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Abstract

We develop, and apply to data on U.S. corporations from 1987-2000,
tests of the standard doubly-stochastic assumption under which firms’ de-
fault times are correlated only as implied by correlation of their default in-
tensity processes, for example through dependence on common or correlated
observable risk factors. The data do not support the joint hypothesis of well
specified default intensities and the doubly-stochastic assumption, although
we provide evidence that this may be due to mis-specification of the default
intensities, which do not include macroeconomic default-prediction covari-
ates. There is at most weak evidence of default clustering in excess of that
implied by the doubly-stochastic model and correlation of the firm-specific
default covariates.
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1 Introduction

Why do corporate defaults cluster? Several explanations have been explored
in the literature. First, firms may be exposed to common or correlated risk
factors whose co-movements cause correlated changes in the conditional prob-
abilities of defaults across firms. Second, the event of default by one firm may
be “contagious,” in that this event itself can push other firms toward default.
For example, there could be a “domino” or cascade effect, under which cor-
porate failures directly induce other corporate failures, as with the collapse
of Penn Central Railway in 1970. A third channel for default correlation is
learning from defaults. For example, the defaults of Enron and WorldCom
may have revealed accounting irregularities that could be present in other
firms, and thus may have had a direct impact on the conditional default
probabilities of other firms.

Our primary objective is to examine whether correlation in default in-
tensities, that is, the first channel on its own, is sufficient to account for the
degree of default clustering that we find in the data.

Specifically, we test whether our data are consistent with the standard
doubly-stochastic model of default, under which, conditional on the path of
risk factors determining all firms’ default intensities, defaults are indepen-
dent Poisson arrivals at these (conditionally deterministic) intensities. This
model is particularly convenient for computational and statistical purposes,
although its empirical relevance for default correlation has been unresolved.
We develop, and apply to default data for U.S. corporations during the pe-
riod 1987-2000, a test of the doubly-stochastic assumption. We reject this
hypothesis, taking as correct our source of conditional default probabilities.
We also provide, however, evidence that this rejection may be due to mis-
specification of our default probability data, which do not incorporate any
direct dependence of default probabilities on macroeconomic covariates that
may be responsible for some clustering of defaults. In any case, we do not
find substantial evidence of default clustering beyond that predicted by the
doubly-stochastic model and our data.

Understanding how corporate defaults are correlated is particularly im-
portant for the risk management of portfolios of corporate debt. For example,
as backing for the performance of their loan portfolios, banks retain capital at
levels designed to withstand default clustering at extremely high confidence
levels, such as 99.9%. Some banks do so on the basis of models in which
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default correlation is captured by common risk factors determining condi-
tional default probabilities, as in those of Gordy [2003] and Vasicek [1987].
(Banks do, however, attempt to capture the effects of contagion that arise
from parent-subsidiary and other direct contractual links.) If defaults are
more heavily clustered in time than currently envisioned in their default-risk
models, then significantly greater capital might be required in order to sur-
vive default losses at high confidence levels. An understanding of the sources
and degree of default clustering is also crucial for the rating and risk analysis
of structured credit products that are exposed to correlated default, such as
collateralized debt obligations (CDOs) and options on portfolios of default
swaps. The Bank of America has reported that synthetic CDO volumes
reached over $500 billion in 2003, an annual growth rate of over 130%.

While there is some empirical evidence regarding the correlation of con-
ditional corporate default probabilities (see, for example, Das, Freed, Geng
and Kapadia, [2001]), there is relatively little evidence regarding the pres-
ence of highly clustered defaults. Renault and Servigny [2002] have estimated
historical average one-year default correlations, but do not address the issue
of clustering. Collin-Defresne, Goldstein, and Helwege [2003] find that de-
fault events are associated with significant increases in the credit spreads of
other firms, consistent with a clustering effect in excess of that suggested
by the doubly-stochastic model, or at least a failure of the doubly-stochastic
model under risk-neutral probabilities. That is, their findings may be due
to default-induced increases in the conditional default probabilities of other
firms, or could be due to default-induced increases in default risk premia'
of other firms, as envisioned by Kusuoka [1999]. Both effects could be at
play. Collin-Dufresne, Goldstein, and Helwege do not disentangle these two
channels for default-induced widenings of spreads. Explicitly considering a
failure of the doubly-stochastic hypothesis. Collin-Defresne, Goldstein, and
Helwege [2003], Giesecke [2002], Jarrow and Yu [?], and Schénbucher [2004]
explore learning-from-default interpretations, based on the statistical model-
ing of frailty, under which default intensities include unobservable covariates.
In a frailty setting, the arrival of a default causes, via Bayes’ Rule, a jump in

!Collin-Dufresne, Goldstein, and Huggonier [2002] provide a simple method for in-
corporating the pricing impact of failure, under risk-neutral probabilities, of the doubly-
stochastic hypothesis. Other theoretical work on the impact of contagion on default pric-
ing includes that of Cathcart and El Jahel [2002], Davis and Lo [2000], Giesecke [2002],
Kusuoka [1999], Schénbucher and Schubert [2001], Teremtyev [2003], Yu [2003], and Zhou
[2001].
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the conditional distribution of hidden covariates, and therefore a jump in the
conditional default probabilities of any other firms whose default intensities
depend on the same unobservable covariates. For example, the collapses of
Enron and WorldCom could have caused a sudden reduction in the perceived
precision of accounting leverage measures of other firms. Indeed, Yu [2004]
finds that, other things equal, a reduction in the measured precision of ac-
counting variables is associated with a widening of credit spreads. Lang and
Stulz [1992] explore evidence of default contagion in equity prices.

Before describing our data, methods, and results in detail, we offer a
brief synopsis. Our data on actual default times and on monthly estimates
of conditional probabilities of default within one year (PDs) were provided
to us by Moodys, and cover the period January, 1987 to October, 2000.
These data are described in Section 3, with further details in Appendix A.
After dropping firms for which we had missing data, we were left with 241
individual issuer defaults among a total of 1,990 firms over 216,859 firm-
months of data.

From the time-series of PD data for each firm, we estimate default in-
tensities for each firm, using a simple time-series model of intensities. For
this, we assume that the default intensity process for each firm is a Feller
diffusion (also known as a Cox-Ingersoll-Ross process, or a square-root diffu-
sion). The fitting procedure is explained in Section 3.2. The current intensity
level measured from the one-year default probability is relatively robust to
mis-specification, since intensities and one-year conditional default probabil-
ities are relatively close for a wide range of alternative intensity models and
reasonable paramaters.

We then exploit the following result, demonstrated in Section 2. Consider
a change of time scale under which the passage of one unit of “new time”
coincides with a period of calendar time over which the cumulative total of all
firms’ default intensities increases by one unit. Under the doubly-stochastic
assumption, and under this new time scale, the cumulative number of defaults
to date defines a standard (constant mean arrival rate) Poisson process. For
example, fixing any scalar ¢ > 0, if we define successive non-overlapping
time intervals each lasting for ¢ units of new time (corresponding to periods
that include an accumulated total default intensity, across all firms, of c¢),
the doubly-stochastic assumption implies that the number of defaults in the
successive time intervals (X; defaults in the first interval lasting for ¢ units,
X, defaults in the second interval, and so on), are independent Poisson dis-
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tributed random variables with mean c. This time-changed Poisson-process
property is the basis for most of our tests, outlined as follows.

1. We apply a Fisher dispersion test for consistency of the emprical dis-
tribution of the numbers X7, X, ... of defaults in succssive time bins
of a given accumulated intensity size ¢, with the theoretical Poisson
distribution associated with the doubly-stochastic model.

2. We test whether the mean of the upper quartile of our sample X7, X, ...
Xk of numbers of defaults in successive time bins of a given size c is
significantly larger than the mean of the upper quartile of a sample of
like size drawn from the Poisson distribution with parameter c¢. An
analogous test is based on the median of the upper quartile. These
tests are designed to detect default clustering in excess of that implied
by the default intensities and the doubly-stochastic assumption. We
also extend this test to be applicable across all bin sizes.

3. Fixing the size c of time bins, we test for serial correlation of X, X5, ...
by fitting an autoregressive model. The presence of serial correlation
would imply a failure of the independent-increments property of Pois-
son processes, and, if the serial correlation is positive, could lead to de-
fault clustering in excess of that associated with the doubly-stochastic
assumption.

4. In order to avoid reliance on specific bin sizes, we provide the results of
a test due to Prahl [1999] for clustering of default arrival times (in our
new time scale) in excess of that associated with a Poisson process.

We find the data broadly consistent with a rejection of the joint hypoth-
esis of correctly specified intensities and the doubly-stochastic hypothesis, at
standard confidence levels. We also test for the presence of missing covariates
in the PD model, which was estimated from only firm-specific covariates such
as leverage, asset volatility, and credit rating. We are especially concerned
about missing covariates that might be associated with default clustering,
such as business-cycle variables. Indeed, we find evidence, in some tests,
that certain macroeconomic business-cycle variables should probably have
been included as default-prediction covariates. For example, the number of
defaults in a given bin, in excess of its conditional mean, is in theory un-
correlated with any variables in the information set of the observer before
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the time bin begins. Among other related results, however, we find some
evidence of correlation between Xj, the number of defaults in bin k£, and
macroeconomic variables such as U.S. GDP growth that were observed be-
fore bin k£ begins. It is possible that missing covariates, rather than a failure
of the doubly-stochastic property, is responsible for the relatively poor fit of
the data to the joint hypothesis that we test.

The rest of the paper comprises the following. In Section 2, we derive
the property that the total default arrival process is a Poisson process with
constant intensity under a time rescaling based on default intensity accumu-
lation. This property is the basis for our test statistics. Section 3 describes
our data, comprising default probabilities and default times over a period of
fourteen years. This section also describes the conversion of default probabil-
ities into intensities. Section 4 provides various tests of the doubly-stochastic
hypothesis, and Section 5 looks at the independence of increments in the pro-
cess governing default arrival. In Section 6 we undertake tests for missing
covariates with a view to assessing whether the data on default probabilities
is mis-specified. Section 7 concludes. The appendices contain further details
on the data and estimation procedures.

2 Time Rescaling for Poisson Defaults

In this section, we define the doubly-stochastic default property that rules
out default correlation beyond that implied by correlated default intensities,
and provide some testable implications of this property.

We fix a probability space (€2, F, P) and an observer’s information filtra-
tion {F; : t > 0}, satisfying the usual conditions. This and other standard
technical definitions that we rely on may be found in Protter [2003]. We
suppose that, for each firm 7 of n firms, default occurs at the first jump time
7; of a non-explosive counting process N; with stochastic intensity process
Ai. (Here, N; is (F;)-adapted and \; is (F;)-predictable.)

The key question at hand is whether the joint distribution of, in particular
any correlation among, the default times 71, ..., 7, is determined by the joint
distribution of the intensities. Violation of this assumption means, in essence,
that even after conditioning on the default intensities of all firms, the times
of default can be correlated.
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A standard version of the assumption that default correlation is cap-
tured by co-movement in default intensities is the assumption that the multi-
dimensional counting process N = (Ny,..., N, ) is doubly stochastic. That
is, conditional on the path {A\; = (A1, ..., Ay) : t > 0} of all intensity pro-
cesses, as well as the information Fr available at any given stopping time
T, the counting processes Ny, ..., N,, defined by Ni(u) = Nj(u + T), are
independent Poisson processes with respective (conditionally deterministic)
intensities A, ..., A, defined by A\;(u) = A\;(u+ T). In this case, we also say
that (71,...,7,) is doubly-stochastic with intensity (Aq,...,A,). In particu-
lar, the doubly-stochastic assumption implies that the default times 7, ..., 7,
are independent given the intensities.

We will test the following key implication of the doubly stochastic as-
sumption.

Proposition. Suppose that (11, ...,7,) is doubly stochastic with intensity
(A, ). Let K(t) = #{i : 7; <t} be the cumulative number of defaults
by t, and let U(t) = [3 5", X\i(u)1,,5, du be the cumulative aggregate inten-
sity of surviving firms, to time t. Then J = {J(s) = K(U *(s)) : s > 0} is
a Poisson process with rate parameter 1.

Proof: Let Sy =0 and S; = inf{s : J(s) > J(Sj_1)} be the jump times, in
the new time scale, of J. By Billingsley [1986], Theorem 23.1, it suffices to
show that the inter-jump times {Z; = S; — S;_1 : j > 1} are iid exponential
with parameter 1. Let T'(j) = inf{t : K(t) > j}. By construction,

T N

Tj—11=1

By the doubly-stochastic assumption, given {A\; = (A1, ..., Ang) 1 £ > 0} and
Fr;, we know that Nji1 = {N(u) = =7 N;(u + Ti) s, du, w > Ts} is a
sum of independent Poisson processes, and therefore itself a Poisson process,
with intensity ;1 (u) = S0 Ai(u + T;)1;>7, du. Thus Z; is exponential
with parameter 1.

In order to check the independence of Zi,Z,..., consider any integer
k > 1 and any bounded Borel functions fi, ..., fx. By the doubly-stochastic

property and the law of iterated expectations, applied recursively,

Elf(Z0)f(Z2) -+ fe1(Zi-1) fr(Z1)]
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= BlAZ) (%) fer(Zo 1) BLf(Ze) I\ Fr ]
= BIAZ)(Z) -+ fia(Zin)] [ () dz

_ li/ooo fi(2)e " dz.

Thus, Z,,Z,... are indeed independent, and J is a Poisson process with
parameter 1, completing the proof.

Using this result, some of the properties of the doubly-stochastic assump-
tion that we shall test are based on the following characterization.

Poisson property: For any ¢ > 0, the random variables
J(c), J(2¢) — J(c), J(3¢c) — J(2¢),. ..

are 11d Poisson with parameter c.

That is, if we divide our sample period into “bins” that each have an equal
cumulative aggregate intensity of ¢, then we can test the doubly stochastic as-
sumption by testing whether the number of defaults in each bin is distributed
Poisson with parameter c.

3 Data

Our empirical tests are based on a dataset of default probabilities and default
events, both of which are obtained from Moody’s Investor Services.

3.1 Description of the Data

The data on default probabilities consists of a monthly time-series of es-
timated conditional one-year default probabilities for public non-financial
North American firms over the period January, 1987 to October, 2000. These
default probabilities are the output of a logit model estimated from the his-
tory of firm-specific financial covariates and default times. A key covariate
is the ‘distance-to-default’ measure suggested by the Merton [1974] model,
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which is an estimate of the number of standard deviations of annual asset
growth by which assets exceed a measure of book liabilities. Other covariates
include financial statement information and Moody’s rating, when available.
Details of the model and its econometric fit and performance are described
in Sobehart, Stein, Mikityanskaya and Li [2000] and Sobehart Keenan and
Stein [2000]. This database of estimated default probabilities was part of
Moody’s RiskCalc system. (Moody’s subsequently distributed a related de-
fault probability estimate, the Moody’s KMV EDF, also based on distance
to default.)

Key advantages of this PD dataset include: (i) it is relatively compre-
hensive, and (4i) it is consistent with Moody’s database of historical defaults
over the sample period. In particular, the database, covering 1,990 firms,
includes almost all firms that have been rated by Moody’s over this period.

Using a separate database of defaults also obtained from Moody’s, we
identify a total of 241 defaults of the rated firms in our database. As the
default probabilities and defaults are from separate databases, much of the
matching is done manually by matching company names. Given that the
default probabilities have been computed by fitting to observed defaults, we
can verify the completeness of the matching by comparing the mean default
rate implied by the default probabilities to the actual number of defaults.
We discuss this in more detail in our analysis below. Appendix A provides
further details on the construction of the database.

Figure 1 shows a plot of the monthly cross-sectional sample mean of
estimated one-year conditional default probabilities. The plot shows evidence
of positive correlation of default intensities, in that the cross-sectional mean
one-year conditional probability of default ranges from 0.69% to 3.11%, and
increases markedly with the U.S. recesssion that occurred around 2000-2001.
The number of firms in our sample at a given time increases from a low of
1,081 firms at the beginning of the sample period in 1987 to a high of 1,554
firms in the second half of 1998. Figure 2 shows a plot of the number of
defaults over this period, month by month, ranging from 0 to a maximum of
8 per month, as well as a plot of the total of the estimated default intensities
of all sampled firms. We turn next to the estimation of these intensities from
one-year default probabilities.
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Number of Firms and Mean Default Probabilities over 1987-2000
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Figure 1: Cross-sectional sample mean of one-year default probabilities, and the
number of firms covered, January 1987 to October 2000.

3.2 From PDs to Intensities

In order to test the doubly-stochastic assumption using the new-time-scale
Poisson process described in Proposition above, we estimate default inten-
sities, firm by firm, from the PD data on one-year default probabilities, as
follows.

For a given firm, the default intensity process A is assumed to satisfy a
stochastic differential equation of the form

d\ = k(0 = N) dt + o\ N dz, (1)

where z is a standard Brownian motion, and where k, 6, and ¢ are positive
numbers. The doubly-stochastic assumption implies that the T-maturity
survival probability at time ¢, for a currently surviving firm, is

(T) = E lexp (— / Y du) ‘ )\t]. (@)

Cox, Ingersoll, and Ross [1985] have provided the well-known solution:

s¢(T) = A(T) exp [-MB(T)], (3)
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where

N
S

k

9yek+1)T/2 -
k+y)(e’ =1) + 27)
2¢7T — 1
(k+7) (" = 1) + 2y
v = VE2+207 (6)

Inverting equation (3), we get, for any time horizon T,

).

N

am =

&:—B&)m[

Our PD data are data are monthly observations of the one-year default
probability, 1 — s;(1). We estimate the parameters {k, 0,0}, and the default
intensities of each firm, by a method-of-moments estimator provided in Ap-
pendix B. The estimator matches the time-series behavior of )\; implied by
the Feller diffusion, using the relationship between default intensity and PD
given by (7). Maximum likelihood estimation has also been used in similar
settings, and is efficient in large samples, but is notoriously biased in small
samples. Our method-of-moments estimator is robust and computationally
efficient, usually able to fit a given firm’s default intensity model in a couple
of seconds. In any case, the fit is relatively robust to mis-specification of
the time-series model and to fitting error, as intensities are relatively close
to one-year default probabilities. Figure 2 shows the total of the estimated
intensities of all firms, as well as the monthly arrivals of defaults.

4 Goodness-of-Fit Tests

Having estimated default intensities A;; for each firm 7 and each date ¢ (with
A; taken to be constant within months), and letting 7(i) denote the default
time of name i, we let U(t) = f; 11 Aislr(;)>s ds be the total accumulative
default intensities of all surviving firms. Fixing time bins containing ¢ units
of accumulative default intensity, we then construct calendar times tg,t,
ty,...such tp = 0 and U(t;) — U(ti—1) = ¢, and let X = 0L L, <r(iy<tprs
denote the number of defaults in the k-th time bin. Figure 3 illustrates the
the time bins of size ¢ = 8 over the last five calendar years of our data set.
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Figure 2: Aggregate (across firms) default intensities and firm defaults from 1987-
2000.

Table 1 presents a comparison of the empirical and theoretical moments
of the distribution of defaults per bin, for each of several bin sizes.? The
actual bin sizes differ very slightly from the integer bin sizes shown be-
cause of daily granularity in the construction of the binning times 1, s, . . ..
The approximate match between a bin size and the associated sample mean
(X1+4- -+ Xg)/K of the number of defaults per bin offers some confirmation
that the underlying PD data are reasonably well estimated, however this is
to be expected given the within-sample nature of the estimates. For larger
bin sizes, the empirical variances are bigger than their theoretical counter-
parts under the null of correctly specified doubly-stochastic intensity model
of defaults.

Figure 4 presents the observed default frequency distribution, and the
associated theoretical Poisson distribution, for bin sizes 2 and 8. For bin
sizes 4 and 8, there is a tendency for bi-modality (two peaks), as opposed to

2Under the Poisson distribution, P(X; = k) = e;;,ck The associated moments of X

are a mean and variance of ¢, a skewness of ¢~ %, and a kurtosis of 3 + ¢~ 1.
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Intensity & Default (by bin) for Bin Size = 8
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Figure 3: Aggregate intensities and defaults by month, 1996-2000, with time bin
delimiters marked for intervals that include a total accumulated default intensity
of ¢ = 8 per bin.

the uni-model theoretical Poisson distribution associated with the hypothesis
of doubly-stochastic defaults.

4.1 Fisher’s Dispersion Test

Our first goodness-of-fit test of the hypothesis of correctly measured default
intensities and the doubly-stochastic property is Fisher’s dispersion test of
the agreement of the empirical distribution of defaults per bin, for a given
bin size ¢, to the theoretical Poisson distribution with parameter c.

Fixing the bin size ¢, a simple test of the null hypothesis that X, ..., Xg
are independent Poisson distributed variables with mean parameter c is
Fisher’s dispersion test (Cochran [1954]). Under this null,

K
wW=>
i=1

is distributed as a x? random variable with K — 1 degrees of freedom. An

S ©
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Figure 4: Comparison of the empirical and Poisson distributions of defaults for
bin sizes 2 and 8.
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Table 1: Comparison of empirical and theoretical moments for the distribution of
defaults per bin. The number of bin observations is shown in parentheses under the
bin size. The upper-row moments are those of the theoretical Poisson distribution
under the doubly-stochastic hypothesis; the lower-row moments are the empirical
counterparts.

Bin Size Mean Variance Skewness Kurtosis

2 2.00 2.00 0.71 3.50
(118)  2.04 1.89 0.71 3.52
4 4,00 4.00 0.50 3.25
(59) 4.07 4.00 0.41 2.06
6 6.00 6.00 0.41 3.17
(39) 6.08 8.07 0.41 2.19
8 8.00 8.00 0.35 312
(29) 8.14 13.12 0.26 2.07
10 10.00 10.00 0.32 3.10
(24)  10.04 15.43 0.82 2.25

outcome for W that is large relative to a x? random variable of the asso-
ciated number of degrees of freedom would cause a small p-value, meaning
a surprisingly large amount of clustering if the null hypothesis of doubly
stochastic default (and correctly specified conditional default probabilities)
applies. The p-values shown in Table 2 indicate that, at standard confidence
levels such as 95%, there is a borderline rejection of this null hypothesis for
bin sizes 6 and 10.

4.2 Upper tail tests

If defaults are more positively correlated than would be suggested by the
co-movement of intensities, then the upper tail of the empirical distribution
of defaults per bin could be fatter than that of the associated Poisson dis-
tribution. We use a Monte Carlo test of the “size” (mean or median) of the
upper quartile of the empirical distribution against the theoretical size of the
upper quartile of the Poisson distribution, as follows.

For a given bin size ¢, suppose there are K bins. We let M denote the
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Table 2: Fisher’s dispersion test for goodness of fit of the Poisson distribution
with mean equal to bin size. Under the joint hypothesis that default intensities
are correctly measured and the doubly-stochastic property, W is y2-distributed
with K — 1 degrees of freedom.

Bin Size K W p-value
2 118 110.5 0.65

4 59 58.0 0.47

6 39 512 0.07

8 29 46.0 0.02

10 24 355 0.05

sample mean of the upper quartile of the empirical distribution of distribution
of X1,...,Xg. By Monte Carlo simulation, we generated 10,000 data sets,
each consisting of K #id Poisson random variables with parameter c. We
then compute the fraction p of the simulated data sets whose sample upper-
quartile size (mean or median) is above the actual sample mean M. Under
the null hypothesis that the distribution of the actual sample is Poisson with
parameter c, the p-value would be approximately 0.5.

The sample p-values are presented in Table 3, and suggest, for larger
bin sizes, fatter upper-quartile tails than those of the theoretical Poisson
distribution. (That is, our one-sided tests implies rejection for larger bins of
the null joint hypothesis, at typical confidence levels.)

We corroborated these results with an analysis of the tail distributions
using the Pearson x? statistic for the theoretical tail distribution associated
with the corresponding theoretical Poisson distribution. The results (not
reported) imply a strong rejection of a Poisson-distributed upper-quartile
distribution at standard confidence levels.

4.3 Prahl’s Test of Clustered Defaults

Fisher’s dispersion and our tailored upper-tail test do not exploit well the
information available across all bin sizes. In this section, we apply a test
for “bursty” default arrivals due to Prahl [1999]. Prahl’s test is sensitive
to cluster-like deviations from the theoretical Poisson process. This test is
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Table 3: Tests of median and mean of the upper upper quartile of defaults per
bin, against the associated theoretical Poisson distribution. The last line in the
table, denoted “All” is the probability, under the hypothesis that time-changed
default arrivals are Poisson with parameter 1, that there exists at least one bin
size for which the mean (or median) of number of defaults per bin exceeds the
corresponding empirical mean (or median).

Bin Mean of Tails p-value  Median of Tails  p-value

Size Data Simulation Data Simulation
2 3.62 3.63 0.58  3.00 3.18 0.25
4 6.71 6.25 0.21  6.00 5.90 0.17
6 10.00 8.81 0.05  9.50 8.42 0.07
8 12.75 11.12 0.03 12.50 10.69 0.03
10 16.00 13.71 0.02 16.50 13.26 0.00
All 0.70 0.44

particularly suited for detecting clustering of defaults that may arise from
more default correlation than would be suggested by co-movement of default
intensities alone.

Prahl’s test statistic is based on the fact that, in the new time scale under
which default arrivals are those of a Poisson process (with rate parameter 1),
the inter-arrival times Z3, Zs, ... are iid exponential of mean 1. (Because of
date granularity, our mean is slightly larger than 1.) The sample moments
of these time-rescaled inter-arrival times are provided in Table 4.

Letting C* denote the sample mean of 73, ..., Z,, Prahl shows that

M=L ¥ (1—%). 9)

" (z<cy

1

is asymptotically (in n) normally distributed with mean e~' — «/n and vari-

ance (3%/n, where

a ~ 0.1839
6 ~ 0.2431.

Using our data, for n = 240 default times,

M = 0.3681
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Table 4: Selected moments of the distribution of cumulative amount of in-
tensities between successive default times. Under the joint hypothesis of
doubly-stochastic defaults and correctly measured default intensities, the dis-
tribution is exponential.

Moment Empirical FExponential

Mean 1.07 1.07
Variance 1.19 1.16
Skewness 2.13 2.00
Kurtosis 7.46 6.00

1 «
w(M) = ———=0.3671
e n
_ B
o(M) = — =0.0156.

vn

Because the test statistic M is less that one tenth of a standard deviation
from the associated asymptotic mean, this test provides no notable evidence
of default clustering in excess of that associated with the default intensities
under the doubly stochastic model.

We also report a direct Kolmogorov-Smirnov goodness-of-fit test of good-
ness of fit the exponential distribution of inter-default times in the new time
scale. The associated K-S statistic is 1.8681, for a p-value of only 0.002,
leading to a strong rejection of the joint hypothesis of corrrectly specified
conditional default probabilities and the doubly-stochastic nature of corre-
lated default. Figure 5 shows the empirical distribution of inter-default times
after scaling time change by total intensity of defaults, compared to the ex-
ponential density implied by the doubly-stochastic model.

In summary, Prahl’s test does not indicated default clustering in excess of
what would be implied by the doublly stochastic property and co-movement
of the default intensities.
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Figure 5: The empirical distribution of inter-default times after scaling time
change by total intensity of defaults, compared to the exponential density implied
by the doubly-stochastic model.

5 Testing for Independent Increments

Although all of the above tests depend in part on the independent-increments
property of Poisson processes, we will test specifically for serial correlation of
the number of defaults in successive bins. That is, under the null hypothesis
of doubly-stochastic defaults, fixing an accumulative total default intensity of
¢ per time bin, the number of defaults X, X, ... in successive bins are inde-
pendent and identically distributed. We test for independence by estimating
an auto-regressive model for X, Xs, ..., allowing for X, = A+ BX;_1 + €,
for coefficients A and B, and for iid innovations €q, €5 .... A large and pos-
itive auto-regressive coefficient B would be evidence of a failure of the null
hypothesis. Such a failure in small bins could generate the effect of fat tails in
larger bins, and could be responsible for the apparent rejections of the Pois-
son distribution in the larger bins that we reported earlier. Such a failure
could perhaps be evidence of mis-specification of the underlying PD model,
for example through missing covariates for default prediction. That is, serial
correlation of missing covariates could cause an appearanc default clustering
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Table 5: Results for AR(1) regressions of defaults of consecutive bins, for each of
a range of bin sizes.

Bin No. of A B R?
Size Bins (ta) (tg) AR(1)
2 118  1.73  0.16 0.03
(7.66) (1.72)  0.16

4 50 272 034 012
(4.83) (2.73)  0.34

6 39 420 032 0.10
(3.97) (2.01)  0.32

8 29 668 019  0.03
(3.83) (0.96)  0.18

10 24 609 039 015

(2.75) (1.93)  0.39

in excess of that implied by the doubly-stochastic property, even if in fact
the true default-time model is doubly stochastic.

Table 5 presents the results of this autocorrelation analysis. The AR(1)
coefficient is always positive, and sometimes sigificantly larger than zero at
traditional confidence levels. Indeed, the auto-regressive coefficient B tends
to be “more significant” for small bin sizes, consistent with an interpretation
of the earlier failure of the test for Poisson distributed upper tails in large
bins as potentially due to a failure of the independence assumption for small
bins, and perhaps mis-specification of the underlying intensity model.

6 Tests for Missing Default Covariates

Our lack of support for the joint hypothesis of correctly specified default
probabilities and the doubly stochastic property might be related to missing
covariates in the PD default-prediction model, a logit-based model that uses
only firm-specific covariates. In particular, this default prediction model may
be missing covariates that are common to many firms, and would therefore
reveal additional default time correlation under the doubly-stochastic model.

Prior work by Shumay [2001], Lennox [1999], Lo [1986], and Duffie and
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Ke [2003] indeed suggests that macro-economic performance is an important
explanatory variable in default preduction. Among these prior studies, Duffie
and Ke included distance to default, the key covariate in Moody’s PD model,
and found significant additional dependence of default intensities on U.S.
personal income growth, for the U.S. machinery and instruments sector for
1971 to 2001.

In this section, we explore the potential role of two macro-economic vari-
ables, United States G.D.P. growth rate (GDP) and personal income growth
rate (PI). In particular, we examine (i) whether the inclusion of these macro-
economic variables helps predict defaults in addition to the default intensities,
and if so, (i7) whether these variables can potentially explain the apparent
failure of the doubly-stochastic assumption.

We first examine whether the default intensities based on Moody’s default
intensities indeed indicate mis-specification from lack of a macro-economic
covariate. Under the null hypothesis of no mis-specification, fixing a bin size
of ¢, the number of defaults in a bin in excess of the mean, Y, = X, — ¢,
is the increment of a martingale, and should therefore be uncorrelated with
any variable in the information set available prior to the formation of the
k-th bin. Consider the regression,

Yk :Oé—i-ﬁlpfk—'—ﬂzGDPk—i-Gk, (10)

where PI, and GDP, are the growth rates of U.S. personal income and
U.S. growth in gross domestic product observed in the quarter immediately
prior to the beginning of the k-th bin. Under the null hypothesis of correct
specification, whether or not the doubly-stochastic assumption is satisfied, the
coefficients 31 and 5 are in theory equal to zero. Table 6 reports estimated
regression results for a range of bin sizes.

We report the results for the multiple regression as well as for each of
the variables separately. For bin sizes of both 2 and 10, the coefficient for
GDP growth rate is significant at the 99% level. For each of the bins, the
signs of the coefficients in the single equation regressions are negative as
one would expect under a mis-specification of missing macro-economic vari-
ables. That is, significantly more than the number of defaults predicted
by the PD model occur when GDP and personal income growth rates are
lower than normal. Overall, there appears to be at least some mild evidence
of mis-specification. Given the persistence of macro-economic performance
across time, these missing covariates may also be partly responsible for the
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presence of the apparent auto-correlation in X5, X, ... that we reported ear-
lier. One may therefore wish to consider whether any excess clustering of
defaults (beyond that implied by the doubly-stochastic property) is related
to this potential mis-specification of the default intensity processes. With
the presently available data, we are unable to disentangle the role of miss-
ing covariates from any potential for contagion for the apparently fat tailed
distribution of defaults per bin.

Table 7 specifically tests whether the excess upper quartile defaults (de-
fined as the mean of the upper quartile less the mean of the upper quartile for
the Poisson distribution of parameter ¢) examined previously in Table 3 are
correlated with the personal income and GDP growth rates. We report two
sets of regressions, the first set based on the prior period’s macro-economic
variables and the second set based on the growth rates observed within the
bin-period.?

As for these upper-tail-size regressions, the estimated coefficients for PI
and GDP based on the prior period’s growth rates are not significant at
typical confidence levels. The coefficient for current-period PI for bin-size 4,
however, is significant at typical confidence levels, and has a sign consistent
with the presence of mis-specification by failure to include macro-economic
performance variables in prediction of default.

7 Concluding Comments

Defaults cluster in time both because firms’ default intensity processes are
correlated and also perhaps because, even after conditioning on these inten-
sities, default occurrence is correlated through additional channels such as
contagion and frailty. The latter channels are not admitted in a doubly-
stochastic setting. By a time change that reduces the process of cumulative
defaults to a standard Poisson process, we provide test statistics of the joint
hypothesis that default intensities are correctly measured and the doubly-
stochastic property. We are particularly interested in whether defaults are
indeed independent given intensities. We believe this to be the first such
empirical test. For several types of tests, we reject (at traditional confidence
levels) the null of correctly measured intensities and the doubly-stochastic

3The within-period growth rates are computed by compounding over the daily growth
rates that are consistent with the reported quarterly growth rates.
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Table 6: Macroeconomic Variables and Default Intensities. For each bin size c,
OLS-estimated coefficients are reported for regression of the number of defaults
in excess of the mean, Y, = X, — ¢, on the previous quarter’s personal income
growth rate and the GDP growth rate. The number of observations is the number
of bins of size ¢. Standard errors are corrected for heteroskedasticity; t-statistics
are reported in parentheses.

Bin Size | No. Bins | Intercept | Personal Income | GDP R?
(%)
2 118 0.10 -11.15 0.37
(0.58) (-0.65)
0.49 -14.13 | 5.65
(2.71) (-3.03)
0.46 27.37 -19.74 | 6.98
(2.45) (1.33) (-3.35)
4 59 0.25 -25.39 0.93
(0.56) (-0.63)
0.76 -21.16 | 5.74
(1.53) (-1.76)
0.74 18.55 -24.85 | 6.07
(1.43) (0.41) (-1.75)
6 39 0.53 -56.34 2.14
(0.69) (-0.73)
1.26 -34.38 | 7.76
(1.45) (-1.58)
1.24 6.37 -35.53 | 7.78
(1.37) (0.08) (-1.49)
8 29 1.06 -28.35 2.93
(0.74) (-0.76)
0.13 -2.65 | 0.00
(0.12) (-0.03)
0.97 65.44 -42.16 | 4.28
(0.67) (0.59) (-0.91)
10 24 1.15 -127.60 6.10
(0.78) (-0.92)
2.62 -71.44 | 18.99
(1.76) (-1.97)
2.57 44.67 -81.00 | 19.39
(1.61) (0.37) (-2.53)
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Table 7: Upper-tail regressions. For each bin size ¢, OLS-estimated coefficients
are shown for regression of the number of defaults observed in the upper quartile
less the mean of the upper quartile of the theoretical distribution (with Poisson
parameter equal to the bin size) on the previous and current personal income (PI)
and GDP growth rates. The number of observations is the number K of bins.
Standard errors are corrected for heteroskedasticity; t-statistics are reported in
parentheses.

Bin Size | K | Intercept | Previous Qtr PI | Previous Qtr GDP | R?
(%)
2 40 -0.05 5.23 0.35
(-0.71) (0.49)
-0.10 3.47 1.26
(-0.75) (0.84)
-0.09 -7.43 5.54 1.52
(-0.71) (-0.48) (0.89)
4 17 0.64 -25.07 10.78
(2.42) (-1.53)
0.67 -8.30 9.64
(2.52) (-1.48)
0.67 -16.99 -3.52 11.39
(2.42) (-0.67) (-0.39)
Bin Size | K | Intercept | Current Bin PI | Current Bin GDP R?
(%)
2 40 -0.00 -0.94 0.01
(-0.03) (-0.09)
-0.09 3.13 0.97
(-0.63) (0.59)
-0.08 -20.53 8.66 2.90
(-0.58) (-0.65) (0.71)
4 17 0.69 -32.96 15.71
(2.86) (-2.85)
0.55 -4.26 2.02
(2.42) (-0.68)
0.55 -72.94 17.45 26.50
(2.56) (-2.70) (1.60)
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property, at traditional confidence levels. We present some evidence, how-
ever, of potential mis-specification of these default probability estimates, in
that they do not include business-cycle covariates that may offer some predic-
tive power for default above and beyond the role of firm-specific covariates.
Moreover, there is at best weak evidence of highly clustered defaults, after
controlling for co-movement in intensities by a time change.

The economic impact of a failure of the doubly-stochastic property for
the risk management of credit portfolios is of critical interest to investors
and bank regulators. For example, the level of economic capital necessary to
support levered portfolios at high confidence levels is heavily dependent on
the degree to which this often-assumed property actually applies. This is es-
pecially the case in light of the upcoming changes in bank capital regulations
under the proposed Basel I accord on regulatory capital (see Gordy [2003],
Allen and Saunders [2003], and Kayshap and Stein [2004]).
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Appendices

A Moody’s Data on Defaults

This appendix provides some details of the creation of the data set used in this
paper. Our source of data are two separate databases, one containing default
probabilities and the other containing information of defaults. For the empirical
work in this paper, we need to account for all the defaults that occur over our
sample of firms for which we have PDs. Below, we describe how we link the two
datasets, and the set of defaults that results from our procedures.

In its default database, Moody’s records 628 US and Canadian defaults of
non-financial firms in the period 1/87 to 10/2000. A few firms default twice over
this time period (Grand Union defaulted three times). Moody’s records defaults
only for firms that it has rated at some point in the firm’s history. The defaults
in the database are indexed by Moody’s Issuer Number (MIN). Although some of
these firms are linked to a Cusip or a Bloomberg ticker, many of the firms do not
have a link to any external identifier. However, the name of the defaulted firm is
provided, as well as some information regarding the nature of default. Moody’s
database of default probabilities is created using accounting and equity price data,
and is limited to firms that had available data in the sample period. Our sample
period is January 1987 to October 2000. This data is indexed by the Gvkey.

The defaulted firms that have a Cusip are matched to the PD database using
the Gvkey-Cusip link of the combined Compustat-CRSP database. For the re-
maining firms, we do a manual match using the company name. After both these
matches, many firms remain without a Gvkey. Some of these firms do not have
Gvkeys because they are either subsidiaries, or related to the primary public firm
that has defaulted. For example, on 7 April 1987, Texaco Capital, Texaco Cap-
ital N.V., Texaco Corporation and Texaco Operations Europe are listed as four
separate defaults. Of these, only Texaco Corporation is counted in our sample.

The number of defaults that are available for our empirical work is farther
reduced as many firms were not rated by Moody’s according to our PD database
over the period 1987-2000. The final dataset, corresponding to the default of firms
that are present in the PD database over our sample period, contains 241 incidents
of defaults among a total of 1,990 firms and over 216,859 firm-months of data.
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B Estimation of Default Intensities from PDs

This appendix provides the algorithm for our method-of-moments estimator of
default intensities.

1. First, we obtain starting coefficient estimates values from the regression, for
h=1/12,

st+n(1) — s¢(1) = a+ Bs(1) + ey, (11)

where « and (3 are the ordinary-least-squares (OLS) estimators and e; de-

notes the residual. From this regression, we get initial estimates of the three
parameters as:

B
ko= -2 (12)
o = —% (13)
;s = Y (14)

3

where V' (e;) denotes the sample standard deviation of the residual e;.

2. Given starting values of {k, 6, o}, we obtain an initial estimate of the default
intensity A, for each observation time ¢, using equation (7).

3. Next, we estimate by OLS,
)‘t—l—h — )\t =a+ b)\t + wy. (15)

New parameter estimates are then given by

e

b A a Wy )
Z h=_= =V 16
h7 b7 g ( /—h)\t ) ( )

where, again, V(-) denotes sample standard deviation.*

4. Given these updated estimates of the parameters {k,0,0}, we return to
Steps 2 and 3, and iterate to numerical convergence.

“4In the current version of our results, we use V (w;/ V éh) in place of the sample standard
deviation shown in (16), although our tests indicate that this causes minimal distortion in
the estimated intensities.
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