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Abstract: This paper provides an analysis of the asymptotic properties of
Pareto optimal consumption allocations in a stochastic general equilibrium
model with heterogeneous consumers. In particular we investigate the market
selection hypothesis, that markets favor traders with more accurate beliefs.
We show that in any Pareto optimal allocation whether each consumer van-
ishes or survives is determined entirely by discount factors and beliefs. Since
equilibrium allocations in economies with complete markets are Pareto opti-
mal, our results characterize the limit behavior of these economies. We show
that, all else equal, the market selects for consumers who use Bayesian learn-
ing with the truth in the support of their prior and selects among Bayesians
according to the size of their parameter space. Finally, we show that in
economies with incomplete markets these conclusions may not hold. With
incomplete markets payoff functions can matter for long run survival, and
the market selection hypothesis fails.
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1 Introduction

General equilibrium models of macroeconomic and financial phenomena com-
monly assume that traders maximize expected utility with rational, which
is to say, correct, beliefs. The expected utility hypothesis places few restric-
tions on traders’ behavior in the absence of rational expectations, and so
much attention has been paid to the validity of assuming accurate beliefs.
However, an adequate explanation of how traders come to correctly forecast
endogenous equilibrium rates of return is lacking.

Two explanations have been offered. One proposes that correct be-
liefs can be learned. That is, rational expectations are stable steady states
of learning dynamics — Bayesian or otherwise. In our view learning can-
not provide a satisfactory foundation for rational expectations. In models
where learning works, the learning rule is tightly coupled to the economy in
question. Positive results are delicate. Robust results are mostly negative.
See Blume, Bray, and Easley (1982), Blume and Easley (1998) and Marimon
(1997) for more on learning and its limits.

The other explanation posits “natural selection” in market dynamics.
The market selection hypothesis, that markets favor rational traders over irra-
tional traders, has a long tradition in economic analysis. Alchian (1950) and
Friedman (1953) believed that market selection pressure would eventually re-
sult in behavior consistent with maximization; those who behave irrationally
will be driven out of the market by those who behave as if they are rational.
Cootner (1964) and Fama (1965) argued that in financial markets, investors
with incorrect beliefs will lose their money to those with more accurate as-
sessments, and will eventually vanish from the market. Thus in the long run
prices are determined by traders with rational expectations. This argument
sounds plausible, but until recently there has been no careful analysis of the
market selection hypothesis; that wealth dynamics would select for expected
utility maximizers, or, within the class of expected utility maximizers, select
for those with rational expectations.

In two provocative papers, DeLong, Shleifer, Summers and Waldman
(1990, 1991) undertook a formal analysis of the wealth flows between ra-
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tional and irrational traders. DeLong, Shleifer, Summers, and Waldmann
(1990) shows, in an overlapping generations model, that noise traders can
earn higher expected returns. But survival is not determined by expected
returns, so this analysis does not address the selection question. DeLong,
Shleifer, Summers, and Waldmann (1991) argues that irrationally overconfi-
dent noise traders can come to dominate an asset market in which prices are
set exogenously; a claim that contradicts Alchian’s and Friedman’s intuition.
Blume and Easley (1992) address the same issue in a general equilibrium
model. We showed that if savings rates are equal across traders, general equi-
librium wealth dynamics need not lead to traders making portfolio choices
as if they maximize expected utility using rational expectations. We did not
study the emergence of fully intertemporal expected utility maximization,
nor did we say much about the emergence of beliefs. Sandroni (2000) ad-
dressed the latter question. He built economies with intertemporal expected
utility maximizers and studied selection for rational expectations. He showed
in a Lucas trees economy with some rational-expectations traders that, con-
trolling for discount factors, only traders with rational expectations, or those
whose forecasts merge with rational expectations forecasts, survive. He also
showed that if even if no such traders are present, no trader whose forecasts
are persistently wrong survives in the presence of a learner.

Sandroni’s (2000) analysis stands in sharp contrast to that of DeLong,
Shleifer, Summers and Waldman (1991). Why is it that in one setting traders
with rational expectations are selected for and in the other setting they are
driven out of the market by those with irrational expectations? Answering
this question, and understanding more completely when selection for rational
traders occurs and when it does not, requires a more general analysis than
that in the earlier papers. DeLong, Shleifer, Summers and Waldman do not
undertake a full equilibrium analysis.1 In their model attitudes toward risk
and beliefs both matter in determining who will survive. Sandroni (2000)
analyzes a full general equilibrium model, with only Lucas trees for assets.
In his world attitudes toward risk have no effect on survival.2

We show here that Pareto optimality is the key to understanding
selection for or against traders with rational expectations. For any optimal
allocation, the survival or disappearance of a trader is determined entirely
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by discount factors and beliefs. Attitudes toward risk are irrelevant to the
long run fate of traders in optimal allocations. In particular, controlling for
discount factors, only those traders with correct expectations survive. The
first theorem of welfare economics implies that correct beliefs are selected
for whenever markets are complete. This conclusion is robust to the asset
structure, of course, so long as markets are complete at the equilibrium prices.
Sandroni’s (2000) analysis thus fits into this setting.3 Evidently too, DeLong,
Shleifer, Summers and Waldman’s allocations are not Pareto optimal.

In economies with incomplete markets, opportunities for trade may
be restricted; consequently, equilibrium allocations need not be Pareto op-
timal. We show that when markets are incomplete, the market selection
hypothesis may fail. Discount factors, attitudes toward risk and beliefs all
matter. Even when there is a common discount factor, traders with incor-
rect beliefs may drive out those with more accurate beliefs. We provide an
example of an economy with incomplete markets to show that a trader who
is overly optimistic about the return on some asset in some state can choose
to save enough to more than overcome the poor asset allocation decision
that his incorrect expectations create. We also show that a trader who is
overly pessimistic about the return on some asset in some state can choose
to save enough to more than overcome the poor asset allocation decision that
his incorrect expectations create. Whether optimism or pessimism leads to
greater savings depends on the individual’s utility function so there is no
general result about selection for one type or the other.

If the market selection hypothesis addressed only selection for traders
with correct beliefs, then it would be of little interest. We demonstrate
its broader applicability by characterizing selection over learning rules in
complete markets. In studying learning we first assume that all traders have
the same discount factor. We show that a Bayesian almost surely survives
for almost all possible truths in the support of her prior. Put somewhat
differently, each Bayesian trader is sure that she will survive. Furthermore,
in the presence of a Bayesian trader, any traders who survive are not too
different from Bayesians. They use a forecasting rule that asymptotically
looks like a Bayes forecasting rule. We also show that the market selects
over Bayesians according to the size of the support of their prior beliefs.
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We consider Bayesians whose belief supports are open sets containing the
true parameter value, and whose prior belief has a density with respect to
Lebesgue measure. We show that survival prospects are indexed by the
dimension of the support: Those traders with the lowest dimension supports
survive, and all others vanish.4 Thus, having more prior information favors
the possibility of survival only if it affects the dimension of the support of
prior beliefs. Our analysis of learning provides a rate of divergence (over
time) of the Bayesian’s marginal distributions on partial histories from the
correct marginal distribution. We use this rate result to analyze the joint
effect of differences in priors and discount factors. We show that among
Bayesians whose prior belief supports contain the truth, the survivors are
always among the most patient Bayesians, even if they all have large prior
supports relative to less patient traders.

We conclude that for economies with complete or dynamically com-
plete markets, and a common discount factor, the market selection hypothesis
hypothesis is correct. If any trader has correct beliefs that trader is selected
for.5 If there is a trader who is a Bayesian with the truth in the support of her
prior, then all traders who survive will have asymptotically correct beliefs.
So a more robust form of the market selection hypothesis than that posited
by Alchian (1950), Friedman (1953) and Fama (1965) is true. They claim
that markets select for traders with correct beliefs. But what happens when
no trader has correct beliefs? We show that in the absence of traders with
correct beliefs, the market selects for those traders whose beliefs are closest
to correct in a sense that is formalized in section 3. In particular, markets fa-
vor learners over those traders who are persistently wrong. Among the class
of learning traders, markets favor those traders who learn quickest. (These
need not be the traders with the most correct initial beliefs!) We provide
in section 3.1 for the iid economy and in section 3.4 for the general case a
criterion for survival; a measure of economic “fitness”. This criterion shows
how discount factors and correctness of beliefs interact to determine survival.
The aforementioned claims are applications of these criteria.
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2 The Model

Our model and examples are concerned with infinite horizon exchange econo-
mies which allocate a single commodity. In this section we establish basic
notation, list the key assumptions and characterize Pareto optimal alloca-
tions.

2.1 Notation and Basics

Formally, we assume that time is discrete and begins at date 0. The possible
states at each date form a finite set {1, . . . , S}. The set of all sequences
of states is Σ with representative sequence σ = (σ0, . . .), also called a path.
σt = (σ0, . . . , σt) denotes the partial history through date t of the path σ,
and 1s

t(σ) is the indicator function defined on paths which takes on the value
1 if σt = s and 0 otherwise.

The set Σ together with its product sigma-field is the measurable
space on which everything will be built. Let p denote the “true” probability
measure on Σ. Expectation operators without subscripts intend the expecta-
tion to be taken with respect to the measure p. For any probability measure
q on Σ, qt(σ) is the (marginal) probability of the partial history (σ0, . . . , σt).
That is, qt(σ) = q({σ0 × · · · × σt} × S × S × · · · ).

In the next few paragraphs we introduce a number of random vari-
ables of the form xt(σ). All such random variables are assumed to be date-t
measurable; that is, their value depends only on the realization of states
through date t. Formally, Ft is the σ-field of events measurable at date t,
and each xt(σ) is assumed to be Ft-measurable.

An economy contains I consumers, each with consumption set R+.
A consumption plan c : Σ →

∏∞
t=0 R+ is a sequence of R+-valued functions

{ct(σ)}∞t=0 in which each ct is Ft-measurable. Each consumer is endowed with
a particular consumption plan, called the endowment stream. Consumer i’s
endowment stream is denoted ei.



The Model 6

Consumer i has a utility function U i : c 7→ [−∞,∞) which is the
expected presented discounted value of some payoff stream with respect to
some beliefs.6 Specifically, consumer i has beliefs about the evolution of
states, which are represented by a probability distribution pi on Σ. We call
pi a forecast distribution. She also has a payoff function ui : R+ → [−∞,∞)
on consumptions and a discount factor βi strictly between 0 and 1. Consumer
i’s utility of consumption plan c is

U i(c) = Epi

{ ∞∑
t=0

βt
iu

i
(
ct(σ)

)}
.

This scheme is rather general in its treatment of beliefs. One obvious
special case is that of iid forecasts. If consumer i believes that all the σt

are iid draws from a common distribution ρ, then pi is the corresponding
distribution on infinite sequences. Thus, for instance, pi

t(σ) =
∏t

τ=0 ρ(στ ).
Markov models and other, more complicated stochastic processes can be
accommodated as well.

Individuals who learn from the past using a statistical learning rule
also have beliefs which fit into our framework.7 A statistical learning rule is
a sequence of Ft-measurable functions which assign to each history of states
through t a probability distribution of states in period t + 1. Time 1 beliefs
are simply a distribution on S. Time 1 beliefs together with the learning
rule determine through integration a probability distribution on S×S whose
marginal distribution at time 1 is the time 1 belief. And in general, a given
t-period marginal distribution and the learning rule determine through inte-
gration a probability distribution on partial histories of length t + 1 whose
marginal distribution on the first t periods is the given t-period marginal dis-
tribution. The Kolmogorov Extension Theorem (Halmos 1974, sec. 49) im-
plies that there is a probability distribution pi on paths whose finite-history
marginal distributions agree with those we constructed. Notice, however,
that the specification of a learning rule as a collection of conditional dis-
tributions is more detailed than the specification as an S-valued stochastic
process, because from the process pi a conditional distribution for a given
partial history σt can be recovered if and only if pi(σt) > 0. But the seeming
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loss of generality is inessential for our analysis because Pareto optimality
implies that an individual’s consumption at any partial history should be 0
if the individual believes that partial history is an impossible (measure 0)
event.8

We assume the following properties of payoff functions:

A. 1. (i) The payoff functions ui : R+ → [−∞,∞) are C1, strictly con-
cave and strictly monotonic. (ii) The payoff functions ui satisfy an Inada
condition at 0; that is, ui′(c) →∞ as c ↓ 0.

We assume that the aggregate endowment is uniformly bounded from above
and away from 0:

A. 2. ∞ > F = supt,σ

∑
i e

i
t(σ) ≥ inft,σ

∑
i e

i
t(σ) = f > 0.

Finally, we assume that consumers believe to be possible anything which is
possible.

A. 3. For all consumers i, all dates t and all paths σ, if pt(σ) > 0 then
pi

t(σ) > 0.

If pi
t(σ) = 0 for some consumer i and date t, it is not optimal to allocate any

consumption to trader i after date t− 1 on path σ. We are not interested in
traders like this who vanish after only a finite number of periods.

2.2 Pareto Optimality

Standard arguments show that in this economy, Pareto optima can be char-
acterized as maxima of weighted-average social welfare functions. The Inada
condition implies that each trader’s allocation in any Pareto optimum is ei-
ther pi almost surely positive or it is 0. We are not interested in traders who
do not play any role in the economy so we focus on Pareto optima in which
each trader i’s allocation is pi-almost surely positive. If c∗ = (c1∗, . . . , cI∗) is
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such a Pareto optimal allocation of resources, then there is a vector of welfare
weights (λ1, . . . , λI) � 0 such that c∗ solves the problem

max
(c1,...,cI)

∑
i

λiU i(c)

such that
∑

i

ci − e ≤ 0

∀t, σ ci
t(σ) ≥ 0

(1)

where et =
∑

i e
i
t. The first order conditions for problem 1 are:

For all σ and t,

(i) there is a number ηt(σ) > 0 such that if pi
t(σ) > 0, then

λiβ
t
iu

i′
(
ci
t(σ)

)
pi

t(σ)− ηt(σ) = 0 (2)

(ii) If pi
t(σ) = 0, then ci

t(σ) = 0.

These conditions will be used to characterize the long-run behavior of con-
sumption plans for individuals with different payoff functions, discount fac-
tors and forecasts. Our method is to compare marginal utilities of different
consumers which we derive from the first order conditions. This idea was first
applied to the equilibrium conditions for a deterministic production economy
by Blume and Easley (2002), and to the equilibrium conditions for an asset
model by Sandroni (2000).9

All of our results are based on the following simple idea:

Lemma 1. Assume A.1.i and A2. On the event
{ui′

(
ci
t(σ)

)
/uj ′

(
cj
t(σ)

)
→∞}, ci

t(σ) ↓ 0. On the event {ci
t(σ) ↓ 0}, for some

trader j, lim supt u
i′
(
ci
t(σ)

)
/uj ′

(
cj
t(σ)

)
= ∞.

Proof. ui′
(
ci
t(σ)

)
/uj ′

(
cj
t(σ)

)
→∞ iff either the numerator diverges to ∞ or

the denominator converges to 0. The denominator, however, is bounded be-
low by the marginal utility of the upper bound on the aggregate endowment,
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uj ′ (F ). So the hypothesis of the lemma implies that ui′ ↑ ∞, and it follows
from A.1.i that ci

t ↓ 0. Going the other way, in each period some consumer
consumes at least f/I, and so some trader j must consume at least f/I in-
finitely often. Then uj ′

(
cj
t(σ)

)
≤ uj ′ (f/I) infinitely often. If limt c

i
t = 0,

then lim sup ui′
(
ci
t(σ)

)
/uj ′

(
cj
t(σ)

)
= ∞.

Limsup is the best that can be done for the necessary condition be-
cause the surviving trader j may have fluctuating consumption.

Using the first order conditions, we can express the marginal utility
ratios in three different ways. For generic consumers i, j and k, with forecasts
pi, pj and pk, define the following random variables

Zk
t = −

∑
s∈S

1s
t(σ) log pk(s|Ft−1) Zt = −

∑
s∈S

1s
t(σ) log p(s|Ft−1)

Y k
t = Zk

t − Zt Lij
t =

pj
t(σ)

pi
t(σ)

For any two traders i and j, and for any path σ and date t such that
pi

t(σ), pj
t(σ) 6= 0,

ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ)

) =
λj

λi

(
βj

βi

)t

Lij
t (3)

log
ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ)

) = log
λj

λi

+ t log
βj

βi

+
t∑

τ=0

(Zi
τ − Zj

τ ) (4)

= log
λj

λi

+ t log
βj

βi

+
t∑

τ=0

(Y i
τ − Y j

τ ) (5)

To see why 4 and 5 are true note that

pi
t(σ) =

t∏
τ=0

pi(σt|Ft−1) =
t∏

τ=0

∏
s∈S

pi(s|Ft−1)
1s

τ (σ).
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3 Belief Selection in Complete Markets

In this section we establish that belief selection is a consequence of Pareto
optimality. The intuition is simple: In any optimal allocation of resources,
consumers are allocated more in those states they believe to be most likely.
Consequently, along those paths which nature identifies as most likely, con-
sumers who believe these paths to be most likely consume the most. From
these results on optimal paths, results on the behavior of competitive equi-
librium prices and allocations in complete markets follow immediately from
the First Theorem of Welfare Economics.10 In contrast, Sandroni’s (2000)
results come from a direct characterization of equilibrium paths in the mar-
kets he studies. Proofs for results in this section and in the remainder of the
paper can be found in Appendix B.

Our results are concerned with the long-run behavior of individuals’
consumptions along optimal paths. Throughout most of the paper we will
make only the coarse distinction between those traders who disappear and
those who do not.

Definition 1. Trader i vanishes on path σ iff limt c
i
t(σ) = 0. She survives

on path σ iff lim supt c
i
t(σ) > 0.

We want to be clear that, in our view, survival is not a normative concept.
We do not favor the ant over the grasshopper. It is not “better” to have
a higher discount factor. We do not label as irrational those who say “It’s
better to burn out than to fade away.” We simply observe that they will not
have much to do with long run asset prices.

Survival is actually a weak concept. Trader i could survive and con-
sistently consume a large quantity of goods. But trader i surviving and
lim inf ci

t = 0 are not inconsistent. And in fact a survivor could consume a
significant fraction of goods only a vanishingly small fraction of time. These
three different survival experiences have different implications for the role of
trader i in the determination of prices in the long run.
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By examining equation (3) we can distinguish two distinct analytical
problems. When discount factors are identical, a given trader i will vanish
when there is another trader j for which the likelihood ratio Lij

t of j’s model
to i’s model diverges. We can analyze this question very precisely. When
discount factors differ, we need to compare the likelihood ratio to the geo-
metric series (βj/βi)

t. This is more difficult, and our results will be somewhat
coarser. In this case our results about the effects of differences in beliefs are
phrased in terms of the relative entropy of conditional beliefs with respect to
the true beliefs. The relative entropy of probability distribution q on S with
respect to probability distribution p is defined to be

Ip(q) =
∑
s∈S

p(s) log
p(s)

q(s)

It is easy to see that Ip(q) ≥ 0, is jointly convex in p and q and Ip(q) = 0
if and only if q = p. In this sense it serves as a measure of distance of
probability distributions, although it is not a metric.

3.1 An Example — IID Beliefs

We first demonstrate our analysis for an economy in which the true distri-
bution of states and the forecast distributions are all iid. The distribution
of states is given by independent draws from a probability distribution ρ on
S = {1, 2}, and forecasts pi and pj are the distributions on infinite sequences
of draws induced by iid draws from distributions ρi and ρj on S, respectively.

Dividing equation (5) by t yields

1

t
log

ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ)

) =
1

t
log

λj

λi

+ log
βj

βi

+
1

t

t∑
τ=0

(Y i
τ − Y j

τ )

The Y k
t are iid random variables with a common mean Iρ(ρ

k), so

1

t

t∑
τ=0

Y k
τ → Iρ(ρ

k) p-almost surely.
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Consequently,

1

t
log

ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ)

) → (
log βj − Iρ(ρ

j)
)
−
(
log βi − Iρ(ρ

i)
)

(6)

p-almost surely. If the rhs is positive, the ratio of marginal utilities diverges,
and so by Lemma 1, limt c

i
t(σ) → 0 almost surely. This says nothing about

the consumption of trader j. She may or may not do well, but whatever
her fate, i is almost sure to disappear. The expression κi = log βi − Iρ(ρ

i)
is a survival index that measures the potential for trader i to survive. This
analysis shows that a necessary condition for trader i’s survival is that her
index be maximal in the population.

This analysis also shows that the ratio of marginal utilities of traders
i and j converges exponentially at rate equal to the difference of the traders
survival indices. If we specify a form for the utility functions we can deter-
mine the rate of convergence of consumptions.

Example: Risk Aversion and the Rate of Convergence.
Suppose that traders i and j each have utility function ui(c) = α−1cα with
α < 1. In this case equation (6) simplifies to

1

t
log

ci
t(σ)α−1

cj
t(σ)α−1

→ κj − κi

So for large t the ratio of consumptions is almost surely

ci
t(σ)

cj
t(σ)

≈ exp

(
−t(κj − κi)

1− α

)
By this last statement we mean that for all ε > 0 there is a T such that for
all t ≥ T ,

exp

(
−t(κj − κi + ε)

1− α

)
<

ci
t(σ)

cj
t(σ)

< exp

(
−t(κj − κi − ε)

1− α

)
If κj − κi > 0 then the consumption of i relative to j has an asymptotic rate

of convergence to 0 that is exponential with coefficient
(κj−κi)

1−α
. Note that if
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the traders preferences are nearly risk neutral, α near 1, then convergence
is fast. More nearly risk neutral traders take more extreme asset positions
so those with incorrect beliefs lose faster and for more nearly risk neutral
preferences the exponential rate of convergence of marginal utilities drives
faster convergence of consumptions.

In the iid economy with identical discount factors, traders with max-
imal survival indices are those whose forecasts are closest in relative entropy
to the truth. A trader with rational expectations survives. If some trader
has rational expectations, then any trader who does not have rational expec-
tations vanishes. When discount factors differ, higher discount factors can
offset bad forecasts. A trader with incorrect forecasts may care enough about
the future in general that she puts more weight on future consumption even in
states which she considers unlikely, than does a trader with correct forecasts
who considers those same states likely but cares little about tomorrow.

Maximality of the survival index is not, however, sufficient for sur-
vival. The analysis of iid economies in which more than one trader has
maximal index is delicate, and we will not pursue this here.11 The analysis
below generalizes these results to dependent processes. This generalization
is necessary for an analysis of learning, and selection over learning rules.

Our general analysis proceeds in three steps. First we consider the
survival of traders with rational expectations in an economy in which all
traders have identical discount factors. This analysis differs from the iid
example in that we place no assumptions on the true distribution or on
forecast distributions. Next we consider the survival of Bayesian and other
learners in the identical discount factor case. Finally, we consider the effect
of differing discount factors.
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3.2 Rational Expectations — Identical Discount Fac-
tors

When traders i and j have identical discount factors, equation (3) simplifies
to

ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ)

) =
λj

λi

Lij
t (3a)

Lemma 1 implies that trader i vanishes on the event {lim inft L
ij
t = +∞}.

So our analysis of economies in which traders have identical discount factors
hinges solely on the asymptotic behavior of likelihood ratios.12

Our first result is that each trader is almost sure that she will survive.
This follows immediately from the fact that from trader i’s point of view the
likelihood ratio is a non-negative martingale meeting the conditions of the
martingale convergence theorem.

Theorem 1. Assume A.1–3. Trader i survives pi-almost surely.

Whether a trader in fact survives depends on the relation between her
beliefs, others beliefs and the truth. But if trader i has rational expectations
then for any trader j the likelihood ratio is in fact a non-negative martin-
gale meeting the conditions of the martingale convergence theorem. So it
converges p-almost surely. That traders with rational expectations survive is
thus an immediate consequence of Theorem 1.

Definition 2. Trader i has rational expectations if pi = p.

Corollary 1. A trader with rational expectations survives p-almost surely.

Corollary 1 has a converse. In the presence of a trader with rational expec-
tations, absolute continuity of the truth with respect to beliefs is necessary
for survival. This fact is a consequence of the following theorem:

Theorem 2. Assume A.1–3. Suppose that traders i and j both survive on
some set of paths V with pj(V ) > 0. Then pi(V ) > 0 and the restriction of
pj to V is absolutely continuous with respect to pi.
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The converse to Corollary 1 is:

Corollary 2. If trader j has rational expectations and i almost surely sur-
vives, then p is absolutely continuous with respect to pi.

The intuition behind Theorem 2 is that if j survives on a set of sample paths
which he believes to be possible then i would be allocated zero consumption
on this set of paths unless she too believed it to be possible. The assumption
that j believes the set of sample paths to be possible, pj(V ) > 0, is hardly
innocuous. Consider an iid economy in which all discount factors are iden-
tical. The trader with beliefs nearest the true distribution survives almost
surely. If her beliefs are not accurate, then she assigns probability 0 to the
event that she survives.

The necessary condition for i’s survival in the presence of a trader
with rational expectations is not that i have rational expectations too. But
i will survive only if her beliefs are not very different from the truth — in
particular, i’s forecasts of the future must be asymptotically p-almost surely
correct. We will have more to say about the restrictiveness of this conclusion
in the next section.

3.3 Learning with Identical Discount Factors

In this section we consider the survival possibilities for learners. We first deal
with the trivial case in which the truth is absolutely continuous with respect
to some trader’s beliefs. The following theorem, which is an immediate con-
sequence of Theorems 1 and 2, shows that absolute continuity is sufficient
for survival and that in the presence of a trader whose beliefs satisfy abso-
lute continuity it is also necessary for survival. Unless otherwise stated the
theorems in this section assume identical discount factors for all traders.

Theorem 3. Assume A.1–3. Suppose that the truth p is absolutely continu-
ous with respect to trader j’s beliefs. Then:

1. Trader j survives p-almost surely.
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2. If trader i survives p-almost surely then p is absolutely continuous with
respect to pi.

Absolute continuity of the actual distribution p with respect to the fore-
cast distribution pi is a very strong condition. It is more than the absolute
continuity of finite horizon marginal distributions. For example, all finite
dimensional distributions of the process describing iid coin flips with Heads
probability 1/4 are mutually absolutely continuous with those from the pro-
cess describing iid coin flips with Heads probability 1/3, but clearly the dis-
tributions on infinite paths are not absolutely continuous processes since the
Heads fraction converges almost surely to 1/4 in one process and 1/3 in
the other. The absolute continuity of the truth with respect to beliefs is
the merging condition of Blackwell and Dubins (1962), who showed that it
has strong implications for the mutual agreement of conditional distributions
over time. This kind of condition has been important in the literature on
learning in games.13

To see that merging (absolute continuity of the truth with respect
to beliefs) is of at least mild interest for learning, suppose trader i is a
Bayesian learner. The Bayesian’s models of the stochastic process on states
are parameterized by θ ∈ Θ. Suppose that for some θ ∈ Θ the model pθ is
correct, that is, pθ = p. If Θ is countable and trader j’s prior belief on Θ
has full support, then for all θ ∈ Θ, pθ is absolutely continuous with respect
to pi.14 To see that merging is of at most mild interest, note that if Θ is
an open subset of a Euclidean space, absolute continuity will fail. Consider
the case of iid coin flips from a coin with unknown parameter θ ∈ (0, 1).
If a decision maker holds a prior belief that is absolutely continuous with
respect to Lebesgue measure, no pθ is absolutely continuous with respect
to her belief. She assigns probability 0 to the event that the frequency of
Heads converges to θ, but distribution pθ assigns this event probability 1.
Nonetheless it is true that posterior beliefs are consistent in the sense that
they converge to point mass at θ a.s.-pθ. Absolute continuity of beliefs with
the truth is thus a stronger statement than the claim that traders can learn
the truth, at least in a Bayesian context.

Classes of models with richer parameterizations are larger, and there-
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fore more likely to be representative of the world we are trying to model.
The countable Θ case, with the possibility of hyper-learning agents, is not
particularly interesting. We are led to study models with Θ a bounded, open
subset of some Euclidean space. If the parameter is identified, there will be
no beliefs which can be absolutely continuous with respect to pθ for a large
set of θ, say a set of positive Lebesgue measure.

Our first result in this line is that any Bayesian will survive for almost
all θ in the support of her prior. That is, any Bayesian is almost certain that
she will survive. This is just a reinterpretation of Theorem 1 in the Bayesian
context.

Theorem 4. Assume A.1–3. If trader i is a Bayesian with prior belief µi

on Θ, then she survives for µi-almost all θ.

At first reading this theorem may seem to contradict Theorem 2. Consider
a two person iid economy in which the states are flips of a coin. One knows
the coin is fair. Her beliefs are iid with parameter 1/2. The other trader
is not certain about the parameter. He is a Bayesian whose belief about
the parameter can be represented by a uniform prior on [0, 1]. His forecast
and trader 1’s forecast are mutually singular. Now suppose the the true
parameter value is indeed 1/2. The first trader has rational expectations.
According to Theorem 1 she survives, while according to Theorem 2 trader 2
vanishes. But this is not inconsistent with Theorem 4. For almost all possible
parameter values, all but value 1/2, trader 2 will almost surely learn the
parameter value, and so he will survive while trader 1, who has beliefs which
are initially incorrect and never improve, will vanish. The same conclusion
applies if trader 1’s beliefs have countable support. For parameter values in
the support set trader 2 vanishes. This set is negligible with respect to his
prior beliefs. Outside of that set trader 1 vanishes and trader 2 survives.

There is an analogue of Theorem 2 which provides a necessary con-
dition for survival in the presence of a Bayesian. If there is a Bayesian
in the economy, then traders who almost surely survive (according to the
Bayesian’s prior on parameters) make forecasts that are not too different
from Bayesian, although they need not be Bayesians. In particular, their
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forecasts must merge with the Bayesian’s forecasts in the sense of Kalai and
Lehrer (1994).

Theorem 5. Suppose that trader j is a Bayesian with prior belief µj on Θ.
If trader i survives for µj-almost all θ then pj is absolutely continuous with
respect to pi.

An example of a forecasting rule that is not Bayesian, but which
generates forecasts that merge with Bayesian forecasts, is suggested by max-
imum likelihood estimation.15 Suppose that at each date there are two pos-
sible states, 1 and 2. States are distributed iid, and the probability of state
2 is θ. The trader forecasts using the maximum likelihood estimate of θ,
mt(σ) =

∑T
t=0(σt − 1)/(T + 1). The MLE converges to the Bayes estimate

for the Dirichlet prior with mean 1/2 sufficiently quickly that it satisfies our
survival criteria. But the MLE estimate is not Bayes. No Bayes forecast can
predict 1 for sure after a finite string of all 1’s and predict 2 for sure after a
finite string of all 2’s. We cannot use the MLE as an example however, be-
cause this boundary behavior violates Axiom A.3. In the following example
we consider a trader investing according to a “trimmed” MLE. She survives
in the presence of a Bayesian, and thus is nearly a Bayesian. But our trimmed
MLE is not a Bayes forecast because, although it never assigns probabilities
0 or 1, it converges to the boundary faster than any Bayes forecast can on
strings of identical observations.

Example: A Non-Bayesian Survivor.
Suppose that the state space is {1, 2}. States are iid and the probability
of state 2 is θ. There are two traders. Trader 1 is a Bayesian with a full
support prior, and trader 2’s forecasted probability of st+1 = 2 given σt is
Mt(σ), which is defined as follows:

Choose 0 < ε < 1. Let at = 1/(1 + εt2) and bt = εt2 .

M0(σ) = 1/2,

Mt(σ) =


at if mt(σ) > at,

mt(σ) if at ≥ mt(σ) ≥ bt,

b(t) if bt > mt(σ).



Complete Markets 19

This estimator does not take on the values 0 or 1, but in response to a string
of all 2’s it goes to 1 fast enough that it cannot be Bayes. To see this, suppose
it was a Bayes posterior belief for prior µ. Since it can converge to any value
in [0, 1], supp µ = [0, 1]. Let xt denote the initial segment of length t on the
path (2, 2, . . .). Choose 0 < δ < 1. Notice that the likelihood function is
increasing in θ when the observation is xt. It is easy to see that

µ{(δ, 1]|xt} ≤
µ{(δ, 1]}

µ(δ, 1] + µ{[0, δ]}δt
.

Consequently

1− µ{σt+1 = 2|xt} ≥
µ{[0, δ](1− δ)δt

µ(δ, 1] + µ{[0, δ]}δt

Since under the same conditions the forecasts from xt converge to probability
one on state 2 geometrically in the square of t, they cannot be Bayesian
forecasts. On the other hand, they are identical with the MLE forecasts as
soon as even one 1 is observed (or, in the case of all 1’s, one 2), which is a
probability one event for all θ ∈ (0, 1). Consequently, if θ is interior, trader
2 almost surely survives.

Since a Bayesian will survive almost surely with respect to her prior
belief one might conjecture that Bayesians who consider larger model spaces
are more likely to survive. This is true insofar as considering more possible
models makes it more likely to consider the “true” model. But there is also
a cost to a larger model space. Learning more parameters entails slower
learning, and so Bayesians with large model spaces are at a disadvantage
with respect to those with smaller spaces, when these smaller spaces also
contain the true model.

We examine the survival question more closely in a special class of
economies in which the process of states {σt}∞t=0 is iid. More general results
are possible — see the discussion below. We will make use of some particular
results about the behavior of Bayesian forecasts. These results — well known
in the statistics literature — have been shown to hold for a number of very
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general stochastic processes, but it is off the point of our paper to establish
for exactly which discrete state processes they do hold. Recent versions of
this result include Phillips and Ploberger (1996) and Ploberger and Phillips
(1998).16 The version we use is due to Clarke and Barron (1990). We assume
that traders know the state process is iid. The model space Θ parameterizes
the distribution from which the current state is drawn. We let pθ refer, as
before, to the entire process, and pθ(· | ·) refer to the distribution of a single
draw. Let Eθ denote the expectation operator given θ. We assume

A. 4. The model set Θ is a bounded open set of a d-dimensional Euclidean
space, and the processes pθ are all iid. For each θ0 ∈ Θ, suppose that for each
s ∈ S, p(s|θ) is C2 in θ in a neighborhood of θ0. Suppose too that

Eθ0 sup
||θ−θ0||<δ

∣∣∣∣ ∂2

∂θi∂θj

log p(s|θ)
∣∣∣∣ < ∞

and

Eθ0

∣∣∣∣ ∂

∂θi

log p(s|θ0)

∣∣∣∣2 < ∞

for some δ > 0 and all i and j from 1 to d.

The conditions involving derivatives all have to do with how the pa-
rameters describe the models. The natural choice is that the parameters are
the selection probabilities, that p(s|θ) = θs, and in this case the assumptions
are satisfied.

Suppose that a decision maker has prior beliefs which have a density
q with respect to Lebesgue measure on Θ, which is continuous and positive
at θ0. Let I(θ) denote the Fisher information matrix at θ. Let ρ(σt) =∫

Θ
pθ(σt)q(θ) dθ denote the predicted distribution of the partial history σt.

Clarke and Barron’s Theorem. For all θ,

log
pθ(σt)

ρ(σt)
−
(

d

2
log

t

2π
+

1

2
log det I(θ)− log q(θ)

)
prob−−−→ χ2(d)

a χ2 random variable with d degrees of freedom.
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Although results like this have been known in statistics for decades, most
economic theorists (including, initially, us) are surprised by them. One piece
of intuition goes as follows. Consider Bayesian updating on a finite set of
models of an iid process. The updating formula says that for any two models,
the log of the posterior odds is the sum of the log of the prior odds and the
sum of the log-likelihood ratios. The log-likelihood ratio for n observations is
the sum of n independent log-likelihood ratios, one for each observation. How
fast beliefs converge with one prior versus another is determined by the rate of
divergence of the infinite series of log-likelihood ratios. This rate has nothing
to do with the first term, which is the only place the prior appears, and
everything to do with the likelihood functions. Clarke and Barron’s Theorem
and similar results explore this rate for likelihood functions on parameter
spaces of different dimensions. We provide some additional intuition on why
it is that dimension matters in Appendix A.

The expectation of the random variable log pθ(σt)/ρ(σt) under the
distribution pθ(σt) is the relative entropy of the Bayesian trader’s marginal
distribution on states from period 1 through t with respect to the true distri-
bution. Although the terms of this series converge to 0 (assuming the truth
is in the support of the trader’s prior beliefs), the series diverges. Clarke and
Barron’s Theorem tells us the rate at which the series diverges.

This result has interesting consequences for the survival of Bayesians.
Suppose that trader j’s prior belief is concentrated on a lower-dimensional
subset of Θ than is trader i’s prior belief. If j is correct, then in fact she has
less to learn than does trader i. The following theorem shows that in this
situation, dimension matters. Let Θ′ denote an open manifold of dimension
d′ < d contained in Θ.

Theorem 6. Assume A.1–4. Suppose that trader j has a prior belief which
has positive density with respect to Lebesgue measure on Θ′, and that trader
i has a prior belief with a similar representation on Θ. Then for µi-almost
all θ ∈ Θ/Θ′, trader j vanishes pθ-almost surely, while for all θ ∈ Θ′, trader
i vanishes in probability.

If two traders have prior beliefs with supports of different dimension, the
trader with the higher dimensional support will vanish if the truth is in the
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support of the lower dimensional prior, even if the high-dimensional prior is
concentrated around the truth and the low-dimensional prior is quite diffuse.
If the supports of the two distributions are identical, then both traders will
survive or fail together, and if they both survive, how well they do relative
to each other will be determined by the shape of their prior densities.

An alternative approach to understanding Theorem 6 is to relate it
to Theorem 2. Suppose that, in contrast to the conclusion of Theorem 6,
traders i (with the higher dimensional parameter set) and j (with the lower
dimensional set) both survive. Let V j ⊂ Σ denote the support of j’s beliefs.
Both traders survive on V j, so conclude from Theorem 2 that pi(V j) > 0.
But under our assumptions, or even much weaker assumptions, it is easy to
see that pi(V j) = 0, which is a contradiction.17

Theorem 6 has stronger assumptions than does Theorem 2, but it has
more powerful conclusions since it gives rate information. To show one use
for this rate information we consider the effect of differing discount factors.
Theorem 6 combined with Equation (3) demonstrates that the effects of
belief differences work much slower than the effects of discount factors. The
effect of discount factor differences on the log of the ratio of i’s and j’s
marginal utilities is linear in t, while the effect of differences in the dimension
of parameter spaces is log t. This insight can be pushed further, to show
that when discount factors are heterogeneous, discount rate effects dominate
parameter space effects. We have not found a way to prove the following
theorem with absolute continuity arguments.

Theorem 7. Suppose the assumptions of Theorem 6 and, in addition, that
βi > βj. Then for all θ ∈ Θ, trader j pθ-almost surely vanishes.

In the next section we consider the effect of differing discount factors and dif-
fering beliefs in the general case in which learning rules need not be Bayesian.
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3.4 Heterogeneous Discount Factors

When discount factors differ the effect of bad forecasts can be offset by a
higher discount factor. One trader may make worse investments than an-
other, but because he saves more, he consumes more in the long run. With
differing discount factors the rate at which log-likelihoods diverge is cru-
cial. Unfortunately log-likelihoods are not well-behaved as probabilities ap-
proach 0 and 1, so we we will need an additional boundedness condition on
probabilities.18

A. 5. There is a δ > 0 such that for all paths σ, dates t, s ∈ S and traders
i, p(s|Ft−1)(σ) > 0 implies p(s|Ft−1)(σ) > δ and pi(s|Ft−1)(σ) > δ.

Define Z̄k
t (σt−1) =

∑t
τ=1 E{Zk

τ |Fτ−1}. That is, Z̄k
t (σt−1) is the sum

of conditional expectations of consumer k’s log-likelihoods. Note that the
most accurate possible likelihood at date τ on path σ is pτ (σ) and if this
is consumer k’s likelihood then E{Zk

τ |Fτ−1} is minimized. It follows from
A.5 that log likelihoods are uniformly bounded. So there are numbers 0 <
z ≤ z̄ < ∞ such that tz̄ ≤ Z̄k

t (σt−1) ≤ tz. Thus, sums of conditional log-
likelihoods grow at rate t.

The analysis of section 3.1’s iid economy generalizes in the following
manner:

Theorem 8. Assume A.1–3 and A.5. On the event

lim
t

[
t log

(βj

βi

)
+ Z̄i

t(σ
t−1)− Z̄j

t (σ
t−1)
]

= +∞

ci
t(σ

t) → 0 p-almost surely.

In the iid case the sum of conditional expectations of consumer i’s log-
likelihoods is t times i’s constant expected log-likelihood. An easy calculation
shows that in this case the condition in Theorem 8 is equivalent to κj > κi,
and we know from section 3.1 that trader i will vanish if j’s survival index is
larger than i’s survival index.
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To analyze the non-iid case in which i and j and both learning it is
useful to write the condition in Theorem 8 as

lim
t

[
log
(βj

βi

)
+ t−1Z̄i

t(σ
t−1)− t−1Z̄j

t (σ
t−1)
]
t = +∞ (7)

When i and j are learning the time averages of their sums of conditional
expected log-likelihoods converge together and so i vanishes if βj > βi. Thus
when discount factors differ the rate at which the consumers are learning does
not matter. This generalizes the result of Theorem 7 to learning rules that
are not necessarily Bayesian, but it does use the uniform bounds of Axiom
5.

This result implies that when discount factors differ, different rates at
which Bayesians learn are irrelevant to survival as long as Axiom 5 is satisfied.
Trader i could know the true distribution while trader j could be updating
on a high-dimensional parameter space. Since conditional expected values
of log-likelihoods almost surely converge to the minimum for both traders,
the time average of their difference is 0, and so the linear-in-time effect of
discount rate differences determines survival.

A final implication of Theorem 8 is that if traders i and j have the
same discount factor then who vanishes depends on the rates at which their
sums of conditional expected log-likelihoods diverge. If j is learning and
i’s beliefs do not converge to the truth then i vanishes. If both traders are
learning then the rates at which they learn matter. This is the situation in
the Bayesian analysis of the previous section. Traders learn and a comparison
of the rates of learning determines who vanishes.

It is easy to compute the limit in Theorem 8 for iid economies and
the following example demonstrates how it can be computed for Markov
economies.

Example: Markov States.
Suppose that the true distribution of states and all forecasts are Markov.
Suppose too that the true distribution of states is ergodic with unique in-
variant distribution ρ on S. Agent i’s (j’s) forecasts are represented by a
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transition matrix P i (P j) while the true transition matrix is P . For a given
transition matrix Q, let Q(s) denote the row of Q corresponding to state s.
In other words, Q(s) is the conditional distribution of tomorrow’s state if
today’s state is s. Suppose that for traders i and j,

log βj − Eρ EP (σt−1)

(
− log P j(σt−1)

)
> log βi − Eρ EP (σt−1)

(
− log P i(σt−1)

)
Since the Markov process of states is ergodic, log βk − t−1Z̄k

t (σt−1) converges
to log βk minus the expectation of k’s conditional expected log-likelihoods
with respect to the invariant distribution. Consequently, the coefficient on t
in equation 7 is positive and limt c

i
t = 0 almost surely. If the Markov process

is not ergodic, one carries out this exercise on each communication class.

The conclusions of Theorem 8 are false without the uniform bounds
of Axiom 5. The following example answers in the negative a question raised
by Sandroni (2000) about the possibility of doing without uniform bounds
across dates and states on ratios of forecasted and true state probabilities for
results involving entropy calculations.

Example: The Need for A.5.
Consider a two person exchange economy with two traders, i and j. At
each date there are two states, sa and sb. To save on notation, the economy
begins at date 1. States are drawn independently over time, and at date t the
probability of sa is 1− 1/t2 and the probability of sb is 1/t2. Traders’ utility
functions satisfy A.1, and endowments are fixed at e > 0, and are independent
of state. But traders have different forecasts. At date t trader i assigns
probability (exp t3 − 1)/(exp t3 − exp−t) to state a, and trader j assigns
probability (exp t2−exp−t)/(exp t3−exp−t) to state a. Thus Zi

t −Zj
t takes

on the value −t in state sa and t3 in state sb. The difference of conditional
expected log-likelihoods is E{Zi

τ |Fτ−1} − E{Zj
τ |Fτ−1} = t−1, and so the

series
∑∞

t=1

(
E{Zi

τ |Fτ−1}−E{Zj
τ |Fτ−1}

)
diverges to +∞. If the conclusions

of Theorem 8 were true, trader i would disappear. Nonetheless the sum∑∞
t=0(Z

i
t − Zj

t ) diverges quickly to −∞, implying that j disappears and,
consequently, that i does not. That is, cj

t → 0 almost surely, and ci
t → 2e. To

see why this is true, observe that {
∑

t(Z
i
t − Zj

t ) → −∞}c ⊂ {st = sb i.o.},
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and according to the Borel-Cantelli Lemma, this is a 0 probability event since∑∞
t=1 1/t2 converges. The magnitude of

∑t
τ=1(Z

i
τ −Zj

τ ) grows at rate O(t2),
and so trader i will survive no matter how small her discount factor and how
large trader j’s.

Intuitively, we should expect i to survive, as indeed she does. The
probability of state sa’s occurrence is converging to 1, as is i’s belief about sa,
while the probability j assigns to a is converging to 0. But trader i overshoots
the mark, giving her the larger conditional expected log-likelihood. This is
possible even though trader i is forecasting more accurately than is j in any
intuitive sense because of the asymmetry of expected log-likelihood, which
becomes extreme as the true distribution assigns negligible probability to
some states.

4 The Role of the Inada Condition

Throughout our analysis we have assumed that traders are strictly risk averse,
and more importantly that their utility functions satisfy an Inada condition
at zero consumption. Within this class of utility functions our selection
results do not depend on agents’ particular utility functions. But utility
functions with finite first derivatives at the zero consumption boundary, in
particular those representing risk neutrality, do not lie in this class of pref-
erence orders. Our results do not address the survival of these agents.

All our results are essentially of two kinds: Sufficient conditions for
a trader to vanish and sufficient conditions for a trader to survive. In this
section we show that all results concerning sufficient conditions for vanishing
carry over to the larger class of preferences with monotonic, concave and C1

payoff functions that may or may not satisfy an Inada condition at the origin.
We also show by means of a counterexample that the sufficient conditions
for survival require the Inada condition.

One must be careful in interpreting the results we present here. With
the Inada conditions, an economy in which Arrow securities are traded will



Complete Markets 27

always have a competitive equilibrium, and that equilibrium will be Pareto
optimal. So we can identify many asset structures for which are results
actually characterize competitive paths. This need not be true in the larger
class of preferences. If two risk neutral traders attach different probabilities
to two states then at any prices for Arrow securities paying off only in those
two states at least one trader will want to take an infinite long or short
position in the securities. In the larger class of preferences we cannot make
claims about the properties of competitive paths.

The theorems giving sufficient conditions for a trader to vanish work
by showing that likelihood ratios diverge and thus from the first order con-
ditions for Pareto optimality we know that ratios of marginal utilities di-
verge. It follows from Lemma 1 that these traders vanish. Without the
Inada condition the first order conditions must account for the boundary
at 0. Nonetheless, Lemma 1 can be extended to cover vanishing in this case.

First, we weaken Axiom 1.

A.1′. The payoff functions ui are C1, concave, and strictly monotonic.

The relevant modification of Lemma 1 is:

Lemma 1′. Suppose Axioms 1′, 2 and 3 are satisfied, and consider any
Pareto optimal allocation in which each trader has a strictly positive welfare
weight. On the event {βt

jp
j
t(σ)/βt

ip
i
t(σ) →∞}, ci

t(σ) ↓ 0.

Proof. The first order conditions for the Pareto problem (1) have to be mod-
ified to reflect the possibility that the inequality constraint on consumption
is binding. The new first order conditions are

For all σ and t,

(i) there is a number ηt(σ) > 0 and numbers µi
t(σ) ≥ 0 for all i such that

λiβ
t
iu

i′
(
ci
t(σ)

)
pi

t(σ)− ηt(σ) + µi
t(σ) = 0 (8)

(ii) µi
t(σ)ci

t(σ) = 0 and ci
t(σ) ≥ 0 for all i.
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Suppose that ci
t(σ) does not converge to 0. Then there is subsequence of

dates t′ such that ci
t′(σ) > 0 and µi

t′(σ) = 0. Rewriting (8) using this fact
and noting that µj

t′(σ) ≥ 0, we have:

λj

λi

βt′
j

βt′
i

pj
t′(σ)

pi
t′(σ)

≤ ui′(ci
t′(σ))

uj′(cj
t′(σ))

.

By hypothesis βt′
j pj

t′(σ)/βt′
i pi

t′(σ) →∞. Trader j’s marginal utility is bound-

ed below by uj′(F ). So we have ui′(ci
t′(σ)) ↑ ∞. Given A.1′ this is possible

only if ci
t′(σ) ↓ 0 which contradicts the hypothesis that ci

t(σ) does not con-
verge to 0.

It is easy to see that in Theorems 2, 3.2, 5, and 6, Axiom 1 can be
replaced by Axiom 1′. Thus if the sufficient conditions on discount factors
and beliefs for vanishing are satisfied, these traders vanish in any Pareto
optimal allocation even if they are risk neutral. The intuition for this series
of results is simple. Suppose one trader (risk neutral or not) puts positive
probability on some set of sample paths and another trader (risk neutral or
not) puts zero probability on the same set of sample paths. In any Pareto
optimal allocation the trader with zero probability on the set of sample paths
should be allocated no consumption on this set of paths, that is he vanishes.

Our results giving sufficient conditions for survival require the Inada
condition. Lemma 1 uses the Inada condition to show that in any Pareto op-
timal allocation a trader must be allocated some consumption on any sample
path that has positive probability from his point of view. But a risk neu-
tral trader may be allocated no consumption on paths that he believes to
be possible as long as others believe them to be more likely. In the follow-
ing example, trader 2 puts positive probability on a sample path in which
he is allocated no consumption. This occurs because trader 1 puts higher
probability on this path.

Example: Risk Neutrality.
The economy consists of two traders with a common discount factor and a
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common linear utility function. The state space is S = {1, 2}. Trader 1
believes that state 1 always occurs; that is, pi

t(σ) = 1 if and only if σ =
(1, 1, . . . ), and 0 otherwise. Trader 2 believes that states are independent
and the probability that he puts on state 1 at date t is qt = exp−t/2.
Then

∏∞
t=1 qt = 1/e. So trader 2 believes that σ = (1, 1, . . . ) has positive

probability, but unlike trader 1, at each date he places probability less than
one on the next state being state 1.

Consider weights λi = 1 for all i. On σ = (1, 1, . . . ) trader 1 is
allocated all of the consumption good. This occurs even though the likelihood
ratios L21

t are bounded.

In summary, the Inada condition plays no role in our sufficient condi-
tions for vanishing. But our sufficient conditions for survival depend on the
Inada condition, which rules out risk neutrality. This concludes our analysis
of complete markets. In the next section we take up the market selection
hypothesis with incomplete markets.

5 Belief Selection in Incomplete Markets

Results in the previous sections showed that a form of belief selection is a
consequence of Pareto optimality. The first welfare theorem can be used to
apply these results to economies with complete markets. When markets are
incomplete, optimality no longer characterizes equilibrium allocations, and
the belief selection properties of market equilibrium must be investigated
directly. In this section we build two examples to show that the strong
belief selection properties exhibited by complete markets fail in incomplete
markets. They fail for two reasons, one trivial, one less so. The trivial
reason, demonstrated in the second example, is that entropy does not match
well with the asset structure — one distribution could be very far from the
true distribution in ways that are irrelevant to the equilibrium investment
problem, while another distribution could be quite near, but differ from the
truth in ways which are critical. The less trivial reason for the failure of
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the market selection hypothesis has to do with savings behavior. Undue
optimism or pessimism (depending upon the payoff function) can lead to
excessive saving, so that the investor with the worst beliefs will come to
dominate the market over time.

Example: Savings Effects.
The story of the first example is that two traders buy an asset from a third
trader. The two traders hold different beliefs about the return of the asset.
Trader 1 is correct, while trader 2 consistently overestimates the return.

At each date there are two states: S = {s1, s2}. The true evolution
of states has state 1 surely happening every day. There is a single asset
available at each date and state which pays off in consumption good in the
next period an amount which depends upon next period’s state. The asset
available at date t pays off, at date t + 1,

Rt(σ) =


(
1 +

(
1
2

)t)
if σt = s1,

k
(
1 +

(
1
2

)t)
if σt = s2.

where k = (81/2 − 1)2. Traders 1 and 2 have CRRA utility with coefficient
1/2. Trader 3 has logarithmic utility. Traders 1 and 2 have common discount

factor (8)−
1
2 and trader 3 has discount factor 1/2. Traders 1 and 3 believe

correctly that state s1 will always occur with probability 1, and trader 2
incorrectly believes that states s1 and s2 always occur with equal probability.
Traders 1 and 2 have endowment stream (1, 0, 0, . . .) which does not vary
with states. Trader 3’s endowment stream is e3

1 = 0 and e3
t (σ) = 3/4 +

kNt(σ)Rt−1(σ)− kNt(σ)(1/2)(1 + (1/2)t) for t > 1, where Nt(σ) is the number
of occurrences of state 2 through time t on σ.

Markets are incomplete because there are two states at each date, only
one asset, and because traders would trade across states if they could. If we
added an independent asset we would have dynamically complete markets,
but no equilibrium would exist. Traders 1 and 3 are correctly certain that
only state one occurs so if consumption in state two has a positive price, and
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if they can construct an asset that pays off only in sate two, then they would
want to take an infinite short position in that asset. But in equilibrium,
consumption in state two cannot have a zero price as then trader 2 would
demand an infinite amount of it. So unless we (arbitrarily) constrain short
sales we cannot have an equilibrium with two independent assets. If we were
to constrain short sales then the asset structure would again not be equivalent
to complete markets.

This model has an equilibrium of plans, prices and price expectations
(Radner 1972) in which the price of the asset (in terms of the consumption
good) is, for every state,

qt =
1

2

(
1 +

(1

2

)t
)

.

On the actual path of states (s1, s1, . . . ) in this equilibrium, trader 3 supplies
1 unit of asset and traders 1 and 2 collectively demand 1 unit of asset at each
date. Trader 1’s wealth at date t is (1/2)t−1 and at each date he consumes
3/4 of this wealth. Trader 2’s wealth is 1 at each date and at each date he
consumes 1/2 of this wealth. Trader 3 consumes 3/4 at each date. So trader
1’s wealth and consumption converges to 0 even though he has correct beliefs
and trader 2 has incorrect beliefs. Although the details of the example are
complicated, the intuition is simple. At each date, trader 1 believes that the
rate of return on the asset is 2, while trader 2 believes it is 2 or 2k > 2 with
equal probability. Trader 2’s excessive optimism causes him to save more at
each date, so in the end he drives out trader 1.

It is more enlightening to understand how this example was con-
structed than it is to go through the details of verification of the equilibrium
claim. We constructed it as follows: Our idea was to fix some facts that
would allow us to solve the traders’ Euler equations, and then to derive pa-
rameter values that would generate those facts. Accordingly, we fixed the
gross rates of return on the asset at 2 and 2k in states s1 and s2, respectively.
We also assumed that traders 1 and 2’s total asset demand would be 1 on
the actual path. For an arbitrary gross return sequence the Euler equations
pinned down prices. We then turned to the supply side and chose an en-
dowment stream for trader 3 and a gross return sequence that would cause
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trader 3 to supply 1 unit of asset to the market at each date on the actual
path. The details of the construction of this example are in Appendix C.

Because we have a stochastic infinite horizon economy in which traders
with heterogeneous beliefs trade in incomplete markets the example is actu-
ally more complex than the intuition above might suggest. In an equilibrium
we require that for any sequence of past states, each trader correctly forecast
prices for all future states. This requires construction of endowments and
demands for all partial histories, including partial histories to which a trader
assigns probability 0. Traders 1 and 3 place zero probability on any history
with an occurrence of state 2 so their beliefs and thus their demands could
be defined arbitrarily. We have chosen to require a form of sequential ratio-
nality in which each trader continues to forecast prices correctly and applies
his original i.i.d. beliefs to the future even after seeing an impossible (from
his point of view) partial history of states.

In our example the over-optimistic trader drives out the trader on the same
side of the market with rational expectations. If markets were complete,
trader 1 would be able to bet with trader 2, and his more accurate forecasts
would allow him to systematically benefit at trader 2’s expense.

It is tempting to conclude that overly optimistic beliefs have a distin-
guished role in this analysis. In fact there is no general result. Our method
also allows us to construct examples for other risk aversion parameters. When
the risk aversion coefficient is negative, optimism causes under-saving rather
than over-saving. To drive out the rational trader in this case, the other
trader would have to be overly-pessimistic.

Finally, this example illustrates the difference between “fitness” and
happiness. Traders 1 and 2 have identical payoff functions and discount
factors, and so there is some sense to asking who envies whom. Clearly
trader 2 prefers the present discounted value of trader 1’s realized utility
stream to his own. Trader 2 is accumulating wealth share because he is
consuming less than trader 1. He prospers through excessive saving. This
example demonstrates a clear disconnect between utility maximization and
survival.
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The failure of the market selection hypothesis in this example is due to
inefficient intertemporal allocation. Blume and Easley (1992) forced agents to
have identical savings behavior and studied the effects of selection on portfolio
choices. The next example shows how, even when investors have identical
savings behavior, portfolio effects can cause incorrect beliefs to survive and
even prosper.

Example: Portfolio Choice Effects.
Consider an economy with two assets and 3 states. Asset 1 pays off 1 unit of
the consumption good in state 1 and 0 in the other two states. Asset 2 pays
off 0 in state 1, but 1 unit in each of states 2 and 3. There are three traders
with logarithmic payoff functions and common discount factor β. The state
probabilities and beliefs are described in the following table:

states

s1 s2 s3

truth 1/2 1/2− ε ε

trader 1 1/2 1/2− ε ε

trader 2 1/2 ε 1/2− ε

trader 3 1/2 1/2− ε ε

The parameter ε > 0 is small. Traders 1 and 3 have rational expectations,
while trader 2 does not. As before, trader 3’s role is to sell assets to traders
1 and 2. Traders 1 and 2 have a state-independent endowment: ei

1 = 1/2
and ei

t ≡ 0 for t > 1. Trader 3’s endowment is also state independent: e3
1 = 0

and e3
t = 1 for t > 0.

There is an equilibrium such that for all t and σ, q1
t (σ) = q2

t (σ) = β/2.
In equilibrium trader 3 supplies 1 unit of each asset. Each trader attributes
to asset 2 the same distribution of returns, and so both traders hold identical
amounts of both assets. Consequently the distribution of wealth between
traders 1 and 2 remains unchanged.

To push this point farther, consider the following configuration of
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beliefs where δ > 0 is small:

states

s1 s2 s3

truth 1/2 1/2− ε ε

trader 1 (1− δ)/2 (1/2− ε)(1 + δ) ε(1 + δ)

trader 2 1/2 ε 1/2− ε

Because the traders have logarithmic utility, their portfolios maximize their
expected growth rates of wealth. Trader 1 has slightly incorrect beliefs while
trader 2 has grossly incorrect beliefs. But because trader 2 has correct beliefs
about the states over which trades can be made his beliefs lead him to make
the same decisions that a trader knowing the truth would make. Trader 1 has
incorrect beliefs over these states so he will do something else. Consequently
trader 1 will vanish and trader 2 will dominate the market.

In this example, relative entropy is simply the wrong measure. What we care
about is choosing the portfolio with the highest expected growth rate at each
date. When markets are complete, the expected growth rate of the optimal
portfolio increases as the relative entropy of beliefs with respect to the truth
decreases. When markets are incomplete this need not be the case.

In the first part of this example, traders 1 and 2 both have correct
beliefs about the sum of probabilities for states two and three. No asset
has a payoff that differs between states two and three, and so both traders
survive. In the second part of this example, trader 1 has incorrect beliefs
about the sum of probabilities for states two and three, while trader 2’s
beliefs about this sum remain correct. So now trader 1 vanishes. Clearly,
what matters in this example is beliefs relative to set of states across which
trade is possible. Sandroni (2004) builds on this example to show that in some
incomplete market economies it is possible to determine a survival condition
based on market entropy–the entropy of beliefs restricted to the state space
partition generated by assets. We caution however, that his economies are
very restrictive: there are only two periods so savings rates do not matter,
all securities payoff in 0 or 1 unit of the good, and states are sequences of iid
draws of a random variable.
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6 Conclusion

This paper has examined the long-run survival of traders with different be-
liefs and discount factors in complete and incomplete markets. Our complete
market analysis proceeded by examining Pareto-optimal paths. In short, we
have shown that the long-run fate of market participants is determined by
discount factors and beliefs alone, and not payoff functions.19 Trader j’s
survival is determined by the growth rate of the discounted value of the
inverse of the likelihood ratio of trader j’s marginal beliefs through period
t to the true marginal distribution of the first t states. As unwieldy as it
may seem, this object can be manipulated to evaluate the survival proper-
ties of Bayesian learning versus other rules, the impact of prior beliefs on
the survival of Bayesian learners, and the trade-off between discount factors
and learning rates. In particular, the market selection property, that ceteris
paribus, traders with the best beliefs survive, is valid for all complete mar-
kets, regardless of the asset structure. The results for incomplete markets are
strikingly different. In simple examples we show that payoff functions mat-
ter for survival, and that even controlling for payoff functions, less accurate
beliefs may survive while more accurate beliefs disappear.

Our results explain how various authors have obtained differing an-
swers to the market selection question. Sandroni (2000) obtains a positive
answer because the Lucas trees economy he considers has dynamically com-
plete markets and thus his allocations are Pareto optimal. Blume and Easley
(1992) obtain a negative answer because with exogenously fixed savings rates
the allocations we analyzed are not Pareto optimal. DeLong, Shleifer, Sum-
mers, and Waldmann (1990) does not provide an answer to the question.
They show that irrational traders can earn higher expected returns than
rational traders, but as they note in their 1991 paper this does not mean
that irrational traders survive. DeLong, Shleifer, Summers, and Waldmann
(1991) claim a negative answer, but they study an economy in which prices
are kept fixed even though the wealths of rational and irrational traders are
changing. The traders do not interact with each other—there are no mar-
kets in which an equilibrium is established. The resulting allocations are not
Pareto optimal.
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Our results have strong implications for long-run asset pricing. If dis-
count factors are uncorrelated with beliefs, then in the long run of a complete
markets economy, assets will be priced according to the beliefs of the trader
with the most accurate beliefs. This claim stands in contradiction to those
who have argued that the market is a super-aggregator of beliefs, and that
market prices can be more accurate than the beliefs of any one trader. It
also stands in direct contradiction to much of the rapidly growing behavioral
economics and behavioral finance literature. In that literature, traders are
often assumed to behave irrationally in that they maximize expected utility
with incorrect beliefs which are updated according to various psychologically
motivated rules. Of course such irrational behavior exists, but economists
used to believe that it did not matter for asset market aggregates such as
prices. Our analysis shows that this old idea is correct in some settings and
not correct in others. In every market there are selection pressures that can-
not be ignored in determining long-run asset prices. In complete markets,
these pressures are strong enough that, in the long run, noise traders have no
impact on asset prices. When markets are incomplete, however, it is conceiv-
able that noise traders persist, and that assets may be mis-priced even in the
long run. However even here market selection works, and some behaviors will
be advantaged over others, with consequent implications for long-run prices.
Further investigation of this topic is a promising subject for future research.

Our analysis is long-run, and so its relevance depends upon how long
the long run actually is. We have two answers to this question. The first
comes directly from the model. In the case of discount rate differences,
convergence is driven by a geometric rate: (βj/βi)

t. When discount rates
are identical and beliefs are asymptotically different, again the driving rate
is geometric. When traders are learning at different rates, the rate at which
any one trader can disappear is slow because the differences in learning rates
can be small. This is the conclusion of Clarke’s and Barron’s Theorem,
and its application to Theorem 6. But the rate of asset price convergence
is determined not by the rate of divergence of their beliefs but by the rate
at which their beliefs converge to the truth, and this could be faster. The
second answer has to do with what time actually measures. If each period
is a year, the long run is really long. If each date is a second, the long run
may be quite short. We cannot know how long the long run is until we know
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the appropriate time scale of the model. We believe the relevant time scale
is the rate at which transactions take place. Each date is an opportunity
for portfolio change. In real, measured time, how fast can portfolio change
take place? In residential housing markets, portfolio change is very slow. In
securities markets, change is quite quick. Our point is that the answer to this
question is empirical, and the answer varies with the markets in question.

Since the long run fate of traders and long run prices can differ so
much in between complete and incomplete markets, it is natural to ask which
assumption is more nearly accurate. If markets are incomplete, some traders
are restricted from making trades they believe to be mutually beneficial. One
might expect markets to evolve to allow these trades under some conditions.
See, for example, Allen and Gale (1994) and Pesendorfer (1995). Whether
or not markets will end up being complete is an open question.

Loosely speaking, markets are incomplete when there are bets traders
would like to make that the market does not allow them to make. Whether
such bets exist depends upon how traders construe their world. If we take
belief heterogeneity seriously, we are required to recognize that there is a
subjective element to the state space; two traders could have completely
different world views, and those views could be characterized by two quite
distinct state spaces. Admitting this subjectivity raises issues for how mar-
kets could actually achieve completeness. One possibility, raised by Ross
(1976), is that in securities markets, for example, the only relevant bets
are on asset movements, and so options are a kind of universal asset which
completes markets regardless of how people construe the underlying states
of the world. Another possibility is that this subjectivity makes empty the
entire content of complete markets analysis. And this, obviously, is a very
interesting subject for future research.

Appendix A

The proof of Theorem 6 follows easily from Clarke and Barron’s Theorem,
and so understanding Theorem 6 requires intuition about the Clarke and
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Barron’s result (and the many theorems on the same theme which appear
in the statistics and econometrics literature). And although the proof of
theorems like Clarke and Barron’s are complicated, the intuition is straight-
forward. What follows is not a proof, but a quick computation which explains
intuitively why the theorem should be true.

Suppose there are d+1 states, s0 through sd. The likelihood function

for n observations is pθ(σt) =
∏d

j=0 θ
kj(σ

t)
j , where θj is the probability of state

sj and kj(σ
t) is the number of sj’s in t observations. Since θk = 1−

∑d−1
j=0 θj

there are only d independent parameters, and Θ is thus d-dimensional. Sup-
pose that the true θ is the vector θ0. Then

ρ(σt) =

∫ 1

0

· · ·
∫ 1

0

pθ(σt)q(θ) dθ

=

∫ 1

0

· · ·
∫ 1

0

q(θ) exp
{∑

j

kj(σ
t) log θj

}
dθ

≈
∫ 1

0

· · ·
∫ 1

0

q(θ) exp
{

t
∑

j

θ0
j log θj

}
dθ

= exp
{
tH(θ0)

}∫ 1

0

· · ·
∫ 1

0

q(θ) exp
{

t
(
H(θ)−H(θ0)

)}
dθ

where H(θ) =
∑k

j=0 θ0
j log(θj) and the approximation comes from the SLLN.

Suppose this approximation were exact. The function H(θ) is max-
imized at θ = θ0, and so H(θ) = H(θ0) + 1

2
(θ − θ0)TH ′′(θ0)(θ − θ0) + · · · .

Thus the integral is approximately

exp
{
tH(θ0)

}∫ 1

0

· · ·
∫ 1

0

q(θ) exp
{ t

2
(θ − θ0)TH ′′(θ0)(θ − θ0)

}
dθ

and the symmetric matrix H ′′(θ0) is negative definite. The Fisher information
matrix is I(θ) = −H ′′(θ).

Now expand the density: q(θ) = q(θ0) + q′(θ0)(θ− θ0) + ·. Substitute
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this and calculate to see that the integral is approximately

q(θ0) exp
{
tH(θ0)

}∫ +∞

−∞
· · ·
∫ +∞

−∞
exp
{ t

2
yTH ′′(θ0)y

}
dy+

exp
{
tH(θ0)

}∫ +∞

−∞
· · ·
∫ +∞

−∞
q′(θ0)y exp

{ t

2
yTH ′′(θ0)y

}
dy

after a change of variables (and observing that there is no cost to running
the domain of integration over the whole real line taking q(θ) to be 0 outside
the unit interval).

The second term, when multiplied by an appropriate scale factor,
is the expectation of a linear combination of mean 0 normally distributed

random variables with covariance matrix −
(
tH ′′(θ0)

)−1
, and so its value is 0.

Similarly, the first term after rescaling is the integral of the multivariate
normal density over its entire range. Thus the first integral evaluates to(

2π

t

)d/2(
1

det−H ′′(θ0)

)1/2

Now pθ0
(σt) is approximately etH(θ0), and so

pθ0
(σt)

ρ(σt)
≈
(

t

2π

)d/2√
det I(θ0)

1

q(θ0)
.

Thus the value of the ratio in Clarke and Barron’s Theorem is approximately

log
pθ0

(σt)

ρ(σt)
≈ d

2
log

t

2π
+

1

2
log det I(θ0)− log q(θ0)

The chi-squared term in Clark and Barron’s Theorem is due to the remainders
from the two SLLN approximations.20
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Appendix B

Proof of Theorem 1. Choose an arbitrary trader j. From (3),

ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ)

) =
λj

λi

pj
t(σ)

pi
t(σ)

(9)

The first ratio above is a fixed number. The second ratio is a non-negative
martingale with mean 1 under pi, and so converges pi-almost surely. Thus, pi-
almost surely, Lemma 1’s necessary condition for vanishing fails to hold.

Proof of Theorem 2. From equation (3),

λi

λj

ui′ (ci
t(σ))

uj ′ (cj
t(σ))

=
pj

t(σ)

pi
t(σ)

= Lij
t (10)

Suppose there is a measurable subset A of V such that pj(A) > 0 and pi(A) =
0. Then there is a measurable set B ⊂ A such that pj(B) = pj(A) > 0 and
pj

t(σ)/pi
t(σ) → ∞ for all σ ∈ B. Consequently equation (10) implies that

ci
t(σ) → 0 on B, which contradicts the hypothesis.

Proof of Theorem 3. By Theorem 1, j survives pj-almost surely. Since p is
absolutely continuous with respect to pj this implies that j survives p-almost
surely. Theorem 2 implies that p is absolutely continuous with respect to
pi.

Proof of Theorem 4. It is sufficient to show that the necessary condition for
vanishing is pθ-almost never met for µi-almost all θ. Consider an arbitrary
trader j. The likelihood ratios Lij

t are a non-negative martingale with mean
1 under pi, and so they converge pi-almost surely. Since pi is a mixture of the
pθ, pθ(lim supi L

ij
t = ∞) = 0 for all but a set of zero measure with respect

to trader i’s prior belief. Extending this to all j 6= i, the necessary condition
for vanishing fails as required.
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Proof of Theorem 5. This is an immediate consequence of Theorem 2. Ob-
serve that if the conclusion of Theorem 5 were false, then pj is not absolutely
continuous with respect to pi, contradicting Theorem 2.

Proof of Theorem 6. Consider the form of the first order conditions given in
equation (5). Since discount factors are identical, this becomes

log
ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ))

) = log
λj

λi

+ log
pθ

t (σ)

pi
t(σ)

− log
pθ

t (σ)

pj
t(σ)

(∗)

Choose δ ∈ (0, 1/2). From Clarke and Barron’s Theorem we can assert that
for all θ ∈ Θ′, for all ε > 0 there is a T such that for all t > T ,

pθ

{
log

pθ
t (σ)

pi
t(σ)

<
(d− δ)

2
log t

}
< ε

and

pθ

{
log

pθ
t (σ)

pj
t(σ)

>
(d′ + δ)

2
log t

}
< ε

Consequently for all B > 0 and ε > 0 there is a T such that for t ≥ T ,
pθ{ui′/uj ′ < B} < ε. In other words, ui′/uj ′ ↑ ∞ in probability, and so ci

t

converges to 0 in probability.

For almost all θ ∈ Θ/Θ′, trader i will survive almost surely according
to Theorem 4. To see that trader j vanishes, expand the logarithms in
equation (∗) and divide by t. The right hand side becomes

1

t
log

λj

λi

+
1

t

t∑
τ=0

(
log p(στ |θ)− log pi

τ (στ |στ−1)
)

− 1

t

t∑
τ=0

(
log p(στ |θ)− log pj

τ (στ |στ−1)
)

The first term converges to 0. Applying the SLLN, the first term in each par-
enthetical expression converges to

∑
s p(s|θ) log p(s|θ), the entropy of p(·|θ).
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Because Bayes learning is consistent for trader i, limt p
i(s|σt) con-

verges pθ-almost surely to p(s|θ). Therefore the time average of this term
also converges to the entropy of p(·|θ), and so the expression for trader i
converges almost surely to 0. Bayes learning is inconsistent for trader j since
the truth is outside the support of her prior belief. The standard convergence
argument for the consistency of Bayes estimates from an iid sample shows
in this case that the support of posterior beliefs converges upon those which
minimize the relative entropy

∑
s p(s|θ) log p(s|θ)/p(s|θ′) over θ′ ∈ Θ′. Sup-

pose wlog that θ /∈ cl Θ′. Then this minimum is some K > 0. Consequently
trader j’s term converges to K. Thus (1/t) log ui′ (ci

t)/u
j ′ (cj

t) converges al-
most surely to −K < 0, and so log uj ′ (cj

t)/u
i′ (ci

t) converges almost surely
to ∞. We see from Lemma 1 that trader j disappears almost surely.

Proof of Theorem 7. When discount rates differ, equation (∗) in the proof
above must be modified as follows:

log
uj ′
(
cj
t(σ)

)
ui′
(
ci
t(σ))

) = log
λi

λj

+ t log
βi

βj

+ log
pθ

t (σ)

pj
t(σ)

− log
pθ

t (σ)

pi
t(σ)

(∗∗)

Suppose that βi > βj. We see from the proof of Theorem 6 that in probability
the last two terms diverge to −∞ at a rate no faster than log t, while the
discount factor term diverges to +∞ at rate t. Consequently for all B > 0
and ε > 0 there is a T such that for t ≥ T , pθ{uj ′/ui′ < B} < ε. In other
words, uj ′/ui′ ↑ ∞ in probability, and so cj

t converges to 0 in probability.

Proof of Theorem 8. Beginning with equation (4) we have

log
ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ)

) = log
λj

λi

+ t log(
βj

βi

) +
t∑

τ=0

Zi
τ (σ

τ−1)−
t∑

τ=0

Zj
τ (σ

τ−1)

A.5 and the definitions together guarantee that 0 < Zk
t (στ−1)] < B for all

k, t, σ. A SLLN due to Freedman (1973) implies that
∑t

τ=1 Zk
τ (στ−1)/Z̄k

t (σt−1) →
1 almost surely, and so there are random variables Ak

t (σ
t) converging to 1

almost surely such that

log
ui′
(
ci
t(σ)

)
uj ′
(
cj
t(σ)

) = log
λj

λi

+ t log(
βj

βi

) + Ai
tZ̄

i
t(σ

t−1)− Aj
t Z̄

j
t (σ

t−1) (11)
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On the event that limt

[
t log

(βj

βi

)
+ Z̄i

t(σ
t−1) − Z̄j

t (σ
t−1)
]

= +∞, the right
hand side of 11 almost surely diverges to +∞ and from Lemma 1 it follows
that ci

t → 0.

Appendix C

We will adopt a different notation just for this section. The expression c(σt)
refers to consumption after the partial history σt has been realized. The
expression c(σt, s) refers to consumption after the t + 1-length partial his-
tory consisting of initial segment σt followed by state s. The same notation
w(σt), a(σt), e(σt) and q(σt) will be used for wealths, asset demands, trader
3’s endowment and asset prices. It will be clear from the context whose
consumption any expression refers to.

We first need to solve each trader’s decision problem given the con-
jectured price process. We assume that even after partial histories which are
impossible given trader 1’s beliefs, he continues to believe that only state 1
can occur in the future. For each partial history the Euler equation for trader
1 is

c(σt)−1/2 = 2βc(σt, 1)−1/2

The 2 on the right hand side in in this equation is the state 1 rate of return
on the asset at the proposed prices.

With β = 8−1/2, the Euler equation implies that c(σt, 1) = c(σt)/2.
Let at(σ

t) denote the trader’s asset demand and w(σt) denote his wealth.
Suppose that c(σt) = 3w(σt)/4. We will check that this is a solution to
trader 1’s optimization problem. At each partial history, the budget con-
straint requires that the value of current consumption plus current asset
transactions must equal current wealth. So a(σt) = w(σt))/

(
2(1 + (1/2)t)

)
.

Then a computation shows that trader 1’s wealth at date t + 1 will be
w(σt)/2 if state 1 occurs and kw(σt)/2 if state 2 occurs. So consumption
at date t + 1 in the only state that matters to trader 1, state 1, will be
c(σt, 1) = (3/4)(1/2)w(σt) = c(σt)/2. So the conjectured consumption plan
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satisfies the Euler equation. Since it is feasible and satisfies the Euler equa-
tion, it is optimal. The evolution of trader 1’s wealth produced by this plan
is

w(σt) = (1/2)t−1kNt(σ)

where Nt(σ) is the number of occurrences of state 2 on path σ by time t.
Using this it is immediate that trader 1’s budget constraint is satisfied at
each date. Given the proposed prices trader 1’s decision problem clearly has
a solution and so the conjectured solution is in fact a solution to his problem.

Trader 2 believes that both states are possible, so his Euler equation
is

c(σt)−1/2 = β
(1

2
2c(σt, 1)−1/2 +

1

2
2kc(σt, 2)−1/2

)
Now we suppose that c(σt) = wt(σ

t)/2. Then a(σt) = wt(σ
t)/(1 + (1/2)t),

and a computation shows that trader 2’s wealth at date t+1 will be w(σt, 1) =
w(σt) if state 1 occurs and w(σt, 2) = kw(σt) if state 2 occurs. So the Euler
equation will be satisfied if and only if(1

2
w(σt)

)−1/2

= β

((1

2
w(σt)

)−1/2

+ k1/2
(1

2
w(σt)

)−1/2
)

For the given values of β and k, this equation is satisfied. So the conjectured
consumption plan satisfies the Euler equation and as before it is a solution
to the decision problem. The evolution of trader 2’s wealth produced by this
plan is

w(σt) = kNt(σ)

The total demand for the asset from traders 1 and 2 is kNt(σ). We will
construct trader 3’s endowment stream so that supplying this amount of the
asset is optimal for him. Trader 3’s Euler equation is

c(σt)−1 = 2βc(σt, 1)−1

Since for trader 3, β = 1/2, this implies that c(σt) is constant. Suppose that
c(σt) = 3/4. Using the asset demand from traders 1 and 2 we have that
trader 3’s endowment, e(σt), must solve for each t > 1 and σt,

e(σt) = 3/4 + kNt−1(σ)Rt−1(σ
t)− kNt(σ)q(σt)
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and e1 = 0. The right hand side of this equation is strictly positive, so we will
take it to be trader 3’s endowment, guaranteeing that for him it is optimal
to provide 1 unit of asset in every partial history.

The prices q(σt) clear the asset market at each date since at these
prices trader 3 supplies the amount of asset demanded by traders 1 and 2.
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Notes

1DeLong, Shleifer, Summers, and Waldmann (1991) is a partial equilib-
rium model and makes many approximations that, we think, limit the value
of the analysis.

2More precisely, attitudes toward risk within the class of strictly concave
utility functions satisfying an Inada condition have no effect on survival. See
section 4 for more on this point.

3We do not address existence of competitive equilibrium in our setting.
The Pareto optimal allocations we consider do exist so our results provide a
characterization of any complete or dynamically complete markets equilib-
ria that exist. Existence of complete market equilibria is well understood,
but the existence of equilibria when the market structure is endogenous can
be difficult to establish. Sandroni (2000) does not address existence of the
equilibria he considers.

4This does not contradict the previous statement about survival of Bayes-
ians as the lower dimensional set has prior measure zero for the Bayesian with
higher dimensional support.

5When multiple traders have correct beliefs then having correct beliefs is
necessary for survival, but it is not sufficient.

6We allow utility functions to take on the value −∞ at 0 in order to
accommodate CRRA utility with risk-aversion coefficient at least 1.

7We consider statistical learning rules which modify beliefs and individ-
uals who act optimally given their beliefs. Individuals who learn by by di-
rectly modifying their actions according to some adaptive process, such as
reinforcement learners, do not fit into our framework.

8This construction includes forecasting rules generated by Bayesian learn-
ing.

9All of these analyses work off of the Euler equations which characterize
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optimality for the owner of a firm in Blume and Easley (2002), an investor
in an asset economy for Sandroni (2000) and for Pareto optimal allocations
here. The technique in Blume and Easley (2002) is similar to that used here,
but the economic question is very different. In Blume and Easley (2002) the
economy is deterministic and the selection is over firms rather than traders.
Both Blume and Easley (2002) and Sandroni (2000) apply this technique to
Euler equations for individuals in an equilibrium setting and so are concerned
with equilibrium prices. The approach here is more direct.

10We characterize Pareto optimal allocations in which each trader is allo-
cated at some time, on some path, some of the good. So we only characterize
competitive equilibrium allocations in which each trader’s endowment has
positive value. A trader whose endowment has zero value clearly has no
effect on the economy and we ignore such traders.

11For a complete discussion of the iid economy, see (Blume and Easley
2000).

12The proofs of the Theorems in this section all rest on the fact that, under
the stated hypotheses, trader i survives on the set where the likelihood ratio
of j’s forecasts to i’s forecasts remains bounded. This question is identical to
the issue of efficiency in Dawid’s (1984) development of prequential forecasting
systems.

13Kalai and Lehrer (1994) is an excellent discussion of the implications of
merging.

14The effect of this assumption is similar to Kalai and Lehrer (1993)’s
Grain of Truth assumption for learning to play a Nash equilibrium.

15More precisely this rule is not Bayesian given the maintained hypothesis
that the true process is iid.

16See also Dawid (1984) and Rissanen (1986). The key requirements are
suitable differentiability of the model and asymptotic normality of the maxi-
mum likelihood estimator of the parameters, which are certainly quite broad.

17See Sandroni (2001).
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18This condition requires that traders agree about zero conditional prob-
ability events in every partial history. This would be satisfied for example
if the world is iid with positive probability on some set of states S ′, traders
are Bayesians who know that the world is iid, and all of their models put
positive probability on S ′. Alternatively, the world could be T -step Markov
(conditional probabilities depend on the last T states) and traders could be
Bayesians who consider a class of Markov models each of which puts positive
conditional probability on the states that can actually occur. What it rules
out is true conditional probabilities that converge to zero or forecasts that
converge to zero for states that have positive probability. We show in an
example in the text that this condition is necessary for our analysis.

19This conclusion is modified in an obvious way if the Inada conditions are
not satisfied.

20Another way to understand this theorem is to see that it follows from
the SLLN approximations and Laplace’s method of integrating functions of
the form

∫
g(x) exp{tf(x)} dx where x has an interior maximum at x =

c. Laplace was the first to show that the integral just computed has an
asymptotic expansion whose highest order term in t is√

2π

−tf ′′(c)
g(c) exp{tf(c)}
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