Information Acquisition in a Limit Order Market

Ron Goettler, Christine Parlour, Uday Rajan Carnegie Mellon & Michigan

- How valuable is information in a financial market?
- In what way are markets informationally efficient?
- <u>Hirshleifer effect</u>: prices that reveal too much can destroy risk-sharing gains.
 - Information is not socially useful.
- Strategic Models: adverse selection deters trade
 - Gains to trade are fixed.
- How traders benefit from private information determines if they acquire it
 - Grossman-Stiglitz (1980) paradox: if prices are fully revealing, no one will acquire costly information.
- How investors trade on private information affects informationally efficiency
- We address these issues (numerically) in a limit order market.
 - How is information incorporated into market outcomes?
 - What effect does information acquisition have on equilibrium outcomes?
 - Which investors acquire costly information? and how does it affect their trading strategies?

What is information?

- Different types are valuable:
 - Information about the book (trading opportunities)
 - Publically available information earnings announcements and news.
 - Private information (about idiosyncratic shocks) illegal to trade on \implies appears in other prices.
- Information substitutes, and seen by a lot of traders

Key Results

- Informed investors tend to supply (rather than demand) liquidity.
- For a given acquisition cost, there are multiple equilibria, in which different sets of investors are informed.
 - Uninformed agents change strategies based on how many agents are informed.
 - Equilibria can be Pareto-ranked.
- Prisoner's dilemma: there exists an equilibrium such that:
 - (i) it is a best response for all agents to acquire information.
 - (ii) all agents are worse off than if no agent had acquired information.

Literature Review

- GE rational expectations models:
 - Grossman (1976)
 - Grossman and Stiglitz (1980)
 - Admati and Pfleiderer (1987)
 - Ausubel (1990)
- Noisy results:
 - Admati (1985) demonstrates that intuition obtained from models with single risky asset may not go through with multiple risky assets.
 - Barlevy and Veronesi (2000) show that CARA-normal phenomena may be reversed in more general models.
- Microstructure models with strategic traders:
 - Kyle (1985)
 - Taub, Bernhardt, and Seiler (2004)
 - Holden and Subrahmanyam (1992)
 - Back, Cao and Willard (2000)
 - Mendelson and Tunca (2004).
- Market maker sets prices equal to expected value of asset, conditional on all public information.
- Dynamic microstructure models.
 - Foucault, Kadan and Kandel (2003), Rosu (2004), Goettler, Parlour and Rajan (2004)

Model

- Market for single financial asset.
- Continuous time
- Poisson arrival (rate λ) process for new traders.
- Traders can post orders at discrete prices p^0, p^1, \cdots .
- At each t, each price has a backlog of outstanding orders, ℓ_t^i .
 - Collection of orders defines the limit order book

 $- L_t = \{\ell_t^0, \ell_t^1, \cdots \}.$

- Asset has a common value v_t (present value of future cash flows)
 - Innovation process has Poisson distribution with parameter μ .
 - Probability $\frac{1}{2}$ of v increasing/decreasing by 1 tick.
- Each trader has a type $\theta = \{\rho, \beta, I\}.$
- $\rho = \text{continuous discount rate.}$
 - Not the time value of money, but a motive to trade early rather than later.
- $\beta =$ private value to trade.
- $I = \text{information type} \in \{0, 1\}$: uninformed or informed.
 - Endogenously chosen in equilibrium
 - Informed traders observe contemporaneous value of v_t .
 - Uninformed traders observe v_t with a lag.
- At time t, value of 1 share to agent θ is $v_t + \beta$.

Trading

- On arrival at the market, a trader can submit one of:
 - 1. market order (order that executes against a previously posted limit order)
 - 2. a limit order (order to buy or sell at a particular price p^{j})
 - 3. no order.
- Order may be either a buy or a sell.
 - Each trader allowed to trade one share of the asset (buy or sell is endogenous).
- If no immediate trade, trader stochastically re-enters the market. Reentry time drawn from Poisson process.
- On re-entry, can change his order, or leave it in place.
- Trader leaves the market for ever after execution.

The sorts of things that can happen

• An informed trader enters for the first time at time t = 34.2, for the first time when $v_t = 37.5$, and L_t given by:

Price	Depth	
39	-2	
38	-2	$\leftarrow \textit{Ask}$
37	3	$\leftarrow \textit{Bid}$
36	4	

- Suppose he places a buy order at 37; this is 4th in the buy queue at this price.
- At some future random time, he re-enters the market (say this is time t = 45).
- Before he re-enters, the following events may happen:
 - 1. His priority in the queue at p = 37 improves.
 - 2. He executes at p = 37—another trader submits a market sell that executes against his order.
 - 3. His overall price priority decreases (e.g., the Bid moves to 38).
 - 4. v changes, to (say) 33.5.
- Execution time is random: If he executes before re-entry, he earns his payoff and leaves the market.
- Market fundamentals are random: v may change before execution.
- If no execution, when he re-enters the market, he examines status of his old order, and either leaves it in place, or submits a new order.

- Consider an informed trader who re-enters the market at time t.
- State space = (s, a).
- $s = \text{market state} = (L_t, v_t).$
- a = (p, q, x) = status of previous order.
- p = price, q = position in queue,
- x = direction of order (1 = buy, -1 = sell, 0 = no previous order).
- Uninformed investor has expanded state space.
- Sees $s = (L_t, v_{t-\tau})$ at time t, knows a.
- Also sees net buy/sell transactions in the interval $[t-\tau,t].$
- Forms an updated belief of v_t given observables.
- Suppose a trader j first enters at time τ , and buys a share at price p^i at time t.
- Overall payoff from this $= e^{-\rho(t-\tau)} (\beta_j + v_t p^i).$
- Traders are risk-neutral, maximize expected payoff.
 - Since they can re-enter, solve a dynamic program to decide optimal order.

• The Bellman equation, $J(s, a \mid \theta)$, is thus:

$$\max_{\tilde{a}\in\mathcal{A}(\theta,s,a)} \left[\int_{w=0}^{\infty} \left\{ \int_{\tau=0}^{w} \int_{v_{\tau}=-\infty}^{\infty} e^{-\rho\tau} \tilde{x}(\beta+v_{\tau}-\tilde{p})\phi(\tau,v_{\tau};s,\tilde{a})f_{v}(v_{\tau}\mid v,\tau)dv_{\tau}d\tau + (1-F_{\widetilde{T}}(w\mid s,\tilde{a}))e^{-\rho w} \int_{(s',\tilde{a'})\in\mathcal{S}\times\mathcal{A}} J(s',\tilde{a'}\mid\theta)h(s',\tilde{a'}\mid s,\tilde{a},w)d(s',\tilde{a'}) \right\}$$

Existence

- Restrict action space to be k ticks on either side of belief about v (in practice, no orders are submitted further away).
- Finite action space, countable state space (changes in state space happen after discrete intervals).
- Existence of Markov-perfect equilibrium follows from standard results (e.g. Reider, 1979).

Solving for equilibrium

- Numerical solution, along the lines of Pakes and McGuire (2001).
- Directly solve for value of each state.
- Usual guess-and-update procedure.
- To ensure Perfection: while solving, allow for small probability of trembles to update utilities of actions not taken.
- Take tremble probability to zero as we converge to solution.
- Only numeric uniqueness.

Usual convergence tests:

- 1. Den Haan & Marcet (1994): χ^2 test on (believed value actual value)².
- 2. Pakes and McGuire (2001):
 - (i) Mean absolute error < 0.01
 - (ii) Correlation between beliefs and actuals > 0.99.

Simulation

Parametrization

- 1. Rate of new trader arrival = 1 trader per unit of time.
- 2. Re-entry interval = 6 units of time, on average
- 3. On average, v changes every 12 units of time.
- 4. v lies between ticks—cannot trade at v.
- 5. $\rho = 0.05$.
- 6. β distribution:

β	-4	-2	-0.1	0.1	2	4
Probability	0.2	0.2	0.1	0.1	0.2	0.2

Analysis

- Compare market outcomes across different information structures and then endogenize information acquisition.
 - 1. All agents uninformed about v (i.e., observe with 24-trader lag).
 - 2. Agents with $|\beta| = 0.1$ informed about current v
 - 3. Agents with $|\beta| \in \{0.1, 2\}$ informed about current v
 - 4. All agents informed about current v.
- To calculate value of information, determine payoff to agents who deviate in information acquisition, and play optimally thereafter.

Order Placement Strategy

• On average, the $|\beta|=0.1$ agents take the longest to trade.

- Enter market most often.

• With asymmetric information, low $|\beta|$ agents take longer to execute.

	All Informed	$ \beta = 0.1$ Informed		
β	Equilibrium	Equilibrium	Deviation	
type	Entries	Entries	Entries	
0.1	2.08	3.40	4.47	
2	1.75	1.82	2.14	
4	1.28	1.25	1.47	

Table 1: Average number of market entries by type.

• Informed agents submit fewer market orders and uninformed agents submit more market orders

	All Informed		eta =0.1 Informed			
β	Equilibrium		Equilibrium		Deviation	
type	Market	Limit	Market	Limit	Market	Limit
0.1	0.56	0.98	0.38	1.76	0.63	2.41
2	0.40	0.78	0.44	0.88	0.46	1.00
4	0.57	0.51	0.62	0.48	0.60	0.56

Table 2: Optimal Order Submissions Per Trader

• Uninformed traders submit more conservative limit orders (relative to common value)

		Limit Buys			Lir	nit Sel	ls
Informed	β	above v	= v	< v	below v	= v	> v
	0.1	0.00	0.00	100.00	0.00	0.00	100.00
All	2	50.04	0.00	49.96	0.00	0.00	100.00
	4	77.77	0.00	22.23	0.00	0.00	0.00
	0.1	0.00	0.00	100.00	0.00	0.00	100.00
$ \beta = 0.1$	2	40.25	0.00	59.75	4.41	0.00	95.59
	4	59.55	0.00	40.45	0.00	0.00	0.00

Note: Numbers in table are % of total limit orders for each β .

Table 3: Submission of Limit orders relative to v

- Uninformed traders suffer from adverse selection (less favorable terms of trade)
- For market orders:

β	All	$ \beta = 0.1$
type	Informed	Informed
0.1	-0.69	-1.10
2	-0.19	0.10
4	0.10	0.38

Table 4: Difference between the transaction price and consensus value by β type

Informational Efficiency

- Information here is potentially public, so we look at semi-strong form efficiency.
- Dynamic model; in addition to price, other observables also convey information.
 - Quotes versus transaction prices.
- Standard deviation of price (relative to v) decreases with number informed.
- Mean is zero (due to symmetry of model).

Measure		All Informed	$ \beta \in \{0.1, 2\}$	$ \beta = 0.1$	All Uninformed
			Informed	Informed	
$\widetilde{p} = p_\tau - v_\tau$	Std. Dev.	0.748	0.903	1.169	1.543
$\Delta \widetilde{p} = \widetilde{p}_{\tau+1} - \widetilde{p}_{\tau}$	Std Dev.	0.616	0.771	0.807	0.745

Table 5: Transaction Frequency and the difference between transactionprice and the common value

• Prices do reflect information.

Speed of incorporation of information into price

• Consider isolated information events (changes in v).

Figure 1: Response of Transaction Price after Information Event

- Consider the first time (after information event) at which |p-v| = 0.5.
 - Again, decreases in number informed.

	All Informed	$ \beta \in \{2, 0.1\}$ Informed	$ \beta = 0.1$ Informed	Uninformed
Mean	2.503	2.727	3.762	5.550
Max	29.570	36.203	32.254	32.155

Table 6:	First	time	before	p-v	= 0.5
----------	-------	-----------------------	--------	-----	-------

• (Rate of transactions is the same across models, depends almost entirely on rate of new trader arrival). Beliefs of Uninformed Traders

- Consider absolute value of E(v|observables) v for uninformed traders.
- Again decreases with number of informed traders.

All	$ \beta \in \{2, 0.1\}$	$ \beta = 0.1$	All
Informed	Informed	Informed	Uninformed
0.39	0.44	0.65	1.04

Table 7: Absolute Difference between Belief of Uninformed Traders andTrue Common Value

- Information does get incorporated into price and market outcomes.
- Informed agents increase submission of limit orders.

Endogenous information acquisition

- Demand for information depends on improvement in welfare due to information.
- Varies by (i) β of trader

(ii) strategies of other investors.

- Consider gross (i.e., without considering information acquisition cost) welfare with and without information.
- Look at (consumer surplus if informed consumer surplus if uninformed).

β type	All Informed	$ \beta \in \{0.1, 2\}$ Informed	$ \beta = 0.1$ Informed	All Uninformed
0.1	0.190	0.266	0.384	0.625
2	0.183	0.232	0.149	0.208
4	0.151	0.054	0.071	0.028

Table 8: Welfare gain to being informed

Observation 1 If any agent acquires information, then $|\beta| = 0.1$ acquires information.

• As expected, speculators have the greatest incentive to acquire information. **Observation 2** The following are perfect Bayesian equilibria in the information acquisition game:

 $c \in \begin{cases} [0, 0.15] & \text{everyone acquires information} \\ [0.07, 0.22] & |\beta| \in \{0.1, 2\} \text{ acquire information} \\ [0.19, 0.34] & |\beta| = 0.1 \text{ acquires information} \\ [0.62, \infty] & \text{no one acquires information} \end{cases}$

• Possibility of multiple equilibria—ranges overlap.

Observation 3 For $c \in [0.07, 0.14]$ there are three equilibria: (i) $|\beta| \in \{0.1, 2\}$ acquire information (ii) Only $|\beta| = 0.1$ acquire information (ii)All agents acquire information.

Further, for $c \in [0.19, 0.22]$, there are two equilibria (i) $|\beta| \in \{0.1, 2\}$ acquire information (ii) $|\beta| = 0.1$ acquires information. Welfare ranking of equilibria

- Allocative efficiency? Optimal incentive compatible mechanism is an open question.
- Consider two benchmarks for planner: (i) Frictionless benchmark W_f .
 - Suppose all agents in market at the same time.
 - Consummate all trades at price = v.
 - Agents with $\beta < 0$ are sellers, $\beta > 0$ are buyers.
 - Clearly IC.
 - Ignores all frictions.

(ii) Naïve IC mechanism (W_ℓ)

- LIFO rule for trading.
- All trades occur at price = v.
- Respects discounting, trader arrival sequence.
- Also IC.

• Market does better than naïve mechanism, not as well as upper bound.

Frictionless:	LIFO:	All	$ \beta = \{0.1, 2\}$	$ \beta = 0.1$	All
W_f	W_ℓ	Informed	Informed	Informed	Uninformed
2.42	2.09	2.19	2.17	2.12	2.18

Table 9:	Welfare	\mathbf{per}	trader,	and	benchmarks
----------	---------	----------------	---------	-----	------------

- Market is clearly IC (since it is an equilibrium).
 - High $|\beta|$ types have an incentive to reveal themselves and try to trade early.

β	Average time to execution
0.1	6.46
2	4.45
4	1.60

Table 10: Time to execution when all agents are informed

Welfare by trader type

• Payoffs net of information acquisition cost.

β	All	$ \beta \in \{0.1, 2\}$	$ \beta = 0.1$	All
type	Informed	Informed	Informed	Uninformed
0.1	0.518 - c	0.579 - c	0.689 - c	0.472
2	1.694 - c	1.704 - c	1.582	1.676
4	3.483 - c	3.388	3.388	3.469

Table 11: Net Payoffs for different information acquisition equilibria

- For some range of costs, all traders worse off when all informed than when all uninformed.
- However, it is an equilibrium to acquire information.

• For the following cost ranges:

(i) it is an equilibrium for some subset of agents to be informed

(ii) all agents prefer (have higher welfare in) the regime in which no agent is informed.

Equilibrium	Cost Range	
All Informed	0.04 < c < 0.15	
$ \beta \in \{0.1, 2\}$ Acquire information	0.10 < c < 0.22	
0.1 informed	0.21 < c < 0.34	

Table 12: Cost ranges in which too much information is acquired in equilibrium.

- Unlike the Hirshleifer effect, there is no change in the gains to trade as a result of information acquisition.
- Gains to trade depend solely on the β distribution.
- However, adverse selection due to information acquisition by others results in less favorable split of gains to trade.
- If information is costless, all agents are better off when all agents are informed, than when no agent is informed.

Conclusion

- Endogenous information acquisition equilibria exist.
- Information does find its way into market observables.
 - Characterize the time path
- Informed agents tend to submit more limit orders.
 - Take longer to execute
- Information may lead to all agents being worse off in equilibrium.