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Outline of Clarendon Lectures

1. Corporate default probabilities.

2. Pricing corporate default risk.

3. Default correlation.
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Default Correlation

A. Overview

B. Copula models of default correlation.

C. Correlated default intensities.

D. Testing for doubly stochastic defaults.

E. Collateralized debt obligation modeling.
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A. Overview

• There is currently concern about the pricing and risk

management of products exposed to default correlation.

• Copula implementations treat default-event correlation only,

and do not allow joint treatment of spread and default risk.

• Stochastic intensity models typically assume that default

correlation is fully captured by intensity correlation, under the

“doubly-stochastic” assumption.

• The doubly-stochastic assumption can be tested, given

firm-level default probability estimates.

• Meanwhile, CDO and CDX-tranche pricing and rating is weak,

and poorly integrated with spread-risk prices and risk analysis.
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Default Event Correlation
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Figure 1: Default Event Correlation = 4.3%.
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Figure 2: Empirical one-Year default-event correlations, average

within sectors. Source: Moody’s, 2000.
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Example: CDS Index (CDX) Products

• CDS index products allow quick access to many (usually 100)

names in one un-funded structured credit product.

• Entering as a seller of protection has the effect of entering 100

default swaps as a seller of protection on each.

• Trac-X and iBoxx, the two main competitors, merged, and

CDX is the benchmark credit index.
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Figure 3: Trac-X NA, investment and high-yield 100-firm indices. Source:

Morgan Stanley.
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Figure 4: Histogram of underlying CDS rates, Trac-X NA high-yield, 100 firms,

October 2, 2003. Source: Morgan Stanley.
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Figure 5: Tranched Trac-X NA Attachment Points and Ratings
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Table 1: TriBoxx Tranche PV01 Estimates. February, 2004. Source:

Citigroup.

Mid-Spread One-Year Carry PV01 Efficiency

(bp) (MM) (MM) PV01/Carry

iBoxx 56 56 5.6 0.10

9%-12% 53 53 12.2 0.23

6%-9% 113 113 24.6 0.22

3%-6% 343 343 70.0 0.20

0%-3% 1,765 1,765 84.7 0.05
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B. Copulas

• Copulas specify correlation for random variables, such as

default times, whose individual probability distributions have

already been determined.

• Copulas are especially convenient for simulation.

• We will explain some severe limitations to the copula

approaches that have been applied to default correlation.
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Figure 6: Simulating Default Time by Inverse CDF Method
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Figure 7: Copula-based simulation of correlated default times
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Let Ui = N(Xi).

Simulated Correlated Normals
(X1; : : : ; Xn) by Cholesky.

Feed (U1; : : : ; Un) to
inverse CDF default time simulation.

Figure 8: Using Correlated Gaussians to Simulate Correlated Uni-

forms. Here, N(x) is the probability that a standard-normal is less

than x.

Darrell Duffie, Stanford University, June 2004



Copulas don’t handle mark to market risk

• Let Vi(t) denote the market value of bond i at time t.

• We will want to calculate P (V1(t) + · · · + Vn(t) ≤ k), or the

price of an option on V1(t) + · · · + Vn(t).

• The joint revaluation risk should include both correlated

default and correlated uncertain changes in spreads.

• Nobody has yet cracked this with a copula.

• Absent this, how can copula-based modeling be integrated into

standard basket-product pricing and risk-management?
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Copulas for Default Times: Advantages

• Data flexibility. For example, with 500 names to track, one

can model all individual models of default risk, one at a time,

then, for each new application involving a small subset of

names, one can layer in correlation with the copula.

• Simulation. Rather than laboriously simulating each name’s

default intensity path and then drawing defaults, one can

directly simulate default times from survival functions.

• Contagion. Copulas easily introduce contagion effects.

• Generality: By Sklar’s Theorem, there is a copula to go with

any joint distribution of random variables, so nothing is ruled

out.
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C. Correlated Default Intensities

• Doubly-stochastic: Conditional on the path of the default

intensity processes λ1, . . . , λn of the n names, the respective

default times τ1, . . . , τn are independent Poisson arrivals at

these intensities.

• This means that the only source of default correlation is

correlation in the default intensities.
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Figure 9: Sector-average intensities (Source: Moody’s PD data).
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Additional Channels of Default Correlation

The doubly-stochastic property rules out:

• Frailty: Incompletely observed default covariates. (Recent

examples may include Enron and Worldcom.)

• Contagion: The default of one firm causes the default of

another. (Example: Penn Central, 1971.)
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Figure 10: Distribution of Correlations of weekly % changes in Moodys KMV

EDFs, Oil-Gas sector.
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Figure 11: Distribution of Correlations of weekly % changes in Credit Default

Swap Rates, Oil-Gas sector. (CIBC data)
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Figure 12: Five-year default-event correlations implied by doubly-

stochastic default intensity estimates of Duffie and Wang (2004).
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D. Testing for Doubly Stochastic Defaults

• The doubly stochastic property rules out contagion and others

sources of correlation that are not captured by correlation in

default intensity processes.

• Work with Sanjiv Das and Nikunj Kapadia provides a test of

the doubly stochastic property.

• Goodness-of-fit tests indicate a rejection of the

doubly-stochastic property if the measured default intensities

are correct, but there is evidence that rejection may be due to

missing macro-economic default covariates.

• Tests show no significant evidence of default clustering in

excess of that implied by intensity correlation.
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Figure 13: Aggregate default intensity and default incidence, 1987 to 2001.

(Moody’s data, from joint work with Sanjiv Das and Nikunj Kapadia).
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Figure 14: Breaking cumulative aggregate default intensity into time bins of

size 8. Theoretical mean defaults per bin: 8. Actual mean 8.13. (Joint work

with Sanjiv Das and Nikunj Kapadia).
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Testable property of doubly stochastic

• Let λ(t) =
∑

{i:τ(i)>t} λi(t) be the sum of the intensities of all

alive firms at t.

• Let K(t) = #{i : τ(i) ≤ t} be the number of defaults by time t.

• Consider the time change U(t) defined by

dU(t)

dt
= λ(t).

• For each s ∈ [0,∞), let J(s) = K(U−1(s)) be the number of

defaults by new time s.

• The doubly-stochastic property implies that J is a Poisson

process with rate parameter 1.
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Figure 15: Empirical and Poisson distributions of defaults per size-2 bin. (Joint

work with Sanjiv Das and Nikunj Kapadia).
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Figure 16: Empirical and Poisson distributions of defaults per size-8 bin. (Joint

work with Sanjiv Das and Nikunj Kapadia).
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Figure 17: Empirical and exponential distributions of cumulative intensities

between defaults (Joint work with Sanjiv Das and Nikunj Kapadia).
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E. Collateralized Debt Obligations

• Useful for regulatory bank capital relief.

• Mitigate illiquidty.

• Current practice for pricing and rating is primitive.

• Current pricing framework does not integrate with models of

credit-spread risk.
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Figure 18: Nations Bank 1997 CLO Tranches
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Table 2: CDO Spreads (basis points). Source: Citigroup, Feb., 2004.

Collateral AAA (Sr) AAA (Jr) AA A BBB BB

HY CBO NA 50-55 120-130 185-200 350-400 750-850

IG CBO NA 50-55 120-130 195-205 375-425 800-900

HY CLO 40 45-48 95-105 155-165 270-280 650-675

ABS CDO 45 43-48 115-125 170-180 315-330 650-700

TRUPS 55–58 55-58 120-125 165-170 280-300 550-650
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Pricing Example

• Collateral: 100 ten-year straight coupon bonds.

• Default Modeling: jump-diffusion intensities with correlation.

• Recovery: independent and uniform [0, 100].

• 3 tranches: senior bond, mezzanine bond, junior residual.

• Simple prioritization schemes: uniform and fast.
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Correlated Multi-Issuer Intensities

• Risk-neutral default intensities λ∗
1, . . . , λ

∗
100.

• λ∗
i = Xc + Xi, common factor Xc, name-specific factor Xi.

• This allows us to hold the issuer-level default-time distribution

fixed and vary correlation by adjusting the parameters of Xi

and Xc.

• We vary jumpiness of intensities (spreads), holding spreads and

vols constant.

• Base case has mean of 2 jumps per 10 years, mean jump in

spread of 500 basis points.
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Figure 19: Zero-Coupon Yield Spreads, With and Without Diffusion
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Coupon Rates and Tranches

• Risk-free rate 6%.

• Par coupon spread on collateral approximately 250 basis points.

• A Tranche: Face Value 92.5, par spread of 18 basis points.

• B Tranche: Face Value 5.0, par spread of 710 basis points.

• Equity residual: Base-case value of 2.5.
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Table 3: Conditional probabilities of default and diversity scores

corr(λ∗
i , λ∗

j ) = 0.1 corr(λ∗
i , λ∗

j ) = 0.5 corr(λ∗
i , λ∗

j ) = 0.9

Set pi p i | j divers. p i | j divers. p i | j divers.

1 0.386 0.393 58.5 0.420 21.8 0.449 13.2

2 0.386 0.393 59.1 0.420 22.2 0.447 13.5

3 0.386 0.392 63.3 0.414 25.2 0.437 15.8

4 0.386 0.393 56.7 0.423 20.5 0.454 12.4
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