Philosophy of Quantum Mechanics: Week 7

Recap: Collapse

In orthodox quantum mechanics, the state is governed by two different kinds of dynamics:

1. Unitary, deterministic, linear Schrodinger dynamics.

2. Non-unitary, non-deterministic, non-linear collapse dynamics.

In practice, we apply collapse dynamics when we perform measurements, but nothing in our
physics tells us what counts as a measurement, or why. Moreover, we don’t have any idea how

collapse is supposed to work!

We might seek to tackle these issues directly by modifying the Schrodinger dynamics to in-
clude collapse. The resulting theories are (unsurprisingly!) known as dynamical collapse

theories. Any such theory must respect the following three constraints:

e Modification must have no noticeable effects on microscopic systems.
e Modification must prevent macroscopic superpositions.

e Collapse must occur in accordance with the Born rule. Le., a|1) + 3 ||) must collapse

to either |1) with probability |o|?, or ||} with probability |3|°.

Dynamical Collapse Theories: Overview

Here’s a toy dynamical collapse theory:

e Particles have probability 7 per second of collapsing to some position eigenstate. (For
example, o |z) 4 3 |y) will collapse to |z) with probability |«|?, or |y/) with probability
8|7, where |z) and |y) represent different position eigenstates.)
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o [f particles are entangled, then if any one particle collapses, the quantum state for the

whole system collapses.

e If 7 is set correctly (e.g. 7 = 1071%s1), this will ensure that isolated particles collapse
very slowly (roughly, after 100 million years), but large, entangled systems will collapse

much faster.

A minor hitch

This model works quite well, except for a technical problem: (Albert, p. 97)

The collapses described above leave the particles which undergo them in perfect
eigenstates of the position operator, and of course that entails that the momenta
and the energies of those particles (whatever their values may have been just prior
to those collapses) will be completely uncertain just following those collapses, and
that will give rise to a host of problems: The momenta which electrons in atoms
might sometimes require in the course of such collapses, for example, would be
enough to knock them right out of their orbits; and the energies which certain of
the molecules of a gas might sometimes acquire in the course of such collapses
would be enough to spontaneously heat those gases up, and those sorts of things

are experimentally known not to occur.

The fix is to say that we don’t collapse onto an exact position, but rather onto some Gaussian

function of position. Albert (p. 98):

And it turns out (and this is the punch line) that these curves can nonetheless be
made wide enough (at the same time) so that the violations of the conservation of
energy and of momentum which the multiplications by these curves will produce

will be too small to be observed.



GRW Theory

Ghirardi-Rimini-Weber (GRW) theory models collapse via multiplication by a Gaussian func-

tion. We have collapsed to a roughly localised state, but not a position eigenstate:

e Collapse: Y (z) = N (z) f (z — a).

2
e f(x—a)=-exp <7(;L72“) > is a Gaussian function centered at x = a.

e a is stochastically selected in line with the Born rule: Prob (zg < < 2o + dz) =

K ($0)|2537~

e N is a normalisation factor.

e 7 and L are new constants of nature.
If we choose 7 = 107 '%s™ ! and L = 10 °cm ", then

e Isolated particles will collapse after approximately 100 million years.
e A dust mote of 10~°cm ™! in diameter will collapse after about 1 second.

e A macroscopic object (e.g. a grain of sand less than 1mm across) will collapse extremely

quickly (less than 10~°s for the grain of sand).

The Problem of Tails

GRW dynamical collapse does not get rid of superpositions completely. It takes states like

« |here) + [ |there) (1)
to states like
V1 — € |here) + € [there) , ()
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where € is small. But there are obvious problems with this:

1. The problem of structured tails: Suppose the system is initially in a state such as (1),
but then collapses to a state such as (2). Post-collapse, the ‘collapsed’ part of the su-
perposition (above, |here)) is ‘damped down’, but does not disappear completely. As

Wallace writes (Measurement Problem: State of Play, p. 43):

Why should the continued presence of the ‘there’ term in the superposition—
the continued indefiniteness of the system between ‘here’ and ‘there’—be

ameliorated in any way at all just because the ‘there’ term has low amplitude?

2. The problem of bare tails: Even if we ignore the ‘there’ state, the wavefunction of
|here) is itself spatially highly delocalised. Its centre-of-mass wavefunction is no doubt
a Gaussian, and Gaussians are completely delocalised in space, for all that they may be
concentrated in one region or another. So how can a delocalised wave packet possibly

count as a localised particle? But, as Wallace writes on this problem (MPSOP, p. 43):

This problem has little or nothing to do with the GRW theory. Rather, it is
an unavoidable consequence of using wave packets to stand in for localised
particles. For no wave packet evolving unitarily will remain in any finite

spatial region for more than an instant.

Strangely, most of the literature on the problem of tails addresses the problem of bare tails
(which is not specific to dynamical collapse theories), rather than the problem of structured

tails (which is specific to dynamical collapse theories).

Addressing Bare Tails

We want to say that, after collapse, systems and particles have definite positions, even though
the wavefunction is non-zero everywhere in space. Albert and Lower suggest we get achieve

this by dropping the eigenvector-eigenvalue link, and replacing it with a so-called fuzzy link.

Eigenvector-eigenvalue link: A system in a state [¢)) has a definite value of the physical

quantity associated to some observable X, iff
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X W) ==v).

Fuzzy link: A system in a state |¢)) has a definite value of the physical quantity associated to

some observable X , iff

X |y) —z )| <A,

for some small ).

The fuzzy link solves the problem of bare tails, but it leads to the so-called counting anomaly:

Particle 1 is in some box (according to the fuzzy link).

Particle 2 is in that box (according to the fuzzy link) ...

... Particle n is in that box (according to the fuzzy link).

On the fuzzy link, this does not imply: N particles are in the box.

How is this working, in more detail? Suppose that the wavefunction of each particle is very
strongly peaked inside the box, so that if X, is the ‘particle ¢ is in the box’ operator, then

X [¢) — |w)‘ ~ ¢, for ¢ < A, so that each particle should be counted as being inside

the box. Heuristically,

X, |@D>‘ ~ 1 — e. But now consider the proposition ‘all NV particles
are in the box’. By definition, this is represented by the operator X = Hfil X.. Suppose
each particle has identical state |¢); i.e. suppose that each |¢)) is highly localised in the box,
as above. Then the overall state of the N particles is |[¥) = @7, |¢)). Then ’X ]\I!)‘ =

Hi]\il ‘Xz |w>‘ = (1—¢)". As Wallace says: (MPSP p. 44)

this is unfortunate for the Fuzzy Link. For no matter how small ¢ may be, there
will be some value of N for which (1 — €)™ < . And for that value of N, the
Fuzzy Link tells us that it is false that all NV particles are in the box, even as it tells

us that, for each of the N particles, it is true that that particle is in the box.
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Given the problems for the fuzzy link, we might turn to an alternative ‘link’: the so-called

mass density link.

Mass density link: A particle is in a box iff some sufficiently high fraction 1 — € of its mass
is in the box. The meaning of ‘all N particles are in the box’ is ‘particle 1 is in the box and

particle 2 is in the box and ...’, and this is true iff all the constituent propositions are true.

It’s sometimes claimed that the mass density link evades the counting anomaly only at the cost

of a so-called ‘location anomaly’. Wallace on this (MPSP, pp. 46-47):

This anomaly arises when we consider the process of looking at the box and physi-
cally counting the number of particles in it. The ordinary quantum theory—which
the GRW theory is supposed to reproduce—then predicts that the expected num-
ber of particles found in the box will be somewhat less than N. Lewis claims that
this clash between the predictions of how many particles are found in the box and
how many are actually in the box “violates the entailments of ordinary language”
(Lewis 2005, p. 174).

Ghirardi and Bassi, and separately Wallace, are bemused by this criticism: (MPSP p. 47)

[W]e have a theory which (a) gives a perfectly well-defined description of how
many particles are in the box; (b) allows a precise description, in terms accept-
able to the realist, of the measurement process by which we determine how many
particles are in the box; (c) predicts that if the number of particles is sufficiently
(i.e., ridiculously) large there will be tiny deviations between the actual number
of particles and the recorded number of particles. They, and I, fail to see what the

problem is here; I leave readers to reach their own conclusions.



On Structured Tails

Consider a post-GRW collapsed state, such as

V1 —e|alive) + € |dead) . 3)

e On the Everett interpretation, a structural/functional definition of macro-ontology is

given.

e Suppose we accept this. Then all there is to being a cat is being something structured

like a cat.

e There’s still something structured like an (alive!) cat in state (3)—it’s just very low

amplitude.
e On Everettian ontology, a low amplitude cat is still a cat.
e So, there are still two cats (one alive and one dead!) in the state (3).

e So is GRW just (some messy version of) Everett, in disguise?

Probability

In some ways, GRW collapse provides but the perfect example of objective chance. But what

does 7 mean? Is it only analysable in terms of propensities, or are other options available?



