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1 Introduction

This paper proposes a simple and tractable model of bounded rationality based on

time-costs of deliberating current and future decisions. We introduce a deliberation

technology based on the classical two-armed bandit problem (Gittins and Jones, 1974

and Rothschild, 1974) and model an individual decision maker’s thinking process as a

thought-experiment that takes time.

The basic idea we explore is that a boundedly rational decision-maker thinks through

a simple decision, such as of which of two actions to take, by weighing in her mind the

costs and benefits associated with each possible action through thought-experiments

which take time. Eventually, following enough “thought-experimentation” the decision-

maker (DM) becomes sufficiently confident about which action is best and takes a deci-

sion.

Although we rely on the powerful multi-armed bandit framework, we depart from the

classical bandit problem in a fundamental way by introducing the notion of ‘thinking

ahead’ about future decision problems in yet unrealized states of nature. By formulating

an intertemporal, state-contingent, planning problem, which may involve costly deliber-

ation in every state of nature, and by letting the decision-maker deliberate ahead of the

realization of a state, we attempt to capture the basic idea that individuals generally do

not think through a complete action-plan. Instead, individuals prioritize their thinking

and first think through the decisions that seem most important to them. They also

generally leave deliberations on less important decisions to the time or event when they

arise.

Such behavior is understandable if one has in mind deliberation costs but, as Rubin-

stein (1998) has noted, it is irreconcileable with the textbook model of the rational DM

with no thinking costs:

“ In situations in which the decision maker anticipates obtaining information before

taking an action, one can distinguish between two timings of decision making: 1. Ex

ante decision making. A decision is made before the information is revealed, and it is

contingent on the content of the information to be received. 2. Ex post decision making.

1



The decision maker waits until the information is received and then makes a decision.

In standard decision problems, with fully rational decision makers, this distinction does

not make any difference.” [Rubinstein 1998, page 52]

There are at least three reasons for developing a model with costly deliberation.

First, there is the obvious reason that the behavior captured by such a model is more

descriptive of how individuals make decisions in reality. Second, as we shall explain,

such a model can provide new foundations for two popular behavioral hypotheses: “sat-

isficing” behavior (Simon, 1955 and Radner, 1975) and decision-making under time

pressure that takes the form of “putting out fires” (Radner and Rothschild, 1975). The

main motivation of the current paper is to show how a model of decision-making with

costly deliberation can explain both “satisficing” behavior and a prioritization of deci-

sion problems akin to “putting out fires”. Third, a model with costly deliberation can

also provide a tractable framework to analyze long-term contracting between bound-

edly rational agents. We analyze this contracting problem in our companion paper on

“satisficing contracts” (Bolton and Faure-Grimaud, 2004).

Our initial objective was mainly to formulate a tractable framework of contracting

between boundedly rational agents in response to Oliver Hart’s observation that: “In

reality, a great deal of contractual incompleteness is undoubtedly linked to the inability

of parties not only to contract very carefully about the future, but also to think very

carefully about the utility consequences of their actions. It would therefore be highly

desirable to relax the assumption that parties are unboundedly rational.” [Hart, 1995,

p. 81] However, having formulated our deliberation technology for boundedly rational

agents we found that the decision problem is of sufficient independent interest to be

discussed in a separate paper.

In our model the decision-maker starts with some prior estimate of the payoff asso-

ciated with each possible action choice in every state of nature. She can either take her

prior as her best guess of her final payoff and determine her optimal action-plan asso-

ciated with that prior, or she can ‘think’ further and run an experiment on one action.

This experiment will allow her to update her estimate of the payoff associated with that

action and possibly to improve her action choice.

At each point in time, DM, thus, faces the basic problem whether to explore further

the payoff associated with a particular action, search further other parts of her optimiza-
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tion problem, or make a decision based on what she has learnt so far. Since ‘thinking

ahead’ takes time, DM will generally decide to leave some future decisions that she is

only likely to face in rare or distant states of nature to be thought through later.

As is well understood, thinking ahead and resolving future decisions allows a DM

to make better current decisions only when current actions are partially or completely

irreversible. Our decision problem, thus, involves irreversible actions, and thereby in-

troduces a bias towards deliberation on future actions ahead of the realization of future

states of nature.

To understand the underlying logic of our decision problem it is helpful to draw a

parallel with the problem of irreversible investment under uncertainty involving a ‘real

option’ (see Henry, 1974 and Dixit and Pyndick, 1996). In this problem the rational DM

may choose to delay investment, even if it is known to generate an expected positive

net present value, in an effort to maximize the value of the ‘real option’ of avoiding

making investments that ex post turn out to have a negative net present value. If one

interprets information acquisition through delayed investment as a form of deliberation

on future actions, one is able to infer from the ‘real options’ literature that a boundedly

rational DM with time-costs of deliberation is likely to behave in a similar way. That

is, the boundedly rational DM will postpone taking a current irreversible action until

she is sufficiently confident that this action yields the highest payoff. The interesting

observation here is not so much that the boundedly rational DM will delay taking an

action, but that she will eventually decide to act even if she has not fully resolved her

entire future action-plan, provided that she is sufficiently confident that she is making

the right choice.

As helpful as this parallel is in understanding the basic logic of our problem, it is

not a perfect analogy. To reveal how our problem differs from a reformulation of a real

options problem we specialize our framework to a decision problem where there is no

real option value and there is no doubt that a particular current action (investment) is

clearly preferable. Nevertheless in this problem a boundedly rational DM will generally

choose to delay investment and think ahead about future decisions in some if not all

future states of nature.

What is the reason for this delay if no option value is present? The answer is that,

by thinking ahead about future decisions the boundedly rational DM can reduce the
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time-lag between the realization of a state of nature and the time when the DM takes a

decision in that state. By reducing this time-lag the boundedly rational DM is able to

reduce the overall expected lag between the time she makes a costly investment decision

and the time when she recoups the returns from her investment. Because the DM

discounts future payoffs, reducing this time-lag raises her payoff. In other words, our

framework builds on the idea that the benefit of ‘thinking ahead’ is to be able to react

more promptly to new events, but the cost is delayed current decisions. This is the main

novel mechanism we study in this paper.

How does this framework provide a new foundation for satisficing behavior? In

general it is optimal for the boundedly rational DM to engage in what we refer to as

‘step-by-step’ thinking. This involves singling out a subset of future decision problems

and think these through first. If the thought-experiments on these problems reveal that

the payoff from investing is appreciably higher than the DM initially thought then the

DMwill decide that she is satisfied with what she found and will choose to invest without

engaging into further thinking on other future decisions she has not yet thought about.

If, on the other hand, the thought-experiments reveal that the payoff from investing is

no higher and possibly lower than initially thought then the DM will continue thinking

about other decision problems in yet unexplored future states of nature. In other words,

the boundedly rational DM will generally refrain from fully determining the optimal

future action-plan and will settle on an incomplete plan which provides a satisfactory

expected payoff. Note that, in our framework the satisficing threshold is determined

endogenously, as the solution of an optimal stopping problem. Thus, our framework can

address a basic criticism that has been voiced against the satisficing hypothesis, namely

that the threshold is imposed exogenously.

In what way does the boundedly rational DM behave as if she were “putting out

fires”? We show that quite generally the boundedly rational DM prioritizes her thinking

by first choosing to think about the most important and urgent problems. It is in

this sense that she behaves as if she were putting out fires. The original formulation

of this behavioral hypothesis by Radner and Rothschild considered only very extreme

situations, where the DM had no choice but to put out fires. Our framework highlights

that the general idea underlying the notion of putting out fires, that a boundedly rational

DM prioritizes her thinking by focusing first on the most important problems or those
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most likely to arise, extends far beyond the extreme high stress situation considered by

Radner and Rothschild.

A number of other major insights emerge from our analysis. Thus, when the num-

ber of future decisions to think about is large so that the overall planning problem is

overwhelming then it is best to act immediately by guessing which action is best, and to

postpone all the thinking to the time when the problems arise. This result is quite intu-

itive and provides one answer to the well known ‘how-to-decide-how-to-decide’ paradox

one faces when one introduces deliberation costs into a rational decision-making problem

(see Lipman, 1995). In the presence of deliberation costs the DM faces a larger decision

problem, as she has to decide how to economize on deliberation costs. Presumably this

larger decision problem itself requires costly deliberation, which ought to be economized,

etc. We suggest here that one way of resolving this paradox is to have the DM act on a

best guess without any deliberation when the problem becomes overwhelming.

In contrast, when the number of future decision problems (or states of nature) is

more manageable then step-by-step thinking is generally optimal. For an even lower

number of future problems complete planning is optimal (in particular, when there is

only one state of nature, and therefore only one future problem to think about, then

thinking ahead and complete planning is always optimal).

There is obviously a large and rapidly growing literature on bounded rationality and

the ideas we have discussed have been explored by others. The literature on bounded

rationality that is most closely related to ours is the one on costly deliberation (see Con-

lisk, 1996), and within this sub-literature our work is closest in spirit to Conlisk (198.),

who formulates a related problem where a boundedly rational agent thinks ahead about

state-contingent problems. The main difference with Conlisk (198.) is that we formulate

a different deliberation technology, with thinking modeled as thought experimentation

and thinking costs taking the form of time thinking costs.

The remainder of our paper is organized as follows.
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2 A Simple Model of “Bandit” Rationality

2.1 The general framework

The general decision problem we consider is an infinite horizon, discrete time problem in-

volving an initial decision on which of n actions to take in the action set A0 = {a1, ...., an}
and future decision problems which are contingent on the initial action choice ai and

on the realized state of nature θj ∈ Θ, where Θ denotes the finite set of states Θ =

{θ1, ...., θN}. The initial action may be taken at any time t ≥ 0 and when an action
is chosen at time t a state of nature is realized at time t + ∆i, where ∆i ≥ 1. When
some action ai has been chosen the DM receives an immediate payoff ω(ai). In addition,

when action ai has been chosen and a state θj is realized the DM must choose another

action aijk from another (finite) set of actions Aij = {aij1, ...., aijmij}, where mij denotes

the number of actions available in state θj when DM has picked the initial action aj.

Again, the DM may take this action at any time τ ≥ t + ∆i. When the action aijk

following the realization of the state θj has been taken, DM obtains another payoff π(ai,

aijk, θj). Future payoffs are discounted and the discount factor is given by δ < 1. Thus,

the present discounted payoff when DM chooses action ai in period t and action aijk in

period τ ≥ t+∆i is given by:

δtω(ai) + δt+τπ(ai, aijk, θj).

The probability that state θj arises when action ai has been chosen is given by

µij ≥ 0. Thus, the expected present discounted payoff of an action plan, with initial
action ai chosen at date t and subsequent actions aijk chosen at dates τ ij ≥ t + ∆i is

given by

δtω(ai) +
NX
j=1

δt+τ ijπ(ai, aijk, θj)µij.

Although DMknows the true payoff ω(ai) she does not know the true payoff π(ai, aijk, θj).

She starts out believing that the true payoff π(ai, aijk, θj) can take any of the values

π(ai, aijk, θj, ηijh) in the finite set Πij = {π(ai, aijk, θj, ηij1), ...., π(ai, aijk, θj, ηijy)} and
has a prior belief over those values given by νijk0h = Pr(ηijh). To side-step a fundamental

conceptual issue, which is beyond the scope of this paper, we shall follow the literature
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on Bayesian learning and assume that the true payoff is given by π(ai, aijk, θj, ηijh) for

one of the ηijh.

Before taking any action aijk ∈ Aij, the DM can learn more about the true payoff

associated with that or any other action by engaging in thought experimentation. We

model this thought experimentation in an exactly analogous way as in the multi-armed

bandit literature. That is, in any given period t DM can ‘think’ about an action aijk

and obtain a signal σijk which is correlated with the true payoff parameter ηijh. Upon

obtaining this signal, DM can then revise her belief on the payoff associated with the

action aijk to νijkh = Pr(ηijh | σijk).
Thus, at t = 0 DM’ s decision problem is to decide whether to pick an action ai

in A0 right away or whether to think ahead about one of the future decision problems.

The DM faces this same problem, with possibly updated beliefs from earlier thought

experimentation, as long as she has not picked an action ai.

When she has chosen an action ai a time ∆i elapses until a state of nature is realized.

Upon realization of a state θj, DM’ s decision problem is again to decide whether to

pick an action aijk in Aij right away or whether to think about one of the actions in Aij.

Should the DM decide to think about the payoff associated with an action in Aij then

she faces this same decision problem next period, with updated beliefs.

This general framework is clearly restrictive in some respects: we only allow for two

rounds of action choice, the action sets are finite, the state-space is finite and learning

through thought-experimentation can only be done for one action at a time. Yet, the

framework is sufficiently general and versatile to be able to capture many dynamic

decision problems boundedly rational DM’ s are likely to face in reality. Also, the

framework, as described is clearly too general to be tractable. Accordingly, we shall

specialize the framework as a first step and take the dynamic decision problem to be a

problem of irreversible investment under uncertainty. In addition, we shall only allow

DM to choose between two initial actions, invest and don’t invest. Finally, we shall allow

for at most two states of nature and only two actions in each state. We describe this

simpler model in greater detail below. Before proceeding to the analysis of the simpler

problem it is helpful to briefly describe the benchmark of a rational DM.
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2.2 The Benchmark with no deliberation costs

We shall take it that the rational DM can at no cost determine the true value of the

payoffs associated with each action aijk ∈ Aij. The rational DM is then (weakly) better

off resolving all future decision problems ahead of their occurence, choosing an initial

action immediately, and choosing the follow-up action as soon as the state of nature is

realized, provided that the expected present value under the optimal action plan

max
(ai,aijk)

{ω(ai) +
NX
j=1

δ∆iπ(ai, aijk, θj)µij}.

is strictly positive. If the expected present value is non-positive then the rational DM

should “procrastinate” forever.

2.3 A simple model

More specifically, our simple model has the following basic structure. It involves an

initial investment decision with a set-up cost I > 0. If DM chooses to invest at date

t, then at date t + 1 the project ends up in one of two states: θ ∈ {θ1, θ2}. We denote
by µ the ex ante probability that state θ1 occurs. When state θi is realized, investment

returns are obtained only after the DM has chosen one of two possible actions: a “risky”

and a “safe” action. The return of the risky decision, R, is unknown and may take two

possible values, R ∈ {R, R̄}. The return of the safe decision is known and equal to S ∈
(R, R̄), so that there is some prior uncertainty about the efficient decision to take in

state θi. We denote by ν the prior probability that the risky action is the efficient action

in either state θi. Thus, in our simple model both states have the same payoff structure

but payoffs are independently drawn across both states.

As we have described above, the DM may think about the decision to take in each

state, which in our simple model means experimenting on the risky action. To keep

the analysis as tractable as possible we formulate the simplest possible thought experi-

mentation problem. We shall assume that as DM thinks in any given period, there is a

probability λ that she finds out the true payoff associated with the risky strategy, and a

probability (1− λ) that she learns nothing. In that case she must continue to think, or

experiment, in the subsequent periods until she gets lucky if she wants to find out the

true payoff of the risky action1.
1This approach is to be linked with Conlisk’s approach of optimization costs. In Conlisk, a decision
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Critically, as we have explained, DM can think through what should be done in state

θi before and/or after investing. She can think about what to do do in one of these

states or in both. Of course, if he invests first and state θi is realized there is no need

to think through what to do in state θj.

We shall make the following assumption on the payoff structure:

Assumption:

A1 : νR̄+ (1− ν)R > S

A2 : δS − I > 0

Assumption A1 implies that the safe action is the best action for DM if she decides

not to do any thinking. This is not a critical assumption for our main qualitative results.

Assumption A2, on the other hand, is more important. It ensures that the investment

project has a positive net present value (NPV) when the safe action is always chosen.

Under this assumption, any deliberation on future decisions, or knowledge of the payoff

of the risky action, does not impact the initial decision whether to invest: there is always

a way of generating a positive NPV, so that there is no ex ante real option value to be

maximized. As we explained earlier this assumption is imposed mainly to highlight the

difference of our simple model with the classical real options model.

2.4 Solving the Decision Problem

DM can decide to invest right away or to think first about what decision to take in

future states of nature. If she were to invest right away she would not be prepared

to act immediately following the realization of some state θi. She would then have to

either act on incomplete prior knowledge, or first think through what to do and thus

delay the time when she would reap the returns from her investment. Thus, the benefit

of identifying the efficient decision in state θi ahead of time (before investing) is that

DM will be able to act immediately following the realization of a state of nature and

thus reduce the time gap between when she makes an investment outlay and when she

reaps the returns from her investment. On the other hand, thinking before investing

maker whose optimal decision is some x∗ draws a sequence of random variables x̃ to approximate x∗.
This process is costly, e.g. it takes time to collect more draws and the longer the person thinks, the
better the estimate of x∗. Our model can be viewed as a particular case of Conlisk’s where the decision
space is binary and where the draws are either fully informative or not at all.

9



may be of little use and could unnecessarily delay investment. This is the basic tradeoff

DM faces that we now explore.

A lower bound for DM’s payoff is the expected return obtained if DM acts imme-

diately and does not think at all (we refer to this as the no thinking regime). Under

assumption A1 this expected return is given by:

V∅ = −I + δ
£
νR̄+ (1− ν)R

¤
.

Consider now the payoff DM could obtain by engaging in some thought experimen-

tation. A first thinking strategy for DM is to initiate the project right away at date

0 with an investment of I, learn which state prevails at date 1, and see whether some

thinking is worthwhile once the state is realized.

We shall assume that once in state θi DM prefers to think before acting rather

than act without thinking. Note that under our learning technology, where following

each thought experiment, DM either learns the true payoff for sure (with probability

λ) or learns nothing, if it is optimal to undertake one experiment, then it is optimal to

continue experimenting until the true payoff is found. Indeed, suppose that when state

θi is realized DM prefers to experiment. Then, since the decision problem at that point

is stationary, she will also prefer to continue experimenting should she gain no additional

knowledge from previous rounds of experimentation. Our experimentation problem has

been deliberately set up to obtain this particularly simple optimal stopping solution.

If, following successful experimentation DM learns that the true payoff of the risky

action is R then she will optimally chose the safe action given that R < S. If, on the

other hand, she learns that the true payoff is R̄ then she chooses the risky action. Thus,

the expected present discounted payoff from thinking in state θi is given by

λδ
£
νR̄+ (1− ν)S

¤| {z }
present discounted payoff
from learning the true
payoff in the first round
of experimentation

+ (1− λ)δ2λ
£
νR̄+ (1− ν)S

¤| {z }
present discounted payoff
from learning the true

payoff in the second round

+(1− λ)2δ3λ
£
νR̄+ (1− ν)S

¤
+

∞X
t=4

(1− λ)t−1δtλ
£
νR̄+ (1− ν)S

¤
.

Or, letting λ̂ = λδ
1−(1−λ)δ ,the expected present discounted payoff from thinking in state
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θi is:

λ̂
£
νR̄+ (1− ν)S

¤
.

To make our highly simplified problem at all interesting we shall assume that the payoff

structure is such that, once in state θi DM prefers to think before acting, or:

Assumption:

A3 : νR̄+ (1− ν)R ≤ λ̂
£
νR̄+ (1− ν)S

¤
⇔

λ̂ ≥ λ̂L ≡
νR̄+ (1− ν)R

νR̄+ (1− ν)S
.

Assumption A3 essentially imposes a lower bound on DM’ s thinking ability. If DM

is a very slow thinker (λ is very small) then it obviously makes no sense to waste a

huge amount of time thinking. Thus, for sufficiently high values of λ, DM will choose

to “think on the spot” if she has not done any thinking prior to the realization of the

state of nature. In that case, when DM chooses to first invests and then think on the

spot she gets an ex ante payoff VL equal to:

VL = −I + δλ̂
¡
νR̄+ (1− ν)S

¢
Notice that under this strategy DM only has to solve only one decision problem: the

one she faces once the state of nature is realized.

It is convenient to introduce the following notation: x ≡ νR̄ + (1 − ν)S and y =

νR̄+ (1− ν)R. It is immediate to see that the strategy of “no thinking” dominates the

strategy of “thinking on the spot” if and only if:

VL ≥ V∅ ⇔ λ̂ ≥ λ̂L =
y

x
.

Consider next a third strategy available to DM, which is to “think ahead” about

one or both states of nature. Suppose to begin with that µ = 1
2
and that DM, being

indifferent between which state to think about first, thinks first about state θ1. Again, if

it is optimal to begin thinking about state θ1 and DM does not gain any new knowledge

from the first thought-experiment then it is optimal to continue thinking until the true

payoff of the risky action in state θ1 is found.

Suppose now that DM has learned the true payoffs in state θ1, under what conditions

should she continue thinking about the other state before investing, instead of investing
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right away and gambling on the realization of state θ1? If she decides to think about

state θ2 she will again continue to think until she has found the true payoffs in that

state. If she learns that the return on the risky action in state θ2 is R̄, her continuation

payoff is

Vr = −I + δ

∙
π1
2
+

R̄

2

¸
,

where π1 ∈ {S, R̄} is DM’ s payoff in state θ1. Similarly, if she finds that the best action
in state θ2 is the safe action, her continuation payoff is:

Vs = −I + δ

∙
π1
2
+

S

2

¸
.

Therefore, DM’ s expected continuation payoff from thinking ahead about state θ2, given

that she has already thought through her decision in state θ1 is:

V 1
E = λ̂

³
−I + δ

³π1
2
+

x

2

´´
.

If instead of thinking ahead about state θ2, DM immediately invests once she learns

the true payoffs in state θ1 her continuation payoff is:

V 1
L = −I + δ

Ã
π1
2
+
max{y, λ̂x}

2

!
.

Thus, continuing to think about state θ2 before investing, rather than investing right

away is optimal if:

∆1 ≡ V 1
E − V 1

L = −(1− λ̂)(δ
π1
2
− I) +

δ

2

h
λ̂x−max{y, λ̂x}

i
≥ 0.

From this equation it is easy to characterize the solution of DM’s continuation decision

problem when she is thinking ahead, once she knows her true payoff in state θ1. We

state it in the following lemma:

Lemma 1: Suppose that DM is thinking ahead and has already solved her decision

problem in state θ1, then it is better to invest right away and possibly think on the spot

in state θ2 rather than continue thinking ahead about state θ2 if δ π1
2
− I ≥ 0.

If, on the other hand, δ π1
2
− I < 0, then there exists a cut-off λ̂

1

E such that thinking

ahead about state θ2 is preferred if and only if λ̂ ≥ λ̂
1

E.

Proof. see the appendix.
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As one might expect, the decision to continue thinking ahead about state θ2 depends

on what DM has learned before. The higher is π1, the less keen DM is to continue

thinking. When DM finds a good outcome in state θ1 she want to reap the rewards

from her discovery by accelerating investment. By thinking further about state θ2 she

delays investment and if she ends up in state θ1 anyway her thinking will be wasted.

The cost of these delays is captured by
¡
δ π1
2
− I
¢
, the expected payoff in state θ1.

Note, in particular, that a thinking strategy such that DM stops thinking on a bad

outcome where she learns that π1 = S, but continues thinking on a good outcome,

where π1 = R, is necessarily sub-optimal. This simple observation, we believe, highlights

a basic mechanism behind satisficing behavior. Why do boundedly rational DM’s settle

with good but not necessarily optimal outcomes? Because they want to bring forward

the time when they get the good reward, or as the saying goes, because “the best is the

enemy of the good”.

Having characterized this key intermediate step we are now in a position to determine

when DM should start to think ahead at all and when DM should defer until later all

of her thinking. Depending on the value of π1, several cases have to be considered.

First, suppose that I ≤ δS
2
. In that case, DM will not think about state θ2 ahead of

time, irrespectively of the outcome of her optimization in state θ1. DM will then think

about at most one state. If she thinks ahead about one state her payoff is:

VE = λ̂

∙
ν

µ
−I + δ

2
R+

δ

2
max{y, λ̂x}

¶
+ (1− ν)

µ
−I + δ

2
S +

δ

2
max{y, λ̂x}

¶¸
=

λ̂

∙
−I + δ

2
x+

δ

2
max{y, λ̂x}

¸
If she decides to invest without thinking her payoff is:

VL = −I + δmax{y, λ̂x}

Comparing the two payoffs we immediately observe that:

Lemma 2: When I ≤ δ S
2
, thinking ahead is always dominated and DM chooses:

- no thinking if and only if λ̂ ≤ λ̂L, or

- thinking on the spot if and only if λ̂ ≥ λ̂L.

Proof. see the appendix.
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Lemma 2 establishes another important observation. If DM knows that she will stop

thinking ahead irrespectively of the outcome of her current thinking, then it is not worth

thinking ahead about her current problem. In other words, it is only worth thinking

ahead about some state θi if DM may want to continue thinking ahead about other

states with positive probability; in particular, when the outcome of her current thinking

is bad. In our simple model it is quite intuitive that DM would not want to do any

thinking ahead if she can guarantee a high net return, which is the case when δ S
2
≥ I.

Second, suppose that I ≥ δR
2
and that λ̂ ≥ λ̂L. In that case, DM wants to think

about state θ2 ahead of time, irrespectively of the outcome of her optimization in state

θ1. In other words, if DM does any thinking ahead, she will want to work out a complete

plan of action before investing. Thus, if she thinks ahead her payoff is:

VE = λ̂
2
[δx− I]

while if she does not, she can expect to get:

VL = −I + δλ̂x

It is easy to check that in this case, VL < VE.

Third, suppose that I ≥ δR
2
but λ̂ ≤ λ̂L. In this case DM either thinks ahead

and works out a complete plan of action before investing, or DM prefers not to do any

thinking ever (thinking on the spot is always dominated by no thinking, since λ̂ ≤ λ̂L). If

she does not think at all she gets V∅ and if she thinks ahead her payoff is VE = λ̂
2
[δx− I].

Comparing V∅ and VE, we find:

Lemma 3: When λ̂ ≤ λ̂L thinking on the spot is always dominated and when I ≥ δR
2

DM chooses:

- no thinking if λ̂ ≤ λ̂E =
q

δy−I
δx−I , or

- thinking ahead (complete planning) if λ̂ ≥ λ̂E.

Proof. see the appendix.

In this situation DM is a slow thinker but the costs of thinking ahead are also low as

investment costs are high. Thinking on the spot is dominated because once investment

costs are sunk DM wants to reap the returns from investment as quickly as possible. On
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the other hand, as long as investment costs have not been incurred, DM is less concerned

about getting a low net expected return quickly.

Fourth, suppose that δ R̄
2
> I > δ S

2
. In this intermediate case, DM wants to continue

thinking ahead about state θ2 only if the outcome of her thinking on state θ1 is bad.

Thus, if DM thinks ahead, then with probability ν she learns that the risky action has a

payoff R̄ in state θ1 and stops thinking further about state θ2. Later, of course, if state

θ2 is realized, DM may decide to think on the spot about what to do. With probability

1−ν instead, she learns that the return of the risky decision in state θ1 is S and decides

to continue thinking about state θ2 before investing. Therefore, in this situation, her

payoff if she thinks ahead is:

VE = λ̂

∙
ν

µ
−I + δ

2
R+

δ

2
max{y, λ̂x}

¶
+ (1− ν)λ̂

µ
−I + δ

2
S +

δ

2
x

¶¸
Having determined all the relevant payoffs we are in a position to derive the conditions

under which DM prefers to think ahead. To limit the number of cases, and consistent

with our focus on the choice between thinking ahead or deferring thinking, we narrow

down our analysis to values of λ̂ greater than λ̂L, so that no thinking is always dominated.

We provide an analysis of the alternative situation in the Appendix.

Assumption: A4 : λ̂ ≥ y
x

Proposition 1: Under assumptions A1, A2, A3 and A4, the solution to DM’s decision

problem is as follows: DM prefers to think on the spot if and only if:

I ≤
λ̂δ
h
x− νR

2

i
1 + λ̂− νλ̂

.

Otherwise DM prefers to think ahead, either adopting:

- a “step by step” strategy where she first thinks about state θ1 and continues her thinking

about state θ2 if she finds that the payoff in state θ1 is S and if

λ̂δ
h
x− νR

2

i
1 + λ̂− νλ̂

≤ I ≤ δR

2
.

Otherwise, she stops thinking ahead beyond state θ1 and if state θ2 is realized resumes

her thinking then.

- a “complete planning” strategy where she thinks ahead about both states before investing

if δR
2
≤ I.
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Proof. see the appendix.

The following figure is helpful to understand Proposition 1.

-

6
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·
·
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·
·
·
·
·
·
·· · · · · · · · · · · · · · · · · · · · · · · · ·

Complete Planning

Step by Step Planning

Thinking on the Spot

The figure maps out the three different regions: i) “complete planning”, where DM

thinks everything through ahead of time; ii) “thinking on the spot”, where DM defers all

the thinking to when the state of nature is realized, iii) “step by step planning”, where

DM thinks first about state θ1 before investing and maybe about state θ2 as well. Recall

that in this region, we could see DM thinking both before investing and after: she thinks

about what to do in state θ1, learns some good news about that state and invests, but

unfortunately state θ2 is realized. Then she thinks again before making a decision.

Intuition suggests that if DM is a faster thinker, she should do more thinking. This

is borne out by the figure, as the area for which DM engages in step-by-step thinking

is smaller the larger is λ. Intuition, however, is not a good guide to determine whether

a faster thinker thinks more on the spot or plans her actions more. The figure again

reveals that there are good reasons why one cannot determine intuitively whether faster

thinkers think more on the spot. The answer depends on other factors.

Thus, for high investment costs, DM wants to plan ahead, whether she is a slow or

fast thinker (as long as λ ≥ λ̂L). As we have already explained, the reason is that this
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allows her to better align investment costs and monetary returns in time. When I is

high, the NPV is smaller and the cost of thinking ahead goes down. in addition, the

benefit of aligning cost and benefits goes up.

On the other hand, for intermediate values of investment costs faster thinkers do more

thinking on the spot than slower thinkers, who engage in step-by-step thinking. The

reason is that, for faster thinkers the time gap between investment and the realization of

returns is smaller and therefore matters less than for slower thinkers. As a result, they

are more likely to prefer to bring forward the positive NPV, by investing right away than

slower thinkers, who are prepared to accept some delay in getting the positive NPV, in

return for a higher NPV achieved by reducing the time lag between investment and

recoupment.

Interestingly, the figure reveals that DM will not necessarily engage in complete

planning as λ approaches 1. As long as λ < 1, what determines whether DM engages in

complete planning is whether I is greater or smaller than δR
2
. Thus even for λ arbitrarily

close to 1, DM will not engage in complete planning if I < δR
2
. It is only when there are

no deliberation costs at all, so that λ = 1, that complete planning is always a rational

behavior.

2.5 Comparative Statics in the simple model

Having characterized decision-making in the presence of positive deliberation costs in a

simple symmetric example, we now explore how DM’ s behavior is affected in a more

general asymmetric setting, while continuing to retain our simple two-state structure.

2.5.1 The Role of State Uncertainty

In the symmetric example we have studied DM faces maximum uncertainty about which

state will occur, as each state is equally likely. We now explore how DM’ s decisions

change when µ, the probability that state θ1 is realized is larger than 1
2
, while keeping

the other characteristics of the model unchanged.

It is immediate to check that the payoff of the “thinking on the spot” strategy is

unchanged when µ > 1
2
. Similarly, the payoff associated with the “complete planning”

strategy remains the same. On the other hand, the payoff associated with “step-by-step

thinking” is affected in an important way when state θ1 becomes more likely. When
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µ > 1
2
it is obvious that the best step-by-step thinking strategy for DM is to think first

about state θ1, the most likely state. The costs of thinking ahead about one state only

are the same whichever state DM thinks about, but the expected benefit in terms of

DM’s ability to act quickly following the realization of a state is higher for state θ1, as

this is the most likely state. Note also that DM is more likely to think ahead about one

state only when µ > 1
2
, as the marginal expected payoff of thinking ahead about the

other state is reduced.

The continuation payoff obtained by thinking ahead about state θ2, once DM knows

that the payoff in state θ1 is π1 is given by:

V 1
E(µ) = λ̂ (−I + δ (µπ1 + (1− µ)x))

Compare this to the continuation payoff obtained by stopping to think ahead at that

point and investing:

V 1
L = −I + δ

³
µπ1 + (1− µ)λ̂x

´
and observe that the difference in continuation payoffs is given by:

∆1 = V 1
L − V 1

E(µ) = (1− λ̂)(µδπ1 − I)

Thus, an increase in µ, the likelihood of state θ1, results in an increase in∆1. As a result,

there are now more values of I for which DM stops to think ahead once she knows the

payoff in state θ1.

This has two implications:

First, DM is less likely to work out a complete action-plan before investing, so that

the complete planning region in the figure is now smaller.

Second, as the payoff of step-by-step thinking increases with µ, this strategy becomes

more attractive relative to not thinking ahead at all.

Consequently we have:

Proposition 2: A reduction in the uncertainty about states of nature reduces the

attractiveness of “complete planning” and “thinking on the spot” and favors a step by

step approach.

Proof. Obvious.

As µ approaches 1, it is clear that thinking ahead about state θ1 only is the best

strategy: it allows DM to reduce the time beween when she incurs investment costs and
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when she recoups her investment. In addition, thinking ahead is very unlikely to create

unnecessary delays.

Vice-versa, as µ approaches 1
2
and uncertainty about the state of nature increases, DM

can respond by either working out a complete plan to deal with the greater uncertainty,

or she can adopt a “wait-and-see” approach and defer all her thinking until after the

uncertainty is resolved.

One may wonder whether this finding extends to changes in other forms of uncer-

tainty. For instance, would DM change her behavior following a change in her prior

belief νi in state θi that the risky action is efficient? It turns out that such a change

in beliefs not only affects the perceived riskiness of the risky decision, but also changes

the average payoff that DM can expect in state θi. However, if one considers a mean

preserving change, where as νi is reduced Ri is increased to keep the mean return on the

risky action unchanged, one can isolate the effect of this change in uncertainty. It turns

out that such a change in uncertainty has no impact on DM’ s deliberation policy. As

long as x remains constant, thinking on the spot, complete planning and step-by-step

thinking all have unchanged payoffs following a mean-preserving change in νi.

2.5.2 Variations in Problem Complexity

So far we have interpreted the parameter λ as a measure of DM’ s thinking ability. But λ

can also be seen as a measure of the difficulty of the problem to be solved, with a higher

λ denoting an easier problem. If we take that interpretation, we can let λ vary with

the problem at hand and ask whether DM thinks first about harder or easier problems.

Thus, suppose that the decision problem in state θ1 is easier, or less complex, than the

one in state θ2. That is, suppose that λ1 > λ2. Holding everything else constant, we now

explore how variations in the complexity of decision problems affects DM’ s payoff and

behavior. It is immediate to verify that the payoff associated to the complete planning

strategy is:

VE = λ̂1λ̂2 [δx− I]

and the payoff of “thinking on the spot” is:

VL = −I + (λ̂2 + λ̂1)
δx

2
.
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Comparing these two payoffs we can illustrate a first effect of variation in problem

complexity. Take λ̂1 = λ̂ + ε and λ̂2 = λ̂ − ε, where ε > 0. Note, first, that the

payoff under the “thinking on the spot” strategy is the same whether ε = 0, as we have

assumed before, or ε > 0. On the other hand, the payoff under complete planning,

(λ̂
2 − ε2) [δx− I] , is lower the higher is ε. Thus, increasing the variance in problem-

complexity across states, while keeping average complexity constant, does not affect the

payoff under the thinking-on-the-spot strategy as DM then only incurs average thinking

costs. In contrast, when DM attempts to work out a complete action-plan, thinking

costs compound. That is why DM is worse off under a complete planning strategy when

the variance in problem-complexity increases.

How do differences in problem-complexity across states affect DM’ s step-by-step

thinking strategy? Intuitively, it seems to make sense to first have a crack at the easier

problem first. This intuition is, indeed, borne out in the formal analysis, but the reason

why it makes sense to start first with the easier problem is somewhat subtle. Under

the step-by-step thinking strategy, whenever DM ends up thinking about both states of

nature, she compounds thinking costs in the same way as under complete planning, and

whether she starts with state θ1 or θ2 is irrelevant.

Hence, the choice of which state to think about first only matters in the event when:

i) the outcome of thinking is good (that is, if DM learns that the true payoff is R̄), so that

DM engages in only partial planning before investment, and; ii) when the state of nature

which DM has thought about is realized. In this event, DM is better off thinking first

about the easier problem since she then gets to realize the net return from investment

sooner. Formally, the payoffs under the two alternative step-by-step strategies are given

by:

VE1 = λ̂1

∙
ν

µ
−I + δ

2
R+

δ

2
λ̂2x

¶
+ (1− ν)λ̂2

µ
−I + δ

2
S +

δ

2
x

¶¸
VE2 = λ̂2

∙
ν

µ
−I + δ

2
R+

δ

2
λ̂1x

¶
+ (1− ν)λ̂1

µ
−I + δ

2
S +

δ

2
x

¶¸
Therefore, as

¡
−I + δ

2
R
¢
> 0, it is best to think about the simple problem, with the

higher λ̂i first. We summarize our discussion in the proposition below:

Proposition 3: Let λ̂1 = λ̂+ ε and λ̂2 = λ̂− ε, with ε > 0.

Then, when DM chooses to think ahead, it is (weakly) optimal to think first about the

easier problem, and the payoff associated with:
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- the “complete planning” strategy is decreasing in the variance in problem-complexity

across states,

- the “thinking on the spot” strategy is unchanged,

- the “step by step” strategy, where DM thinks first about the simple problem (in state

θ1), rises (resp. falls) with the variance in problem-complexity across states if I < Im

(resp. I > Im), for some cut-off Im > 0.

The larger is the difference in complexity between the two decision problems (as mea-

sured by ε) the more attractive is the “step by step” approach.

Proof. See the appendix.

Thus, partial planning is more likely to take place in environments where problem-

complexity varies a lot across states. Moreover, the simpler problems are solved first,

while the harder ones are deferred to later in the hope that they won’t have to be solved.

These conclusions are quite intuitive and reassuring.

2.5.3 Variations in Expected Returns across States

If thinking first about more likely and easier problems makes sense, is it also desirable to

think first about problems with a higher expected payoff? In our simple model expected

returns may differ across states if either the probability of high returns on the risky

action is different, or if returns themselves differ. We explore each variation in turn.

Suppose first that prior beliefs of high returns on the risky action in state θ1 is

higher than in state θ2, but that the average belief across states remains unchanged :

ν1 = ν+ε, ν2 = ν−ε, with ε > 0. In that case, the payoff of the “thinking on the spot”,
or “complete planning” strategies are unchanged. In contrast, the payoff of the step by

step strategy is affected by this average-belief-preserving spread as follows. Whichever

state θi DM thinks about first, DM will want to stop thinking further about the other

state if she discovers that πi = δR
2
, whenever I ∈ [ δS

2
, δR
2
]. It is then best for her to start

thinking about state θ1, the state with the higher prior belief ν1. The reason is that she

is then more likely to find that π1 = δR
2
and if state θ1 arises, DM will be able to realize

high returns relatively quickly. Note, therefore, that as more prior probability mass is

shifted to the high return on the risky action in state θ1, the step by step strategy also

becomes relatively more attractive.

Second, suppose that returns themselves differ across the two states, and that returns

in state θ1 are higher than in state θ2 : S1 = S + ε while S2 = S − ε, and R1 = R + ε
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while R2 = R− ε. We take ε > 0 to be small, so that even in state θ2 DM will continue

to think before acting if she does not know which decision is efficient. More formally,

we take ε to be small enough that assumption A3 remains valid.

This redistribution of returns across states leaves DM’ s expected payoff unaffected

as long as I < δ(S−ε)
2

or I > δ(R+ε)
2
. Indeed, in that case she chooses to either defer

all of her thinking until the uncertainty about the state is resolved, or to work out a

complete plan before investing. In both cases, her expected payoff only depends on

average returns x1+x2
2

and is therefore unaffected by changes in ε.

But if δ(S+ε)
2

< I < δ(R−ε)
2
, DM will engage in step-by-step thinking and will stop

thinking ahead if she learns that the risky decision is efficient in the state she thinks

through first. Once again, it is then best for her to think about the high payoff state

first. The basic logic is the same as before: by thinking first about the high payoff state

DM is able to bring forward in time the moment when she realizes the highest return.

Does this mean that when DM chooses to think ahead, she is always (weakly) better

off thinking first about the high payoff state? The answer to this question is yes. There

is one particular situation where conceivably this prescription might not hold. That is

when δ(S−ε)
2

< I < δ(S+ε)
2
. In this case DM either thinks about the low return state first,

or she defers all of her thinking to when the state of nature is realized. However, in the

later case, her payoff is unaffected by changes in ε, while in the former it is decreasing

in ε. What is more, for ε = 0 thinking on the spot dominates step by step thinking.

Therefore, the latter strategy is then dominated by thinking on the spot for all ε > 0.

Hence, it remains true that whenever thinking ahead pays it is best to think first about

the problem with the highest return.

Finally, for δ(R−ε)
2

< I < δ(R+ε)
2
, DM either thinks first about the high return state or

works out a complete plan. In the later case, her payoff is unaffected by ε. If she decides

to think first about the high return state, her payoff goes up with ε so that eventually

this strategy dominates complete planning. We then deduce:

Proposition 4: Suppose that either ν1 = ν + ε, and ν2 = ν − ε or that S1 = S + ε,

S2 = S − ε, while R1 = R+ ε and R2 = R− ε, for ε > 0 but small.

• Whenever some thinking ahead takes place, it is best to start thinking about the
high payoff state ( θ1).
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• The payoff associated with the “complete planning” or the “thinking on the spot”
strategies is unaffected by changes in ε, however

• The payoff associated with the “step by step” strategy, where DM thinks first about

the high return state, is increasing in ε.

Proof. See the appendix.

It, thus, appears to be best for DM to think first about the most favorable state.

Can this be seen as a rationalization of wishful thinking?

2.5.4 Thinking in Teams

Our ultimate goal is to analyze satisficing contracts between boundedly rational agents

as modeled here. One step in that direction is to consider how a team of DMs, each

facing positive deliberation costs, chooses to think ahead. Here, we only explore one

simple angle of the team problem, which can be easily related to our comparative statics

analysis.

Thus, suppose that there is now not one DM but two identical twins, each possibly

investing the same amount of money and sharing equally the returns of the investment.

Suppose that each team member has the same thinking ability given by λT . One key

difference of deliberation by a team is that each team member can think about the same

problem in parallel until one of the team members has discovered the solution. This

parallel deliberation lets the team accelerate the process of discovery. Concretely, if

both of team members think about, say, state θi they can expect to find the solution

with probability

1− (1− λT )
2 = λT (2− λT ).

For the sake of argument, suppose that λT is such that

λT (2− λT ) = λ,

so that the team of twins, thinking about the same problem, is just as good as the single

DM we have considered so far.

Then, it follows that the team payoff associated with the “thinking on the spot”

strategy remains unchanged. The same is not true, however, for other strategies. Now,

when thinking ahead, the team can learn faster when each member works on a different
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problem. This, avoids duplication and reduces compounding of delay: if one twin thinks

about state θ1 and the other about state θ2, there is now a chance that they together

learn the solution to their respective problems. This is clearly better so that:

Proposition 5: When there are two identical agents working in a team, each with

thinking ability λT given by λT (2− λT ) = λ,

• The team payoff associated with:

- the “complete planning” and the “step by step” strategies is higher than with a

single agent ,

- the “thinking on the spot” strategy is the same,

• There is more planning ahead in the team than by the single DM.

Proof. See the appendix.

By deferring thinking, the team cannot benefit as much from parallel thinking: once

the state is realized, both team members must think on the same problem, thus partially

duplicating their efforts. While planning ahead, duplication may be avoided, and there-

fore the benefits of some form of planning, with each agent thinking about a different

state of the world are increased.

3 The Model with N states

One may wonder to what extent our insights into optimal dynamic decision and de-

liberation strategies derived in our tractable two state example extend to more general

settings. We attempt a limited exploration into this question by partially analyzing the

more general problem with a finite, arbitrary number, of states of nature, N ≥ 3.
We begin by looking at the case of N equiprobable states, each with the same

structure: a safe action with known payoff S, and a risky action with unknown pay-

off R ∈ {R,R}. As before, we assume that payoffs of the risky action are distributed
independently across states and take DM’ s prior belief to be the same in each state and

given by Pr(R = R̄) = ν. We also continue to assume that assumption A3 holds.

As there is a finite number of states to explore, the optimal deliberation policy cannot

be stationary. As and when DM discovers the solution to future decision problems in
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some states of nature by thinking ahead, she is more likely to stop thinking further,

given that the remaining number of unexplored states diminishes. We also know from

our previous analysis that she may be more or less willing to continue her thought

experimentation before investing, depending on whether she learns ‘good’ or ‘bad’ news

about her payoff in state she is thinking about. Therefore there is no hope in identifying

a simple optimal policy where, for instance, DM explores m∗ out of N states and then

stops. It is also unlikely that DM’ s optimal policy would take the form of a simple

stopping rule, such that DM would stop thinking further once she discovers that she can

obtain a minimum average return in the states she has successfully explored. To identify

DM’ s optimal policy we therefore proceed in steps and characterize basic properties the

optimal policy must statisfy.

One property we identified in our two state example is that if DM is sure to stop

thinking and to invest after learning her payoff about the current state she thinks about,

then she prefers not to think ahead about the current state. The next lemma establishes

that this property holds in the more general model:

Lemma 4: If DM prefers to stop thinking ahead and to invest, irrespectively of what

she learns about state θi, then she also prefers not to think ahead about state θi.

Proof. Suppose that DM has already deliberated about m out of N states, and

found that zm of these states have a payoff for the risky action of R. If she deliberates

about the (m+ 1)th state and knows that she will then invest no matter what, she can

expect to get:

bλ ∙−I + δ

N

³
zmR+ (m− zm)S + x+ (N − (m+ 1)) bλx´¸

Thus, suppose by contradiction that DM decides to deliberate on this (m+ 1)th

state. This is in her best interest if the payoff above is larger than what she could get

by investing right away :

−I + δ

N

³
zmR+ (m− zm)S + (N −m) bλx´

Therefore, it must be the case that

C1 : −I +
δ

N

³
zmR+ (m− zm)S + (N − (m+ 1)) bλx´ < 0
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Now, if DM were sure to stop deliberating after the (m+ 1)th state, she must be better

off stopping further deliberations even when she learns bad news about the mth state.

For that to be true, it must be the case that stopping even following bad news is better

than continuing exploring just one more state (m+ 2), before investing, or that:

−I + δ

N

³
zmR+ (m− zm)S + S + (N − (m+ 1)) bλx´ ≥

bλ ∙−I + δ

N

³
zmR+ (m− zm)S + S + x+ (N − (m+ 2)) bλx´¸

or:

−I + δ

N

³
zmR+ (m− zm)S + S + (N − (m+ 2)) bλx´ ≥ 0

or

−I + δ

N

³
zmR+ (m− zm)S + (N − (m+ 1)) bλx´− δ

N

³bλx− S
´
≥ 0

which implies that condition C1 is violated, , as bλx− S > 0.

One implication of this simple lemma is that if DM wants to do some thinking ahead,

then she may also want to work out a complete plan of action with positive probability

(e.g. in the event that she only learns bad news from her deliberations).

Recall that the reason why it may be in DM’ s interest to do some thinking ahead

is not to improve her current decision. In this respect, thinking ahead adds no value, as

investment is guaranteed to yield a positive net present value. Rather, the reason why

DM gains by thinking ahead is that she may be able to respond faster to the realization

of a state of nature. So the intuition behind lemma 4 is that if the gain from a quick

response in state (m+ 1) does not justify the cost of delaying investment, and this even

after learning that the expected net present value of the investment will be lower, then

it cannot possibly be the case that this gain exceeds deliberation costs prior to learning

the bad news.

This intuition immediately suggests that the following property of the optimal de-

liberation policy must be satisfied.

Lemma 5: It is never optimal to stop thinking ahead on learning bad news and to

continue thinking ahead on learning good news.

Proof. Suppose, by contradiction that DM sometimes thinks ahead on good but

not on bad news. Then there must exist a state m such that when DM learns that in
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this state the safe decision is optimal she invests right away while if the risky decision

is optimal she continues exploring some more states.

Thus, suppose that after learning a payoff of R in state m, DM continues to explore

k(σ) states, where σ is a sequence of payoffs (S,R) that DM uncovers in states m +

1, ...,m + k. Denote by v(σ) the total payoff in those states given the sequence σ. DM

then prefers to continue deliberating after discovering that the payoff of the risky action

in state m is R, if:

−I + δ

N

³
zmR+ (m− zm)S +R+ (N − (m+ 1)) bλx´ ≤

Eσ

∙bλk(σ) ∙−I + δ

N

³
zmR+ (m− zm)S +R+ v(σ) +

³
N −

³
m+ ek(σ) + 1´´bλx´¸¸

for some continuation policy ek(σ), or:
−I + δ

N

³
zmR+ (m− zm)S + (N − (m+ 1)) bλx´ ≤

Eσ

∙bλk(σ) ∙−I + δ

N

³
zmR+ (m− zm)S + v(σ) +

³
N −

³
m+ ek(σ) + 1´´bλx´¸¸

− δ

N
R

µ
1−Eσ

µbλk(σ)¶¶
The last term is negative so that if we now substitute R by S, we have:

−I + δ

N

³
zmR+ (m− zm)S + S + (N − (m+ 1)) bλx´ ≤

Eσ

∙bλk(σ) ∙−I + δ

N

³
zmR+ (m− zm)S + S + v(σ) +

³
N −

³
m+ ek(σ) + 1´´bλx´¸¸

which means that if DM followed the policy that is optimal when discovering that the

payoff of the risky action in state m is R, when in fact it is R
¯
, so that the best DM can

hope to get in that state is S, then she would get a higher payoff by deliberating further

than by investing right away. In addition, DM can re-optimize the continuation policy

after learning that her payoff in state m is S. Therefore, she is better off continuing to

explore before investing, a contradiction.

From these two simple observations we are able to infer that:

Theorem: For N small enough, DM adopts a step by step strategy whereby she

thinks ahead about some states, continues to do so upon learning bad news and invests

only once she has accumulated enough good news.
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Proof. The two previous lemmata imply that DM never stops exploring upon re-

ceiving bad news. Indeed, if she did then she would not continue either when receiving

good news. This in turn would imply that it would be best not to think ahead about

that particular state. Therefore, when following a step by step strategy DM only stops

on good news about the last state she explores.

Turning to the second part of the theorem, to see why it is best to do some thinking

ahead when N is sufficiently small, it suffices to note that thinking ahead is obviously

beneficial if N = 1. Also, the strategy of investing right away delivers a lower payoff

than first thinking ahead about exactly one state (which, itself is a dominated strategy),

if:

−I + δbλx| {z }
invest immediately

≤ bλ ∙−I + δ

N
x+

δ

N
(N − 1)bλx¸| {z }

think ahead about one state

or,

⇔ N ≤ δbλx
δbλx− I

As stated, the theorem establishes that DM would want to do some thinking ahead

if the number of possible states N is small enough. We also know from the analysis

of the example with two states that even for N = 2, DM may prefer thinking ahead

step-by-step rather than determine a complete action plan. However, what we cannot

conclude from the theorem or our previous analysis is that DM would definitely not

want to do any thinking ahead when N is sufficiently large. We establish this result in

the next proposition.

Proposition 6: Consider N equiprobable states. If N ≥ δS
δS−I the optimal thinking

strategy is to invest right away and to think on the spot.

Proof. Notice first that if N ≥ δS
δS−I , DM will never think about the last state. That

is, when N ≥ δS
δS−I then m∗ < N . To see this, denote by QN−1 the average payoff that

DM expects from the N − 1 other states. We then have:

bλ ∙−I + δ

N
x+

δ

N
(N − 1)QN−1

¸
≤ −I + δ

N
bλx+ δ

N
(N − 1)QN−1

⇔ N(δQN−1 − I) ≥ δQN−1
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as QN−1 ∈ (S,R) this is equivalent to N ≥ δQN−1
δQN−1−I , which is true if N ≥

δS
δS−I . Now from

lemma 4 we know that if DM stops thinking ahead at the penultimate state irrespectively

of what she learns then she also prefers not to think ahead about the penulatimate state,

irrespectively of what she learned before. By backward induction, it then follows that

DM prefers no to do any thinking ahead.

Proposition 6 is quite intuitive. There is little to be gained by working out a highly

incomplete action-plan and if any reasonable plan is complex and will take a long time

to work out then the only reasonable course of action is to just hope for the best and

not do any planning at all.

In reality, people sometimes prefer to be faced with complex life situations where

rational forethought makes little difference and the only course of action is to essentially

“put their fate in God’ s hands” so to speak. In such situations they are absolved of all

responsibility for their fate and that makes them better off. In contrast, here our DM is

always (weakly) worse off facing more uncertainty than less (as measured by the number

of states N). Indeed, if one were to reduce the number of states below δS
δS−I , DM would

want to do some thinking ahead and be better off as a result.

Proposition 7: Consider N equiprobable states but differing in terms of expected

payoffs with x1 > x2 > ... > xN . The optimal thinking strategy is to think ahead about

the best possible states first.

Proof. To be completed.

Proposition 6: Consider N states with probabilities of realization µ1 > µ2 > ... >

µN . The optimal thinking strategy is to think ahead about the most likely states first.

Proof. To be completed.

4 Conclusion

...
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APPENDIX

• Proof of Lemma 1:

It is immediate from the previous equation that thinking on the spot dominates if

δ
π1
2
− I ≥ 0.

Suppose now that δ π1
2
− I < 0.

- If λ̂ ≥ λ̂L, then max{y, λ̂x} = λ̂x and ∆ = (1− λ̂)(δ π1
2
− I) < 0 so that thinking

ahead dominates.

- If λ̂ ≤ λ̂L, then max{y, λ̂x} = y and

∆ = (1− λ̂)(δ
π1
2
− I) +

δ

2

h
y − λ̂x

i
therefore,

∆ ≤ 0⇔

−I + δ
π1
2
+

δ

2
y ≤ λ̂

∙
−I + δ

π1
2
+

δ

2
x

¸

⇔ λ̂ ≥ λ̂E ≡
−I + δ

2
(π1 + y)

−I + δ
2
(π1 + x)

• Proof of Lemma 2 :

The difference ∆ = VE − VL is always negative as:

∆ = λ̂

∙
−I + δ

2
x+

δ

2
max{y, λ̂x}

¸
−
h
−I + δmax{y, λ̂x}

i
= −

h
−I + δmax{y, λ̂x}

i
(1− λ̂) + λ̂

δ

2

h
x−max{y, λ̂x}

i
Case 1: λ̂ ≤ λ̂L.

∆ = − [−I + δy] (1− λ̂) + λ̂
δ

2
[x− y]

= I − δy + λ̂

∙
−I + δy +

δ

2
(x− y)

¸
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as the term in bracket is positive, ∆ is at most equal to:

I − δy +
y

x

∙
−I + δy +

δ

2
(x− y)

¸
=

1

x
(Ix− δyx− Iy + δy2 +

δ

2
(x− y)y) =

x− y

x
(I − δ

2
y) < 0

and therefore thinking on the spot dominates thinking ahead. As λ̂ ≤ λ̂L, no thinking

dominates thinking on the spot.

Case 2: λ̂ ≥ λ̂L.

∆ = −
h
−I + δλ̂x

i
(1− λ̂) + λ̂

δ

2

h
x− λ̂x

i
= (1− λ̂)

∙
I − δ

2
λ̂x

¸
< 0

and therefore thinking on the spot dominates thinking ahead. As λ̂ ≥ λ̂L, thinking on

the spot also dominates no thinking.

• Proof of Lemma 3 :

As in the proof of Lemma 2, there are two cases to consider:

Case 1: λ̂ ≤ λ̂L.

In that case, no thinking dominates thinking on the spot. Whether thinking ahead

is best depends on the sign of

∆ = λ̂
2
[δx− I] + I − δy

and this is positive for

I ≥ δ(y − λ̂
2
x)

1− λ̂
2

The right hand side of this inequality is decreasing in λ̂. This is not true for λ̂ = 0 but

it is the case for λ̂ = y
x
as in that case, this inequality becomes:

I ≥
δ(y − y2

x2
x)

1− y2

x2

=
δxy

x+ y
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but as I ≥ δR
2
, then I > δx

2
and we remark that

δx

2
>

δxy

x+ y
⇔ x+ y > 2y

which is true as x > y. Therefore there exists a new threshold λ̂E < λ̂L such that

thinking ahead dominates no thinking if and only if λ̂ exceeds that threshold.

Case 2: λ̂ ≥ λ̂L.

In that case, no thinking is dominated by thinking on the spot. Whether thinking

ahead is best depends on the sign of

∆ = λ̂
2
[δx− I] + I − δλ̂x

and this is positive for

I ≥ δλ̂x

1 + λ̂

The right hand side of this inequality is increasing in λ̂. It is enough to notice that this

is true for λ̂ = 1 as in that case, this inequality becomes:

I >
δx

2

which is true.

• Proof of Proposition 1 :

First, lemmas 2 and 3 tell us that thinking ahead is dominated if I ≤ δS
2
and that

thinking on the spot is dominated if I ≥ δR
2
.

Case 1: suppose first as we did in the text that λ̂ ≥ λ̂L. Then surely for I ≥ δR
2
, the

best strategy is to think ahead as in that case it dominates thinking on the spot which

itself dominates no thinking. Because I is so high, DM will think about both states

(from lemma 1) before investing. Conversely for I ≤ δS
2
, deferring all thinking is best as

it dominates both thinking ahead and no thinking.

We are left with the study of the intermediate state where δS
2
≤ I ≤ δR

2
, when the

best alternative to planning ahead is to follow the strategy of thinking on the spot. We
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have:

∆ ≡ VE − VL

= λ̂

∙
ν

µ
−I + δ

2
R+

δ

2
λ̂x

¶
+ (1− ν)λ̂

µ
−I + δ

2
S +

δ

2
x

¶¸
−
h
−I + δλ̂x

i
= λ̂

∙
ν

µ
−I + δ

2
R

¶
+

δ

2
λ̂x+ (1− ν)λ̂

µ
−I + δ

2
S

¶¸
−
h
−I + δλ̂x

i
= λ̂

∙
λ̂ν

µ
−I + δ

2
R

¶
+ (1− λ̂)ν

µ
−I + δ

2
R

¶
+

δ

2
λ̂x+ (1− ν)λ̂

µ
−I + δ

2
S

¶¸
−
h
−I + δλ̂x

i

= λ̂

∙
(1− λ̂)ν

µ
−I + δ

2
R

¶
+ λ̂ (δx− I)

¸
−
h
−I + δλ̂x

i
= δx

³
λ̂
2 − λ̂

´
− I

³
λ̂
2 − 1

´
+ λ̂(1− λ̂)ν

µ
−I + δ

2
R

¶
=

³
λ̂− 1

´ ∙
λ̂δx− I

³
1 + λ̂

´
− λ̂ν

µ
−I + δ

2
R

¶¸
and so we have ∆ ≥ 0 iff:

λ̂δx− I
³
1 + λ̂

´
− λ̂ν

µ
−I + δ

2
R

¶
≤ 0

I ≥
λ̂δ
h
x− νR

2

i
1 + λ̂− νλ̂

We notice that the right hand side is increasing, concave in λ̂. Moreover, we have:

δS

2
<

y
x
δ
h
x− νR

2

i
1 + y

x
(1− ν)

and

δR

2
>

δ
h
x− νR

2

i
2− ν

Case 2: suppose now that λ̂ ≤ λ̂L. Then the best alternative to planning ahead is to

follow the strategy of no thinking. From the previous lemmas, we check that for I < δS
2
,
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the best strategy is to invest without any thinking taking place. Fo rintermediate values

where δS
2
< I < δR

2
, we have:

VE = λ̂

∙
ν

µ
−I + δ

2
R+

δ

2
y

¶
+ (1− ν)λ̂

µ
−I + δ

2
S +

δ

2
x

¶¸
and so

∆ = λ̂

∙
ν

µ
−I + δ

2
R+

δ

2
y

¶
+ (1− ν)λ̂

µ
−I + δ

2
S +

δ

2
x

¶¸
− [−I + δy]

Re-arranging terms as before, we obtain that ∆ ≥ 0 if and only if:

I ≥
λ̂δ
h
x− νR

2

i
1 + λ̂− νλ̂

+
δ(y − λ̂x)

(1− λ̂)(1 + λ̂(1− ν))

which may or may not be feasible given that we need I ≤ δ
2
R and λ̂ ≤ λ̂L. It is

in particular impossible if R ≤ 2xy
x+y

, a sufficient condition for no thinking to dominate

thinking ahead in that case. Otherwise thinking ahead may be best.

Similarly, when δR
2
< I, we have

∆ = λ̂
2
[δx− I]− (δy − I)

> 0⇔ λ̂ >

r
δy − I

δx− I

which may or may not be compatible with λ̂ ≤ λ̂L, and the condition on I. It requires

in particular that I > δxy
x+y

so that it is needed that S > 2xy
x+y

. But if this is true, then

thinking ahead dominates in this region, and that would also imply that there are some

values for which thinking ahead also dominates when δR
2
> I > δS

2
.
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