Global Equity Index Changes and their Exchange Rate Impact

Harald Hau^{*}

INSEAD and CEPR

Massimo Massa**

INSEAD and CEPR

Joel Peress***

INSEAD

November 5, 2004

First Draft

Abstract

Do exchange rates react to exogenous capital movements? We explore this issue based on the redefinition of the MSCI international equity indices announced on December 10, 2000 and implemented in two steps on November 30, 2001 and May 31, 2002. The index changes implied major changes in the representation of different countries in the MSCI world index. Our event study shows a strong announcement effect in which countries with a decreasing equity representation depreciated against the dollar. Around the two implementation dates, we find further systematic, but opposite, exchange rate effects, which can be interpreted as a result of excessive speculation on the first implementation date and insufficient speculation on the second date.

Johann-Ruben Schaser provided outstanding research assistance. We also thank Tamas Calderwook from MSCI for his generous help with the data.

***Department of Finance, Boulevard de Constance, 77305 Fontainebleau Cedex, France. Telephone: (33)-1 6072 4035. Fax: (33)-1 6072 4045. E-mail: joel.peress@insead.edu. Web page: http://faculty.insead.fr/peress

^{*}Department of Finance, Boulevard de Constance, 77305 Fontainebleau Cedex, France. Telephone: (33)-1 6072 4484. Fax: (33)-1 6072 4045. E-mail: harald.hau@insead.edu. Web page: http://faculty.insead.fr/hau

^{**}Department of Finance, Boulevard de Constance, 77305 Fontainebleau Cedex, France. Telephone: (33)-1 6072 4481. Fax: (33)-1 6072 4045. E-mail: massimo.massa@insead.edu. Web page: http://faculty.insead.fr/massa

1 Introduction

To what extent do exogenous demand shocks move financial market prices? This question - generally referred to as the resilience of a market - has been examined extensively for individual equity prices.¹ Much less is known about the resilience of macroeconomic prices like the exchange rate. Yet exchange rates are particularly important for most economies and their alleged misalignment is at the core of a large literature on external imbalances.

The traditional portfolio approach to exchange rates (e.g., Brandson and Henderson (1985)) considers portfolio flows as an important source of exchange rate movements. The growing quantitative importance of equity flows has revived interest in the portfolio channel of exchange rate theory.² While the correlation structure between capital flows and exchange rate movements has been the subject of much empirical research, causal inference is hampered by a lack of clear identification. Generally, flows may trigger exchange rate movements or inversely returns may induce the flows from trend chasing investors.

This paper examines a unique natural experiment in which the effects of flows on the exchange rate can be measured for truly exogenous portfolio flows. On December 10, 2000, a redefinition of the MSCI international equity indices was announced and then implemented in two steps on November 30, 2001 and May 31, 2002. The index redefinition led to a considerable reweightings of many countries in the global MSCI indices. Such a change in the representation of a country has important consequences for international portfolio managers who benchmark their equity holdings against the MSCI index. Approximatedly 500 billion dollars may be directly indexed to MSCI equity indices. Given that the global MSCI index plays the role of the global market portfolio, an up- or downweighting of a country can be expected to trigger an exogenous capital in- or outflow. This natural experiment allows us to identify exogenous international capital flows.

We show that capital flows by themselves do substantially move exchange rates. In particular, we provide direct evidence on the limited resilience of the exchange rate market to exogenous demand shocks. We show that the exchange rate impact of the reallocation of equity induced by the index redefinition is significant in both statistical and economic terms. The exchange rate return differential between the 19 least and the 18 most downweighted countries is approximately 3 percent over a 20 day event window around the announcement day of the index change. The corresponding average weight change for the two sample groups is -17.0 percent and -70.9 percent, respectively.

Our paper contributes to the existing debate on the determinants of exchange rate, providing evidence in favor of an equity market channel, i.e. that exogenous capital flows do indeed move exchange rates. Understanding the quantitative impact of equity flows on exchange rates is not only important

¹We use the term "resilience" here to denote the price impact with respect to uninformative demand shocks as opposed to market depth which refers to the price impact of general order flow (from both informed and uninformed investors).

 $^{^{2}}$ See for example Froot et al. (2001); Froot and Ramadorai (2004); Hau and Rey (2004); Richards (2004) and Siourounis (2004).

for international portfolio managers, but also for policy makers. Monetary authorities for example need to gauge the resilience of the exchange rate market if they wish to affect the exchange rate though open market purchases. Perfect exchange rate resilience render exchange rate intervention ineffective.

A second contribution of the paper consists in exploring the limits of arbitrage in the foreign exchange market. The relative long delay between the announcement and the implementation of the index change turn the index redefinition also into an experiment on the limits of intertemporal forex arbitrage. Perfect arbitrage implies that the entire exchange rate effect should be concentrated around the announcement date of the index change, while imperfect arbitrage allows for a simultaneous systematic effect on the implementation date. We show that the FX arbitrage is indeed imperfect since we find a statistically significant effect for both implementation dates. But surprisingly, the implementation effects have opposite signs. The first implementation date appears to be characterized by excessive risk arbitrage, while the second date is marked by insufficient arbitrage on the part of the FX speculators. This finding is consistent with expectational errors or coordination problems among speculators, but cannot be explained by capital constraints on the part of the speculators.

The paper is structured as follows. In the following section, we discuss the testable hypotheses. In Section 3, we discuss the literature. Section 4 describes the institutional background and provides summary statistics on our experiment. In Section 5, we explain the statistical methodology. We undertake nonparametric tests, a cross-sectional analysis and panel regressions to measure the exchange rate and equity price impact of the index redefinition. The results are presented in section 6.1 for the announcement day and in section 6.2 for the implementation dates. A brief conclusion follows.

2 Hypotheses

The following section develops 3 hypotheses and testable restrictions which help us structure our empirical analysis. The index redefinition presents a natural experiment in which the equity flows result from exogenous rebalancing needs of the global index funds. This implies that these flows are not related to asymmetric information shocks or other endogenous shocks. The event study therefore allows us to assess directly the so-called resilience of the exchange rate market, namely the elasticity of the price with respect to uninformative and exogenous demand shocks. We formulate hypothesis H1 as the resilience hypothesis:

H1: Complete exchange rate resilience to index change

Any reallocation by index funds are fully substituted by fundamental investors so that the total exchange rate impact around both announcement and implementation of the index change is zero. A resilient exchange rate implies that portfolio managers do not have to account for an exchange rate impact of their portfolio reallocations. But it also means that central banks cannot manipulate the exchange rate through open market interventions. The alternative hypothesis is limited resilience of the foreign exchange market. In that case, the MSCI index change can have a measurable exchange rate impact, which may occur either around the announcement or the implementation dates. Any systematic effect on the implementation dates implies the existence of unexploited risk arbitrage opportunities. Therefore, under perfect intertemporal risk arbitrage, the reallocation effect on the exchange rate should be concentrated exclusively around the announcement date. No systematic effect should occur on the implementation date. We refer to this as the perfect risk arbitrage hypothesis:

H2: Perfect Risk Arbitrage

At the announcement date, the market perfectly anticipates future portfolio reallocations and adjusts fully. Countries which are up-weighted (down-weighted) in the index experience an exchange rate appreciation (depreciation). No exchange rate effect occurs on the implementation date.

Finally, we discuss the possible breakdown of intertemporal arbitrage. This may be due to the fact that capital constraints on the part of the speculators limit arbitrage (Vishny and Shleifer (1997)). In that case, the exchange rate adjustment on announcement is only partial and the residual adjustment coincides with the actual equity reallocated around the implementation dates. Alternatively, perfect arbitrage may fail because of expectational errors of the speculators. These may either over- or underestimate the amount of capital reallocated by index funds or miscalculate the inventory accumulation of other speculators. The latter amounts to coordination failure of the speculators. Expectational errors may lead to either insufficient or excessive arbitrage subsumed in the following hypothesis:

H3: Imperfect Risk Arbitrage

Imperfect risk arbitrage allows for an announcement effect and an implementation effect. If the arbitrage failure results from *insufficient risk arbitrage*, up-weighted (down-weighted) countries see their exchange rates appreciate (depreciate) on the implementation dates. If, instead, the arbitrage failure results from *excessive risk arbitrage* the exchange rate change on the implementation dates correlates positively with the weight change.

The exact nature of the arbitrage failure has very different policy implications. Arbitrage failures due to capital contraints are expected to become less important as the hedge fund industry grows. If imperfect arbitrage originates in incomplete information, instead, it can presumably be addressed by better public information provision on index funds. Only a coordination failure among the speculators about the optimal inventory policy cannot be resolved by either more risk capital or better public information.

3 Literature

3.1 Event Studies on Price Pressure

Our own work is methodologically related to event studies on changes in the composition of national stock indices. These event studies have focused on the S&P500 index and the impact of stock in- and exclusions on the respective stock price. The main finding is that index inclusions (exclusions) increase (decreases) share prices (Garry and Goetzmann (1986), Harris and Gurel (1986), Shleifer (1986), Dillon and Johnson (1991), Beniesh and Whaley (1996), Lynch and Mendenhall (1997). Similar effects have been documented in studies of index additions in other countries (e.g., Masse *et al.* (2000)).³

While the exogenous nature of the index inclusion make these studies appealing, the price effect itself allows for at least three different interpretations. First it might come from a pure "demand effect" resulting from limits to arbitrage (Shleifer (1986, 1990)). Additions to the index induces more demand for a particular stock and pushes up the stock price. Only under perfect stock substitutability could the demand effect be arbitraged away in a riskless manner. A second interpretation argues in favor of an "information effect" related to the index inclusion. The index addition provides new information to the market that is directly impounded into prices. This interpretation is supported by recent findings on analysts behavior around additions (Denis, McConnell, and Ovtchinnikov (2003)). A third interpretation highlights the "liquidity effect". An index addition increases the liquidity of a particular stock and reduces therefore its trading costs, which should be reflected in a price increase. Scarce and contradictory evidence has been found on the latter effect.⁴ For macroeconomic prices like the exchange rate, only the demand effect appears to be plausible. Limited exchange rate resilience presents therefore more clear-cut evidence in favor of limited asset substitutability than price effects documented for individual stocks.

3.2 Time Series Evidence on Price Pressure

Apart from the event studies above, a broader literature assesses whether demand and supply shocks correlate with individual stock price returns. Studies on block purchases and sales of stocks as well as the trades of institutional investors have consistently uncovered evidence of temporary price pressure

 $^{^{3}}$ While the short-term price effect of index inclusion is uncontroversial, the persistence of the price effect is debated. Shleifer (1986) argues that when a firm is added to the S&P500, its stock price permanently increases by 2.79 percent. These findings are consistent with Garry and Goetzmann (1986) and Beneish and Whaley (1996) who do not find a reversal of the short-term announcement return. On the contrary, Harris and Gurel (1986), and Lynch and Mendenhall (1997) provide evidence for reversal. Stock price moves on a listing or delisting day were partially reversed in the next trading session.

⁴For example, Beneish and Whaley (1996) find a permanent increase in the trading volume but only a temporary decrease in the quoted spread. This leads them to reject the liquidity hypothesis. On the contrary, Hegde and McDermott (2003) show a long-term sustained increase in the liquidity of the added stocks and argue that it can be explained in terms of a reduction in the direct cost of transacting.

on individual securities conditional upon unusual demand or supply (Lakonishok, Shleifer and Vishny (1991,1992), Chan and Lakonishok (1993, 1995)). In the international finance literature, Froot, O'Connell and Seasholes (1998) have shown that local stock prices are sensitive to international investor flows, and that transitory inflows have a positive future impact on returns. Focusing on mutual funds, Warther (1995) and Zheng (1999) have documented that investor supply and demand effects may aggregate to the level of the stock market itself. Goetzmann and Massa (2002) show that, at daily frequency, inflows into S&P500 index funds have a direct impact on the stocks part of the index. Generally, the results in this literature are contingent on the identification assumptions which are implicitly or explicitly made. Hence, in contrast to the event studies cited above, causal inference remains problematic.

3.3 Price Pressure for Exchange Rates?

The traditional portfolio approach to exchange rates has viewed assets in different currencies as imperfect substitutes. This implies a downward sloping demand also for foreign exchange balances. Empirically, the portfolio balance theory enjoyed little empirical support. But the important growth of international equity flows in recent year has revived the interest in the asset market approach to exchange rate. Hau and Rey (2003) provide microfoundations to the portfolio balance theory in a dynamic incomplete market framework. They derive a positive correlation between capital flows and exchange rate returns and find empirical support for the model implications. Froot and Ramadorai (2004) use a simple VAR framework to document very persistent exchange rate effects related to U.S. institutional in- and outflows. Pavlova and Rigobon (2003) and Hau and Rey (2004) use model-based identification assumptions to assess the role of capital flows for exchange rate movements. In all these studies causal inference is contingent on the validity of the identification assumptions.

Evans and Lyons (2002a, 2002c) develop models of FX tading in the presence of dispersed information. They argue that the empirically strong correlation between FX order flow and exchange rate returns is due to the fact that order flows proxy for aggregate information flows. In a related paper, they show that price impact per dollar traded is about 10 percent higher per news announcement in the previous hour (Evans and Lyons (2002b)). The MSCI index change in our setting is unlikely to represent a source of macroeconomic information and therefore allows us to abstract from the "information-based price impact hypothesis".

The resilience of the exchange rate is also at the core of a literature on the effectiveness of central bank interventions (Edison (1993)). Recent studies based on microeconomic data provide evidence that central bank interventions indeed create a price effect. Payne and Vitale (2003) show price pressure effects for interventions by the Swiss central bank. Dominquez (2003) documents a short-term daily and intra-day volatility effect related to central bank intervention. However, these studies on central bank interventions are inherently ambiguous about the nature of the exchange rate effect. Besides the traditional "portfolio effect" of the intervention, a so-called "signalling effect" provides an alternative interpretation of the data: central bank interventions may reveal information about the bank's future monetary policy. By contrast, the redefinition of the MSCI global equity index in our experiment is devoid of a signalling. We can thus measure the "portfolio effect" directly.

4 Institutional Background

4.1 MSCI and its Index Maintenance

Morgan Stanley Capital International Inc. (MSCI) is a leading provider of equity (international and U.S.), fixed income and hedge fund indexes. The MSCI Equity Indexes are designed to be used by a wide variety of global institutional market participants. They are available in local currency and U.S. Dollars (US\$), and with or without dividends reinvested.⁵ MSCI's global equity indexes have become the most widely used international equity benchmarks by institutional investors. Close to 2,000 organizations worldwide currently use the MSCI international equity benchmarks. Over US\$ 3 trillion of investments are currently benchmarked against these indexes worldwide and up to US\$ 500 millions are directly indexed. The indexes with the biggest impact are the MSCI ACWI (All Country World Index), which includes 50 of developed and emerging equity markets, the MSCI World Index (based on 23 developed countries), the MSCI EM (Emerging Markets) Index (based on 27 emerging equity markets), the MSCI EAFE (Europe, Australasia, Far East) Index (based on 21 developed countries outside of North America), the MSCI Europe (based on 14 EU countries (except Luxemburg), plus Norway and Switzerland).

Over time, MSCI's methodology has evolved in order to ensure that the equity index series continue to properly represent these markets and maintain its benchmark character. The design and implementation of the index construction is based on a broad and fair market representation. In theory, a total market index, representing all listed securities in a given market, would achieve this goal. However, in practice, a total market index including all the stocks would be difficult to use as a benchmark for the international investors. Therefore, MSCI builds up the indexes from industry group level by restricting itself to securities which are truly replicable in global institutional portfolios of reasonable size. To maintain the goal of broad and fair market representation and reflect the evolution of the underlying markets, the indexes must be reviewed regularly, which comprises inclusions and exclusions of index components. ⁶

MSCI commits in its published guidelines to the principles of transparency and independence from

⁵Aggregating individual securities by different criteria MSCI creates a broad base of indexes such as Global, Regional and Country Equity Indexes, Sector, Industry Group and Industry Indexes, Value and Growth Indexes, Small Cap Equity Indexes, Hedged and GDP-weighted Indexes, Custom Equity Indexes, Real Time Equity Indexes.

⁶The index maintenance can be described by three types of reviews. First, there are annual full country index reviews (at the end of May) in which MSCI re-assesses systematically the various dimensions of the equity universe for all countries. Second, there are quarterly index reviews (at the end of February, August, November), in which other significant market events are accounted for (e.g. large market transactions affecting strategic shareholders, exercise of options, share repurchases, etc.). Thirdly, ongoing event-related changes like mergers and acquisitions, bankruptcies or spin-offs are implemented as they occur.

outside interests. All reviews and changes are announced at least two weeks in advance or as early as possible prior to their implementation. Only in rare cases are events announced during market hours for same or next day implementation.⁷ While these above index revisions are part of a periodic review, we now describe the transition to the new index methodology which marked an exceptional redefinition of all of MSCI's equity indices.

4.2 The New Index Methodology

To better insure investibility and replicability of its indexes, MSCI has recently started to focus only on the free float instead of total market capitalization for each stock and to include other restrictions like Foreign Ownership Limits (FOLs) in different countries. On December 10, 2000, MSCI announced that it would adjust all its equity indexes for free float and increase target market representation from 60 percent to 85 percent. In order to reduce any abrupt market impact, MSCI also announced a two-step procedure for the transition. The equity indices should adjust 50 percent towards the new index on November 30, 2001 and the remaining adjustment was scheduled for May 31, 2002.

The new methodology differs from the previous equity index definition in two main points: a stock selection based on freely floating capital (as opposed to market capitalization) and an enhanced (or broader) market representation. MSCI defines the free float of a security as the proportion of shares outstanding that is available for purchase by an international investors. In practice, limitations on the investment opportunities of international institutional are common due to so-called "strategic holdings" by either public of private investors. Given that disclosure requirements generally do not permit a clear determination of what is a "strategic" investment objectives, MSCI classifies shareholdings based on grouping investor types into strategic and non-strategic investors. Freely floating shares include those held by individuals, investment funds, mutual funds and unit trusts, pension funds, insurance companies, social security funds and security brokers. The non-free float shares include the holdings of strategic shareholders such as governments, companies, banks (excl. trusts), principal officers, board members and employees. Moreover, non-free float is also defined in terms of foreign ownership restrictions. Such Foreign Ownership Limits (FOLs) can come from law, government regulations, company by-laws and other authoritative statements. MSCI free float-adjusts the market capitalization of each security using an adjustment factor referred to as the Foreign Inclusion Factor (FIF). For securities subject to FOLs, the FIF is equal to the lesser of the FOL (rounded to the closest 1 percent increment) and the free float available to foreign investors (rounded up to the closest 5 percent increment above 15 percent and to the closest 1 percent below a 15 percent free float). Securities with an FIF of less than 15 percent across all share classes are generally not eligible for inclusion to the MSCI indexes.⁸

⁷A more descriptive text announcement is sent out to clients for significant events like additions and deletions of constituents and changes in free float larger than US\$ 5 billion or with an impact of more than 1% of the constituent's underlying country index.

 $^{^{8}}$ Exceptions to this general rule are made only in significant cases, where exclusion of a large company would compromise

The second goal of the equity index modification was an enhanced market representation. In its new indices, MSCI targets a free float-adjusted market representation of 85 percent within each industry group and within each country, compared to the 60 percent share based on market capitalization in the old index. Because of differences in industry structure, the 85 percent threshold may not be uniformly achieved. Moreover, the occasional over- and under-representation of industries may also imply that the aggregate country representation may deviate from the 85 percent target.⁹

The overall index rebalancing effect is illustrated in Figure 1, which plots the percentage change in index weight for each country in the 'all country world index' (ACWI) as a function of the initial weight. It shows that most countries were in fact downweighted, and many by a considerable amount in percentage terms. The most important beneficiaries of the new methodology are the U.S. with a percentage weight increase of 12 percent, followed by the U.K. with an increase of 10.9 percent and Ireland by 11.4 percent. The main loosers in percentage terms are Columbia with a decrease by -98.3 percent, India by -97.1 percent, and the Czech Republic by -96.7 percent.

The initial sample consists of the 50 countries in the MSCI ACWI. We exclude the U.S. as the Dollar constitutes our reference currency. We also remove Turkey and Argentina because these countries experienced major currency crisis during the period of our analysis. Since the 11 countries in the Euro zone share one common exchange rate, we aggregate these observations into one so that the old (new) weight equals the sum of the 11 country weights in the old (new) index. The final sample consists of 37 countries with exchange rate data, of which 10 are from developed and 27 are from emerging markets. Summary statistics are reported in Table 1. Three countries, namely China, Malaysia and Hong Kong, maintained their currencies are pegged to the U.S. Dollar. Given that removing these 3 currencies did not significantly change the results, we decided to keep them.

Did the announcement of the major index revision take the market by surprise? There were certainly prior rumors about the free float adjustment. In July 2000, for example, the cover story of "Pensions & Investments" stated that "Morgan Stanley Capital International may change the way it weights companies in its indexes, a move with huge consequences for institutional investors". Nevertheless, it seems likely that many equity investors might not have been informed about the index redefinition prior to its announcement by MSCI.

5 Statistical Analysis

An index tracking fund confronted with the change of the index should generally rebalance its portfolio at or around the time of the implementation of the index revision. This timing will minimize the tracking error relative to the valid index. However, any possible price impact of the rebalancing may provide an

the index's ability to fully and fairly represent the characteristics of the underlying market.

⁹MSCI's bottom-up approach to index construction may lead to a large company in an industry group not being included in the index, while a smaller company from a different industry group might be included.

incentive for a more gradual move to the new index. Moreover, risk arbitrageurs are likely to anticipate the price impact of the index trackers and front-run their reallocation. The stronger the intertemporal risk arbitrage, the more price impact we expect around the announcement date relative to the implementation date. A price impact on both the announcement date and the implementation date suggests imperfect intertemporal arbitrage. We can therefore study the price impact in relationship to the weight change for the announcement date as well as for the two implementation dates.

Our exogenous and independent variable is the change in the index weight of a country. The relative index reweighting Δw is expressed in percentage terms (relative to the midpoint) as:

$$\Delta w_i = \frac{w_i^n - w_i^o}{\frac{1}{2} \left(w_i^n + w_i^o \right)}$$

where w_i^o and w_i^n represent, respectively, the old and new index weight of country *i*. For $\Delta w_i > 0$ we register an increased weight of country *i* in the index, which should come with an appreciation of its currency relative to other currencies. Because of the predominant role of the U.S. dollar currency in the global MSCI index, we express all exchange rate changes in dollar terms (foreign currency per dollar). Hence

$$\Delta e_i^s = \log E_{t+s} - \log E_{t-s},$$

denotes the (log) dollar exchange rate return over an event window of s (trading) days around the date t. For $\Delta e_i^s < 0$ country i experiences a currency appreciation.

The following statistical analysis proceed in three steps. First, we undertake a non-parametric Fisher test as the most robust inference. The Fisher test verifies if the ranking of the percentage weight change Δw_i and the exchange rate change Δe_i^s are uncorrelated. No distributional assumptions are made. Second, we undertake a cross-sectional OLS regression where the errors are assumed to follow a normal distribution. The currencies which are upweighted should on average experience an appreciation relative to the dollar, hence Δe_i^s should decrease. We therefore expect a negative coefficient for the regressor Δw_i . Third, we undertake panel regressions where we use both the intertemporal and cross-sectional structure of the data to identify the exchange rate impact of equity reallocations.

An ideal data structure would allow us to measure the exchange rate impact conditional on the day on which the actual portfolio reallocation occurs. Unfortunately, such high frequency equity flow data is generally not available. However, we can indirectly identify the days of enhanced equity reallocation by looking at the intra-EMU equity returns only. All EMU countries share one common exchange rate, but their respective equity market will still be affected by intra-EMU reallocations. After all, the MSCI Europe index was also revised. We can therefore propose a reallocation indicator which is based on the daily return differentials between all intra-EMU equity index returns. Formally, we define a "flow indicator":

$$FlowInd_t = \frac{1}{N} \sum_{i \in \text{ EMU}} \sum_{j < i \in \text{ EMU}} \frac{|\Delta r_{it} - \Delta r_{jt}|}{|\Delta r_{it}| + |\Delta r_{jt}|},$$

which sums over the absolute index return differences of all N = 55 the intra-EMU country pairs standardize by the sum of the absolute returns in each pair. Days of intense intra-EMU equity reallocation should imply large differential return movements and therefore be reflected in a large realization of our flow indicator. We highlight that all equity returns are denominated in Euros so that no exchange rate effect enters the our proxy. Furthermore, we assume that the global and the intra-EMU equity reallocation activity are correlated so that the proxy constructed from the European equity market returns can be used as a proxy for the global reallocation activity.

The intertemporal identification of the global reallocation activity from intra-EMU equity return data permits a more powerful panel specification since it introduces both cross-sectional as well as intertemporal variability. In particular we can interact the flow indicator with the percentage index weight change, Δw_i , in the following panel regression:

$$\Delta e_{it} = \alpha_0 + \alpha_1 \Delta w_i + \alpha_2 (FlowInd_t \times \Delta w_i) + \mu_{it}.$$

By construction, the regressor $FlowInd_t \times \Delta w_i$ is characterized by perfect positive or negative serial correlation across countries. The standard errors on the coefficients therefore need to be corrected for correlation across panel observations. Limited resilience implies negative values for either α_1 or α_2 .

5.1 Announcement Effect

The announcement of the new index methodology and of the time table for the transition to the new index took place on December 10, 2000. It seems plausible that some information leakage about the index change occurred prior to the actual announcement. The exchange rate impact might therefore not be limited to the announcement day itself. Also information diffusion and the interpretation of the announcement itself may occur with a time lag. We therefore opt for a symmetric 20 day event window around the announcement date.

In a first step, we split the sample of 37 countries into two subsamples containing the 19 least downweighted countries and the complementary group of most downweighted countries. Figure 2 shows an equally weighted exchange rate index representing the average exchange rate effect for each subsample. Clearly, least downweighted countries experienced a relative exchange rate appreciation relative to the dollar represented by the steeper decline of the exchange rate index. The gap in the exchange rate across the two groups grew continuously over the 20 trading day window around the announcement day. Both information leakage as well a slow information diffusion may explain the gradual nature of the exchange rate effect.

Figure 2 also gives insights into the economic significance of the exchange rate effect. Over the 20 day window, a 3 percent exchange rate gap occurs. The average percentage weight change in the sample of least downweighted countries is -17.0 percent, while the average percentage weight change in the

subsample of most downweighted countries is -70.9 percent. We conclude that the economic significance of the exchange rate effect is considerable.¹⁰

Next we discuss its statistical significance. Table 2, column (1) presents the results of a Fisher median test for the two subsamples. For every country, we compute cumulative currency changes over a 20 day window, Δe_i^{20} . The null hypothesis is that both the up- and downweighted subsample should be drawn from populations with the same median currency changes. The two-sided (one-sided) probability that the medians are equal across groups is 0.1 percent (0.1 percent). Thus, the Fisher test strongly rejects the hypothesis that exchange rate changes and weight changes are statistically independent.

As an alternative methodology, we use a OLS regression. We regress the cumulative currency changes, Δe_i^{20} , on the weight changes, Δw_i , and a constant. The results are displayed in Table 3, column (1). The slope coefficient is negative and significant at the 0.1 percent level using robust standard errors. The negative slope indicates that currencies with a weight increase tend to appreciate. The significant negative constant reflects a depreciation of the dollar against most sample currencies. The regression R^2 is 15.3 percent, a remarkably good fit as far as currency returns are concerned. The regression is illustrated in Figure 3 where the currency cumulative changes Δe_i^{20} are plotted against the country weight changes Δw_i together with the regression line.

Finally, we turn to the panel estimation. In order to use the panel structure of the exchange rate data, we need a proxy variable for global exchange rate reallocations. The flow indicator variable, $FlowInd_t$, defined in the previous section represents such a proxy. It assumes that (1) intra-EMU equity reallocations induce differential returns on the 11 intra-EMU equity market indices and (2) that these reallocations coincide with the global reallocations of the ACWI. The latter assumption seems plausible given that the redefinition of the MSCI Europe index coincided with the redefinition of all other MSCI indices, including the ACWI. We report the results of the feasible generalized leastsquares regression (FGLS) in Table 4, column (1). The coefficient α_1 for the weight change, Δw_i , captures the pure cross-sectional effect. It is correctly signed and its magnitude for the daily returns exceed (after multiplication by 20 for length of the window) the value of the pure cross-sectional regression in Table 3. The *t-statistic* shows a high level of statistical significance. The coefficient α_2 on the interaction term, $FlowInd_t \times \Delta w_i$, measures slope of the weight change as a function of intertemporal variations in the flow intensity. The coefficient has the expected negative sign and its high level of statistical significance justifies the proposed panel structure.

In summary, all the three statistical procedures deliver statistically very significant effects in the 20 day window around the announcement day of the index change. Upweighted countries experience a relative appreciation of their currency against the dollar. Experimentation with event windows of different size (namely 10, 15, or 25 days) give also statistically significant results, suggesting that our results are robust

¹⁰Any information leakage about the index change pior to event window implies that we tend to underestimate the exchange rate effect. The 3 percent exchange rate impact is therefore best interpreted as a lower bound on the exchange rate effect around the announcement day.

to variations of the window size. The evidence on the announcement effect clearly indicates limited resilience of the exchange rate to exogenous capital flows.

5.2 Implementation Effect

The change in the index methodology took place in two steps. On November 31, 2001, half of the change was implemented for the existing index constituents and all the new constituents were added at half of their final weight. The rest of the change was implemented on May 31, 2002.

As in the case of the announcement effect, we first undertake a Fisher median test to examine the difference of the two subsamples of up- and downweighted countries. The Fisher test is carried out separately for the first and second implementation date and reported in columns (2) and (3) of Table 2, respectively. The first date shows no statistical difference in the exchange rate behavior across the subsamples. However, for the second implementation date, we find again a systematic appreciation of the upweighted relative to the downweighted countries at a 1 percent significance level. The cross sectional OLS regression reported in Table 3, columns (2) and (3), confirm the results. For the first implementation date we even find a positive, though statistically insignificant, point estimate for the exchange rate effect. This implies that the exchange rate movement has the opposite direction of the index fund flows. For the second implementation date we find that exchange rates and index fund flows move in the same direction.

We now turn to the panel estimates. These provides additional power. The results are reported in Table 4. They are qualitatively similar to the OLS results. But the positive effect for the first implementation date is now confirmed at a high level of statistical significance. Both coefficients α_1 and α_2 are positive. This shows that upweighted countries experienced a depreciation instead of an appreciation. This surprising results is not only evidence of imperfect arbitrage, but can be interpreted as evidence of excessive risk arbitrage. In expectation of a sizeable appreciation of upweighted countries, speculators presumably accumulated forex inventories in excess of the reallocated index fund capital. When the excessive inventories were released on the implementation date, the excess supply of speculative capital led to the observed currency depreciation. The exchange rate behavior on the first implementation date is therefore hard to reconcile with the idea of limited availability of speculative capital. However, the second implementation date shows again the opposite effect in the panel regression. Here, upweighted countries experience a statistically significant appreciation.

In summary, both implementation dates provide evidence for limited exchange rate resilience and moreover imperfect arbitrage. Around the first date, we find exchange rate movements in opposite direction to the capital flow of index funds, while for the second date the index capital flow and the exchange rate movement share the same direction. This suggests that speculation was excessive on the first date and insufficient on the second date. Speculative coordination failure or collective misjudgment about the size of the index fund flows can explain both observations. The hypothesis of insufficient speculative capital availability can only account for the exchange rate behavior on the second date.

5.3 Stock Return Effects

The evidence on the exchange rate on the first implementation date is somewhat surprising. Countries receiving index fund inflows are characterized by a depreciation instead of an appreciation in a symmetric 20 day event window. In the previous section, we interpreted this as evidence of excessive risk arbitrage behavior. However, if arbitrage fails, this should show up also in the respective equity markets. We therefore examine if equity market returns also show evidence of arbitrage failure.

Table 5 reports the cross-sectional OLS regression of individual MSCI AWCI stock returns on the individual stock weight changes. In panel A, stock returns are measured here in local currency in order to exclude any exchange rate effect. We therefore look at arbitrage possibilities from the perspective of a local investor. In panel B, we measure the stock returns in U.S. dollars. Table 5, column (1), shows a statistically significant announcement effect in both local currency and U.S. dollars. That is, individual stocks whose weight in the new index increases registered excess returns around the announcement of the new index methodology.¹¹

More interesting still is the stock price effect for the two implementations dates reported in columns 2 and 3. Surprisingly, we find for both dates a statistically significant negative stock price effect for the upweighted stocks. This results mirrors the exchange rate effect found for the first implementation date. We interpret this again as evidence of imperfect arbitrage. Excessive inventory accumulation in anticipation of a stock price increase may have been dumped into the market inducing a stock price decrease. It is interesting to note that while this excessive speculation occurred on both implementation dates in the equity market, it occurred only once in the FX market. The positive implementation effect for equity returns is also evident if the returns are expressed in dollar terms instead of local currency returns. Hence there is also failure of perfect arbitrage from the perspective of an international investors concerned about dollar returns.

As additional robustness check, we also include the MSCI AWCI return on the right-hand side of the stock regression in order to control for the systematic component of the excess return. This control did not alter the results. Also, the change of the size of the windows around the event (i.e., 10, 15, 25 days) did not alter the qualitative conclusions.

¹¹We note however that the announcement date of December 10, 2000 did not contain the list of stocks which would actually be included in the new index. Full list of included stocks was only generated on May 11, 2001 and publicly communicated on May 19, 2001. The 20 day window may therefore reflect only a part of the price adjustment due to the index change. We also found a statitically significant price increase for upweighted stocks around May 11, but do not report it here.

6 Conclusions

The exchange rate reaction to exogenous capital flows has long been an open issue in international finance. Empirical work suffered from a lack of clear identification of capital flow shocks. The growing quantitative importance of international equity flows has at the same time revived interest in the traditional portfolio channel of exchange rate determination. The MSCI global index redefinition announced on December 10, 2000, provides an ideal natural experiment to examine the impact of clearly exogenous equity flows on a large number of exchange rates. We find statistically and economically strong evidence in favor of limited exchange rate resilience. Over a 20 day window around the announcement day, the 19 least downweighted countries appreciate relative to the 18 most downweighted countries by on average 3 percent.

This experiment also allows us to examine the extent to which systematic arbitrage profit opportunities remained unexploited on the two implementation dates of the index change, namely on November 30, 2001, and May 31, 2002. The previous literature on the limits of arbitrage has highlighted the insufficiency of speculative capital as a possible arbitrage impediment (Shleifer and Vishny (1997)). We find that this interpretation is at odds with the evidence in the price effect on implementation dates. The first implementation date is characterized by exchange rate movements in opposite direction to index fund flows. Imperfect arbitrage therefore seems to originate in an overestimation of the size of the index fund flows or in a coordination failure in the inventory policy of the speculators. The same type of arbitrage failure seems to occur also in the underlying equity returns on both implementation dates. Only the exchange rate behavior on the second implementation date is compatible with limits on the amount of speculative capital.

References

- Baker, M., and Savasoglu, S., 2002, "Limited Arbitrage in Mergers and Acquisitions", Journal of Financial Economics, 64, 91–116.
- [2] Baker, M., Stein, J., and Wurgler, J., 2003, "When Does the Market Matter? Stock Prices and the Investment of Equity-Dependent Firms", *Quarterly Journal of Economics*, 118, 969-1006.
- [3] Baker, M., and Wurgler, J., 2002, "Market Timing and Capital Structure", Journal of Finance, 57, 1-32.
- [4] Barberis, N., Shleifer, A., and Wurgler, J., 2003, "Comovement", Journal of Financial Economics, forthcoming.
- [5] Beneish, M. D., and Whaley, R. E., 1996, "An Anatomy of the 'S&P Game': The effects of changing the rules", *Journal of Finance*, 51, 1909–30.
- [6] Chan, L., and Lakonishok, J., 1993, "Institutional Trades and Intraday Stock Price Behavior", *Journal of Financial Economics*, 33, 173–99.
- [7] Chan, L., and Lakonishok, J., 1995, "The Behavior of Stock Prices around Institutional Trades", Journal of Finance, 50, 1147-74.
- [8] Denis, D.K., J.J. McConnell, A.V. Ovtchinnikov, and Y. Yu, 2003, "S&P 500 Index Additions and Earnings Expectations", *Journal of Finance*, 58, 1821-1840.
- [9] Dhillon, U., and Johnson, H., 1991, "Changes in the Standard and Poor's 500 list", Journal of Business 64, 75–85.
- [10] Dominquez, K., 2003, "When do Central Bank Intervention Influence Intra-Daily and Longer-Term Exchange Rate Movements", Working Paper No. 9875, NBER.
- [11] Evans, M.D., Lyons, R.K, 2002a, "Order Flows and Exchange Rate Dynamics", Journal of Political Economy, 110, 170-181.
- [12] Evans, M.D., Lyons, R.K, 2002b, "Time Varying Liqudity in Foreign Exchange Markets", Journal of Monetary Economics, 49, 1025-1052
- [13] Evans, M.D., Lyons, R.K, 2002c, "Informational Integration and FX trading", Journal of International Money & Finance, 21, 807-832.
- [14] Froot, K., P. O'Connell, and M. Seasholes, 2001, "The Portfolio Flows of International Investors", *Journal of Financial Economics*, 59, 151-193.

- [15] Froot, K., and Ramadorai, T., 2004, "Currency Returns, Intrinsic Value, and Institutional Investor Flows", forthcoming in *Journal of Finance*.
- [16] Garry, M., and Goetzmann, W. N., 1986, "Does Delisting from the S&P 500 Affect Stock Price?", *Financial Analysts Journal*, 42, 64–69.
- [17] Goetzmann, W. N., and Massa, M., 2002, "Index Funds and Stock Market Growth", Journal of Business, 76, 1-28.
- [18] Harris, L., and Gurel, E., 1986, "Price and Volume Effects Associated with Changes in the S&P 500: New Evidence for the Existence of Price Pressure", *Journal of Finance*, 41, 851-60.
- [19] Hau, H., W. Killeen, and M. Moore, 2002. "How Has the Euro Changed the Foreign Exchange Market?", *Economic Policy*, 34, 151-177.
- [20] Hau, H., and Rey, H., 2003, "Exchange Rates, Equity Prices and Capital Flows", Working Paper 9398, NBER.
- [21] Hau, H., and Rey, H., 2004, "Can Portfolio Rebalancing Explain the Dynamics of Equity Returns, Equity Flows, and Exchange Rates?", *American Economic Review*, 96(2), 126-133.
- [22] Hedge, S.P. and McDermott, J.B., 2003, "The Liquidity Effects of Revisions to the S&P500 Index: An Empirical Analysis", *Journal of Financial Markets*, 6(3), 413-459.
- [23] Kaul, A., Mehrotra, V., and Morck, R., 2000, "Demand Curves for Stocks Do Slope Down: New Evidence from an Index Weights Adjustment", *Journal of Finance*, 55, 893–912.
- [24] Lakonishok, J., Shleifer, A., and Vishny, R. W., 1991, "Do Institutional Investors Destabilize Stock Prices? Evidence on Herding and Feedback Trading", Working Paper No. 3846, NBER.
- [25] Lakonishok, J., Shleifer, A., and Vishny, R. W., 1992, "The Impact of Institutional Trading on Stock Prices", *Journal of Financial Economics*, 32, 23–43.
- [26] Lynch, A. W., and Mendenhall, R. R., 1997, "New Evidence on Stock Price Effects Associated with Changes in the S&P 500 Index, *Journal of Business*, 70, 351–83.
- [27] Masse, I., Hanrahan, R., Kushner, J. and Martinello, F., 2000, "The Effect of Additions to or Deletions from the TSE 300 Index on Canadian Share Prices", *Canadian Journal of Economics*, 33(2), 341-59.
- [28] Pavlova, A, and Rigobon, R., 2003, "Asset Prices and Exchange Rates", Working Paper, MIT.
- [29] Payne, R., and Vitale, P., 2003, "A Transaction Level Study of the Effects of Central Bank Intervention on Exchange Rates", *Journal of International Economics*, 61(2), 331-52.

- [30] Richards, A., 2004, "Big Fish in Small Ponds: The Trading Behavior and Price Impact of Foreign Investors in Asian Emerging Equity Markets", forthcoming in *Journal of Financial and Quantitative* Analysis.
- [31] Shleifer, A., 1986, "Do Demand Curves for Stocks Slope Down?", Journal of Finance, 41, 579-90.
- [32] Shleifer, A., and R.W. Vishny, 1997, "The Limits of Arbitrage", Journal of Finance, 52(1), 35-55.
- [33] Siourounis, G., 2004, "Capital Flows and Exchange Rates: an Empirical Analysis", mimeo, London Business School.
- [34] Teo, M., and Woo, S.J., 2002, "Style Effects", Unpublished Working Paper.
- [35] Warther, V. A., 1995, "Aggregate Mutual Fund Flows and Security Returns", Journal of Financial Economics, 39, 209–35.
- [36] Wurgler, J., and Zhuravskaya, E., 2002, "Does Arbitrage Flatten Demand Curves for Stocks?", *Journal of Business*, 75, 583-608.
- [37] Zheng, L., 1999, "Is Money Smart? A Study of Mutual Fund Investors' Fund Selection Ability", Journal of Finance, 54, 901–33.

Table 1:

Summary Statistics

For the sample countries we report summary statistics on the percentage country index reweightening Δw_i , the dollar exchange rate return Δe_i^{20} , and the local currency index return Δr_i^{20} . Individual stock returns for stock j (also in local currency) are denoted as Δr_{ij}^{20} and the corresponding percentage weight change by Δw_{ij} . Exchange rate, index and individual stock returns are measured over a 20 day window around (1) the announcement day of the index reweightening, (2) the first implementation date of the 50 percent partial adjustment towards the new index, (3) the second implementation date for the remaining 50 percent adjustment towards the new index. Turkey and Argentina were excluded from the exchange rate statistics because of exchange rate crisis in the data period 2000-2002.

		Obs.	Mean	S.D.	Min	Max
		0.55		5.2.		111011
Δw_i	Pecentage index weight change	37	-0.432	0.327	-0.983	0.109
Δw_{ij}	Pecentage stock weight change	2436	-0.104	1.178	-2	2
(1) An	nouncement					
Δe_i^{20}	Dollar exchange rate return	37	-0.026	0.041	-0.097	0.036
Δr_i^{20}	Local currency index return	50	-0.032	0.058	-0.191	0.114
Δr_{ij}^{20}	Local currency stock return	2412	-0.033	0.144	-1.435	0.446
(2) Fir	st Implementation					
Δe_i^{20}	Dollar exchange rate return	37	-0.002	0.037	-0.066	0.183
Δr_i^{20}	Local currency index return	50	0.025	0.070	-0.112	0.212
Δr_{ij}^{20}	Local currency stock return	2432	0.0121	0.131	-2.665	1.035
(3) Sec	cond Implementation					
Δe_i^{20}	Dollar exchange rate return	37	-0.007	0.039	-0.060	0.157
Δr_i^{20}	Local currency index return	50	-0.052	0.074	-0.223	0.170
Δr_{ij}^{20}	Local currency stock return	2430	-0.056	0.111	-0.860	0.450

Table 2:

Nonparametric Test for Independence of Index Reweightening and Exchange Rate Change

The sample countries are split into two groups of (relatively) up- and downweighted countries and into two groups of appreciating and depreciation countries relative to the U.S. dollar. The Fisher test evaluates the likelihood of observed association under the null hypothesis that there is no relationship between the two sorting criteria. The change rate change is measured over a 20 day window around (1) the announcement day of the index reweightening, (2) the first implementation date of the 50 percent partial adjustment towards the new index, (3) the second implementation date for the remaining 50 percent adjustment towards the new index. Turkey and Argentina were excluded from the index countries because of exchange rate crisis in the data period 2000-2002.

	(1)	(2)	(3)	
	Announcement	First Implementation	Second Implementation	
20 Day Window around	10/12/2000	30/11/2001	31/05/2002	
Fisher's exact test				
Two-sided test	0.001	1.000	0.005	
One-sided test	0.001	0.567	0.009	
Number of obs.	37	37	37	

Table 3:

Cross-Sectional Exchange Rate Regression

We perform a cross-sectional OLS regression of the (log) exchange rate change, Δe_i^{20} (expressed in dollars per local currency), on the percentage weight change of each country in the MSCI all country index, Δw_i . The exchange rate change is measured over a 20 day event window around (1) the announcement day of the index reweightening, (2) the first implementation date of the 50 percent partial adjustment towards the new index, (3) the second implementation date for the remaining 50 percent adjustment towards the new index. Turkey and Argentina were excluded from the index countries because of exchange rate crisis in the data period 2000-2002. T-tests are in parantheses. They are calculated using White's heteroscedasticity robust standard errors.

$\Delta e_i^{20} = \alpha_0 + \alpha_1 \Delta w_i + \mu_i$									
	(1)	(2)	(3)						
	Announcement	First Implementation	Second Implementation						
20 Day Window around	10/12/2000	30/11/2001	31/05/2002						
$\alpha_0 \ (\text{constant})$	-0.048 (-4.57)	0.010 (0.81)	-0.028 (-3.49)						
α_1	-0.049 (-2.86)	0.028 (1.62)	-0.049 (-2.17)						
Number of obs.	37	37	37						
R^2	0.153	0.115	0.166						

Table 4:

Exchange Rate Panel Regression

We perform a FGLS panel regression of the daily (log) exchange rate change, Δe_{it} (expressed in dollars per local currency), on the percentage weight change of each country in the MSCI all country index, Δw_i , and on an equity reallocation proxy, $FlowInd_t$, interacted with the percentage weight change. The panel data covers a 20 day event window around (1) the announcement day of the index reweightening, (2) the first implementation date of the 50 percent partial adjustment towards the new index, (3) the second implementation date for the remaining 50 percent adjustment towards the new index. Turkey and Argentina were excluded from the index countries because of exchange rate crisis in the data period 2000-2002. We report z-statistics in parentheses. They are calculated allowing for heteroskedasticity and cross-panel correlation.

	(1)		(2)		(3)	
	Announcement		First Implementation		Second Implementation	
20 Day Window around	10/12/2000		30/11/2001		31/05/2002	
$\alpha_0 \ (\text{constant})$	-0.0022	(-14.03)	0.0004	(2.17)	-0.0014	(-10.07)
α_1	-0.0039	(-18.50)	0.0019	(5.79)	-0.0029	(-8.53)
α_2	-0.0027	(-8.70)	0.0013	(4.31)	-0.0010	(-1.81)
Number of obs.		740		740		740
Number of groups		37		37		37
Number of periods		20		20		20
$\chi^2(2)$		503.8		36.3		173.9

 $\Delta e_{it} = \alpha_0 + \alpha_1 \Delta w_i + \alpha_2 \left(FlowInd_t \times \Delta w_i \right) + \mu_{it}$

Table 5:

Individual Stock Return Regression

We perform a cross-sectional OLS regression of the (log) return of stock j in country i expressed in local currency of country i in Panel A and U.S. dollar returns in Panel B on the percentage weight change of each stock in the MSCI all country world index, Δw_{ij} . The stock return is measured over a 20 day event window around (1) the announcement day of the index reweightening, (2) the first implementation date of the 50 percent partial adjustment towards the new index, (3) the second implementation date for the remaining 50 percent adjustment towards the new index. T-tests are in parentheses. They are calculated using White's heteroscedasticity robust standard errors.

100		(1)			(2)	
	(1) Announcement		(Z)		(0)	
			First Imple	First Implementation		Second Implementatio
20 Day Window around	10/1	2/2000	30/11/2001		31/05/2002	
$\alpha_0 \ (\text{constant})$	-0.032	(-10.99)	0.011	(4.13)	-0.058	(-25.64)
α_1	0.010	(3.77)	-0.012	(-5.43)	-0.011	(-5.40)
Number of obs.		2412		2432		243
B^2		0.007		0.012		0.01

$\Delta r_{ij}^{20} = \alpha_0 + \alpha_1 \Delta w_{ij} + \mu_i$
--

Panel B: Individual Stock Returns in U.S. Dollars									
	(1)		(2))	(3)				
	Announcement		First Implementation		Second Implementation				
20 Day Window around	low around $10/12/2000$		30/11/2001		31/05/2002				
$\alpha_0 \ (\text{constant})$	-0.006	(-2.21)	0.011	(4.06)	-0.008	(-4.10)			
α_1	0.009	(3.42)	-0.014	(-6.00)	-0.046	(-19.66)			
Number of obs.		2412		2432		2434			
R^2	0.006		0.014		0.008				

Figure 1: The percentage weight change of a country in the MSCI ACWI index is plotted against the log level of the country's weight prior to the index redefinition. The sample countries are Australia (AU), Brazil (BR), Canada (CN), Chile (CL), China (CB), Colombia (CT), Czech Republic (CZ), Denmark (DK), Egypt (EY), Hong Kong (HK), Hungary (HN), India (IN), Indonesia (ID), Israel (IS), Japan (JP), Jordan (KN), Korea (KO), Malaysia (MY), Mexico (MX), Morocco (MC), New Zealand (NZ), Norway (NW), Pakistan (PK), Peru (PE), Philippines (PH), Poland (PO), Russia (RS), Singapore (SG), South Africa (SA), Sri Lanka (CY), Sweden (SD), Switzerland (SW), Taiwan (TA), Thailand (TH), United Kingdom (UK), United States (US), Venezuela (VE), and the Euro Area (EU).

Figure 2: The average cumulative exchange rate return (relative to the dollar) are plooted for two portfolios of 18 upweighted and 19 downweighted countries for an event window of 20 trading days around the announcement of the MSCI index redefinition on December 10, 2000. For the event day, the cumulative returns are normalized to be zero.

Figure 3: A country's exchange rate depreciation relative to the dollar is plotted against the percentage change in the country's weight in the MSCI index. The exchange rate effect is measured for a event window of 20 trading days around the announcement day of the index change.