

Proof The proof is split in two cases, according to whether or not utility
perturbations are effective — case a and case b, respectively.
Delete equations (vi.c) and, possibly, some equations (vi.b) , reducing the num-
ber of equations to I.

Case a (αi �= 0, for all i): One perturbs equations (i) using M i; equations
(ii) using γ

\
i — this is possible by no redundancy: dim[R] = A; equations (iii)

using αi,s,1, all s, i, and equations (iv) using αi,s,l some i, all (s, l) with l �= 1.
From Lemma 1, item 2:

i for each a, there exists i(a) with y
i(a)
a > 0 : I(a) ≡ {i ∈ I : yi

a > 0} �= ∅;

ii for each a there exists i′(a) with y
i′(a)
a < 0 : I ′(a) ≡ {i ∈ I : yi

a < 0} �= ∅;

It follows that one can use βi
a with i ∈ I ′(a) to perturb equations (v) ; to

perturb equation (vi.a) one can use θ, and choose βi
a with i ∈ I(a) to perturb

the a-th equation (vi.b) . Equation (vii) one perturbs by using bi
2, for some i.

The rank of Db,MFopt is full.12

Case b (αi = 0, some i): To fix ideas, and without loss of generality, i = 1.
Then, taking l = 1 and combining equation (i) , b1

2D1u
1 = γ1\, with the first

order conditions for i = 1, D1u
1 = λ1, one obtains γ1\ = b1

2λ
1. Therefore, (i)

holds only if δ = 0. Similarly, from (ii) and the first order conditions, γ1,0 =
b1
2µ

1, and ε = 0; from no redundancy and (iii) , β1 = 0.
It is immediate that, for i > 1, Duiαi = 0 (again one uses (iii) and the first order
conditions), while, if αi �= 0, αiD2uiαi′ = 0, contradicting differential strict
quasi-concavity of ui. Thus, αi = 0 all i, and γi = bi

2(µ
i, λi) (i.e., γi is colinear

to (µi, λi)), βi = 0 for all i. Substitution into the system of equations yields that
(iv) becomes

∑
i bi

2λ
iZi = 0, or equivalently (b1

2, . . . , b
I
2)(..., λ

i ⊗ zi, ...)′ = 0. By
Lemma 1, item 3, the matrix on the right has full rank I and therefore (iv)
implies b2 = 0, a contradiction to (vii) , or b′2b2 = 1. Hence αi = 0, some i,
cannot be (or there is no solution to the system of equations in this case).

When fiscal revenue is assumed to vanish, T = 0, the argument is similar.
Delete equation (vi.a) , and equations (vi.c) . Some equations (vi.b) can possibly

12When double-sided taxation of asset a = 1 is introduced, the rate of tax on sales t1 as
instrument and the equation∑

i[β
i,1µiI(yi

1,−) + γi,0yi
1,−] + θ

∑
i yi

1,− = 0, (vi.b)

are added to the system Fopt = 0. One can use βi,1 with i ∈ I(1) to perturb equation (vi.b) ,

and βi,1 with i ∈ I′(1) to perturb equations
(
vi.b

)
, and another equation can be deleted

(i.e., another instrument ta can be dispensed with). Notice that adding equation (vi.b) for
a > 1 creates a redundancy with equation (v) , and the system cannot be perturbed. This is
consistent with our discussion of ineffectiveness of double-side taxation.
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be deleted reducing them to I + 1. For Case a, equations (i) through (v) are
perturbed as when T �= 0 is allowed; assuming without loss of generality and
possibly after relabelling that the equations (vi.b) left are those corresponding
to a ≤ I + 1, they are perturbed using βi

a, with i ∈ I(a) for each a ≤ I, while
the last equation (vi.b) is perturbed using θ. Equation (vii) is perturbed using
bi
, some i. Case b is dealt with exactly as above.

Proof of the Proposition Lemma 3 then established density of the con-
strained suboptimality property, and all is left to show is that Ω∗∗ is open in
Ω0. But this is a trivial exercise, since properness of the natural projection for
the system F (ξ, t, ω) = 0 of equilibrium equations at t = 0 is already known —
Citanna, Kajii and Villanacci [6], Lemma 1. This concludes the proof. �
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