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Given a filtration on a finite simplical complex, one can study the topolog-
ical nature of how the complex changes with respect to the filtration using the
tools of persistent homology1. On the other hand, one can attach additional
data to the complex using (co)sheaves and study the topological properties of
this data using (co)sheaf homology2. Both these techniques have seen great
success in tackling applied problems, however it is of critical importance that
these computations can be done efficiently, in both time and data space. To
that end, discrete Morse theory has shown itself to be a valuable tool in both
persistent homology for filtrations and in (co)sheaf homology. In this paper we
will first give a short introduction to the theory of cosheaves on finite simplicial
complexes. Subsequently, we look at how to unify persistent and cosheaf homol-
ogy to the persistent homology of sequences of cosheaves on a finite simplicial
complex. Finally, we will extend the discrete Morse theory to simplify such
computations.

1[1]
2[2]
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1 Cosheaves over Finite Simplicial Complexes

1.1 Task I

Throughout this paper X is a finite simplicial complex. Viewing X as a poset,
let Xop be X with the opposite order. Let F be a field.

Definition 1.1 (Cosheaf). A cosheaf F over X is a (covariant) functor from
Xop to FinVectF. Explicitly, for every simplex τ ∈ X the cosheaf F assigns τ
a finite dimensional vector space F(τ), called the stalk at τ , and for every face
σ ≤ τ a linear map

F(τ ≥ σ) : F(τ)→ F(σ)

called a corestriction such that for any coface γ ≥ τ of τ we have

F(τ ≥ σ) ◦ F(γ ≥ τ) = F(γ ≥ σ) .

We also require that F(τ ≤ τ) = idF(τ) for every simplex τ . Denote the
category3 of cosheaves over X by CoShvX .

Definition 1.2 (Orientation). Choose an ordering of the vertices of X so we
can write the vertices as {v0, . . . , vn}. Then this ordering of vertices induces
an (local) orientation on all simplices of X. Then let τ = (v0, . . . , vk) be a
(oriented) simplex of X. Then suppose σ = (v0, . . . , v̂i, . . . , vk) is an (oriented)
codimension one face of τ , where v̂i denotes that vertex has been deleted for some
i ∈ {0, . . . , k}. Then we define their boundary coefficient as [τ : σ] := (−1)i ∈ F .

Definition 1.3. Let F be a cosheaf over X. For each i ≥ 0 define the set of
i-chains of X with coefficients in F as

Ci(X;F) =
⊕
σ∈X

dimσ=i

F(σ) .

Definition 1.4. We define the boundary operator

∂Fi : Ci(X;F)→ Ci−1(X;F)

as
∂Fi (vτ ) =

∑
σ≤τ

dim τ−dimσ=1

[τ : σ]F(τ ≥ σ)(vτ )

for vτ ∈ F(τ) and extend it linearly.

Proposition 1.5. (C•(X;F), ∂F• ) is a chain complex.

Proof (adapted from [3]). Let γ = (v0, . . . , vi+1) be a (i+1)-dimensional simplex
of X. Let ∂Fi+1|γ be the restriction of ∂Fi+1 to F(γ).

3see definition 1.10 for the morphism in this category
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Define γk = (v0, . . . , v̂k, . . . , vi+1) and γk,l = (v0, . . . , v̂k, . . . , v̂l, . . . , vi+1) so
that γk,l ≤ γk ≤ γ. Then

∂Fi ◦ ∂Fi+1|γ =

i+1∑
k=0

(−1)k∂Fi ◦ F(γ ≥ γk)

=

i+1∑
k=0

k−1∑
l=0

(−1)k(−1)lF(γ ≥ γl,k)

+

i+1∑
k=0

i+1∑
l=k+1

(−1)k(−1)l−1F(γ ≥ γk,l)

= 0 .

The last line comes from noting that γl,k = γk,l hence the two sums cancel.

Definition 1.6. As (C•(X;F), ∂F• ) is a chain complex we can form its homology
H•(X;F) by

Hi(X;F) :=
ker ∂Fi+1

im ∂Fi

for i ≥ 0. If Hi(X;F) is trivial for all positive i, and F for i = 0, we say F is
acyclic4.

Here are some examples of cosheafs over simplicial complexes:

Example 1.7 (Zero). The zero cosheaf 0X is the cosheaf with the zero vector
space as its stalks and every map between the stalks is the zero map. Note that
the zero map is the identity on the zero vector space.

Example 1.8 (Constant). The constant cosheaf RX is the cosheaf with F as
its stalks and every map between the stalks is the identity map. Note that the
homology of X with coefficients in RX is exactly the simplicial homology of X.

Example 1.9 (Leray). cf. [4]. Suppose we have a simplicial map f : X → Y .
Then for each simplex σ ∈ Y define the star of the simplex σ as the set of all
cofaces of σ in Y:

StY (σ) := { τ ∈ Y : τ ≥ σ}.
Then St is contravariant: if σ ≤ τ then StY (σ) ⊇ StY (τ) and so we have also
have a simplicial inclusion ι : f−1(StY (τ))→ f−1(StY (σ)). Hence for each i ≥ 0
we have an induced map on simplicial homology

ι∗ : Hi(f
−1(StY (τ));F)→ Hi(f

−1(StY (σ));F)

which is functorial. Then define the ith Leray cosheaf of f as

Lfi (σ) := Hi(f
−1(StY (σ));F)

with the maps betweens stalks ι∗ as above.

4i.e. its reduced homology is trivial in all degrees.
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1.2 Task II

Given two cosheaves F , G on X we would like to have a notion of a morphism
between them. A cosheaf is defined by two collections of data: the stalks, and
the corestriction maps between them. As the stalks are just vector spaces we
could define a morphism of cosheaves as a collection of linear maps between
their stalks on the same simplex. However this does not consider any of the
corestrictions. For example, let F be the cosheaf on X which is has F for each
stalk, each corestriction from a simplex to itself the identity map, and the rest
of the corestrictions the zero map. Then we could define a ‘morphism’ from F
to RX by the collection (idF : F(σ) → RX(σ))σ∈X . This ‘morphism’ would
be invertible yet would tell us nothing about the relationship between the two
cosheaves. The homology of X with coefficients in RX is the ordinary simplicial
homology of X. On the other hand the homology with coefficients in F in degree
i is Fni where ni is the number of simplices of X of dimension i. In fact, from
the viewpoint of category theory, the actual important information contained
in a cosheaf is in its corestrictions. Cosheaves are functors so luckily we already
have the notion of a natural transformation between two functors.

Definition 1.10. (Morphism of Cosheaves) Let F and G be cosheaves over X.
A collection of linear maps η = {ησ : F(σ) → G(σ)}σ∈X is called a morphism

of cosheaves F η→ G if for any σ ≤ τ ∈ X the following diagram commutes:

F(τ) F(σ)

G(τ) G(σ)

ητ

F(τ≥σ)

ησ

G(τ≥σ)

.

The linear maps ησ are called the components of η.

To fully describe the category CoShvX we need to define composition. This
is done component-wise and clearly satifies the diagram in 1.10.

Definition 1.11. Given two morphisms of cosheaves F G Hη ε over X we
define their (vertical) composition as the morphism ε ◦ η : F → H with compo-
nents (ε ◦ η)σ = εσ ◦ ησ .

In a general, a monomorphism is a morphism f such that for any other mor-
phisms a, b if f ◦ a = f ◦ b then we have a = b. Certainly then in CoShvX , if η
is a monomorphism its components are also monomorphisms, and a monomor-
phism in the category of vector spaces is just an injective linear map. The
converse is also true. Suppose η is a morphism of cosheaves over X such that
its components are all injective. Then suppose α, β are two other morpisms
such that η ◦ α = η ◦ β. Then for any σ ∈ X we have that ησ ◦ ασ = ησ ◦ βσ
hence as ησ is injective we have that ασ = βσ and thus that α = β. Therefore
a morphism of cosheaves is a monomorphism if and only if its components are

4



injective. Dually, we have that a morphism of cosheaves is an epimorphism5 if
and only if its components are surjective.

Furthermore, η ◦ ε = ε ◦ η = id if and only if ησ ◦ εσ = εσ ◦ ησ = idσ for
all σ ∈ X. Thus η : F → G is an isomorphism if and only if its components are
invertible, and its inverse is the morphism η−1 with components η−1

σ . This is
a morphism as for σ ≤ τ ∈ X

ησ ◦ F(τ ≥ σ) = G(τ ≥ σ) ◦ ητ

implies that
F(τ ≥ σ) ◦ η−1

τ = η−1
σ ◦ G(τ ≥ σ) .

Definition 1.12. Suppose F ,H are cosheaves over X. We sayH is a subcosheaf
of F if there exists a monomorphism ι : H → F . Equivalently, H is a subcosheaf
of F if the stalks H(σ) are vector subspaces of F(σ) and the maps H(τ ≥ σ)
are the restrictions of F(σ ≤ τ) to these vector subspaces.

Thus to show ker η with stalks ker ησ is a subcosheaf of F we need to show
that F(τ ≥ σ)(ker ητ ) ⊆ ker ησ . This follows directly from the functorality of
η. Dually, we have im η with stalks im ησ is a subcosheaf of G.

1.3 Task III

Example 1.13 (1). Let X be a triangulation of the unit interval:

X = {{0}, {1}, {0, 1}}

with its usual orientations. Then X is contractible hence its constant cosheaf
RX has homology

Hi(X;RX) = Hi(X;F) =

{
F, if i = 0

0, otherwise

so RX is acyclic. Define F : Xop → FinVectF by

F(σ) = F,

for all σ ∈ X and define the corestrictions for each σ ≤ τ by

F(τ ≥ σ) =

{
idF (τ), if σ = τ

0, otherwise
.

Suppose σ ≤ τ ≤ γ ∈ X are simplices. Then the contravariancy of F only fails
if either

• σ 6= γ but σ = τ and τ = γ. However, this is impossible by transitivity.

5η is an epimorphism iff for any α, β with α ◦ η = β ◦ η we have that α = β .
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• σ = γ but σ 6= τ or τ 6= γ. Again, this is impossible as σ ≤ τ ≤ γ.

Thus as F also clearly satisfies the identity requirement, it is a cosheaf over X.
Now consider its chain complex:

0 F F⊕ F 0
∂F1 .

But ∂F1 is 0, thus the homology of X with coefficients in F is

Hi(X;F) =


F⊕ F, if i = 0

F, if i = 1

0, otherwise

Hence F is not acyclic even though RX is.

Example 1.14 (2). Let X be a triangulation of the circle:

X = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}}

with its usual orientations. X is not acyclic, and so RX is not acyclic. However
the zero cosheaf 0X is acyclic as Ci(X; 0X) = 0 for all i ≥ 0 .

In the next two examples, a strict mono/epimorphism is a mono/epimorphism
which is not an isomorphism.

Example 1.15 (3). LetX be the triangulation of the unit interval as in example
1.13. Define a cosheaf F over X as follows: the stalks are F({0}) = F ⊕
F, F({1}) = F({0, 1}) = F. For the corestrictions, F({0, 1} ≥ {0}) is inclusion
into the first factor and the rest are all identity maps. As X has only 0 and 1
simplices, the fact that F satisfies the identity condition is sufficient enough for
it to be a cosheaf.

Now we shall define the monomorphism from the constant cosheaf. Define
ι : RX → F by setting ι{0} to be inclusion into the first factor, and ι{0,1}, ι{1}
to be the identity maps.

{0} {0, 1} {1}
X • •

RX F F F

F F⊕ F F F

1

0


id id

id id

[
1 0

]T id
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As in the diagram, we see that ι is in fact a morphism of cosheaves, and
all its components are strictly injective hence it is a strict monomorphism of
cosheaves. Now to calculate the homology of X with coefficients in F . The
chain complex is

0 F (F⊕ F)⊕ F 0

[
1 0 1

]T

so we see that it has zero homology in degree 1 and

F⊕ F⊕ F
F⊕ 0⊕ F

∼= F

in degree 0. Thus, there exists a strict monomorphism RX Fι

6' and the ho-

mologies of X with coefficients in RX and in F respectively are identical.

Example 1.16 (4). What of the dual situation? Can we have a cosheaf F
where X has the same homology with coefficients in F as with coefficients in
RX but there existing a strict epimorphism RX F6' from RX to F ?

In fact, no such situation can occur.

Proof. Suppose we do have a strict epimorphism π from RX to F . Then every
component of π must be a (not necessarily strict) linear surjection from F, hence
every stalk of F is either F or {0}. As π is strict, at least one stalk of F must
be trivial, otherwise we could define a left inverse for π. Suppose the stalk at
τ ∈ X is trivial. If σ is a face of τ then as π is a morphism the diagram

RX(τ) = F RX(σ) = F

F(τ) = {0} F(σ)

id

0 πσ

0

must commute, forcing πσ = 0 and thus F(σ) = {0}. Whence by induction we
can assume τ is a 0-simplex.

Let D0, . . . , Dk be the connected components of X and let G be some ar-
bitrary cosheaf over X. Then G restricts to a cosheaf G|Di on each connected
component. Then as each 1-simplex is only a coface of 0-simplices in its con-

nected component, the boundary operator ∂G1 decomposes as
⊕

0≤i≤k ∂
G|Di
1 thus

we have that

H0(X;G) =

k⊕
i=0

H0(Di;G|Di) .

This is also true for all degrees, but we will only need the 0 case. Now suppose
that in some connected component Di of X we have F(σ) non-zero for every
0-simplex σ ∈ Di. We must also then have F(τ) non-zero for every simplex
τ ∈ Di by the discussion above. Then as each πτ must be non-zero, we have
that R|Di ∼= F|Di hence H0(Di;R|Di) ∼= H0(Di;F|Di).
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Now we know that some connected component Dj of X must contain a 0-
simplex such that the stalk of F at that simplex is zero. Let σ0 be any 0-simplex
in Dj . Then there exists some path τ0, . . . , τn of 1-simplices in Dj such that the
terminal 0-simplex of τm is the starting simplex of τm+1 and that the terminal
simplex σ of τn has F(σ) = 0. Furthermore we can impose the restriction that
apart from σ every other 0-simplex that is a face of a 1-simplex in this sequence
has an F-stalk that is F, and that each F(τm) = F. Finally, we can inductively
define coefficients a0 = 1, a1, . . . , an ∈ F such that: for each τm ≥ α ≤ τm+1 we
have that amF(τm ≥ α) = am+1F(τm+1 ≥ α). The purpose of this effort was
that we now have an ‘F-path’ from σ0 to σ. Thus the element (with the right
ordering of the basis)

a = (1, a1, . . . , am, 0, . . . , 0) ∈ C1(Dj ;F|Dj )

generates F(σ0) under the boundary map. Hence we have that

H0(Dj ;F|Dj ) = 0 .

Therefore the dimension of the homology of X with coefficients in F is at
least one less than with coefficients in RX .

2 Persistent Cosheaf Homology

2.1 Task IV

We want to consider a sequence of cosheaves over X:

F0 F1 . . . F i . . .
η0 η1 ηi−1 ηi

Definition 2.1. We define a sequence of cosheaves over X as a set {F i}i∈N
of cosheaves over X with morphisms ηj : F j → Fj+1. Equivalently, we can
consider such a sequence as a functor (N,≤)→ CoShvX .

As we have show, for any morphism η : F → G, ker η and im η are sub-
cosheaves of F and G respectively. If for each i ≥ 1 we have im ηi−1 = ker ηi
and ker η0 = 0X then we say a sequence {F i}i∈N is exact. If we only have that
im ηi−1 is a subcosheaf of ker ηi then we say the sequence is a chain complex.

Proposition 2.2. Suppose η : F → G is a morphism. Then define for i ≥ 0

Ciη : Ci(X;F)→ Ci(X;G) by Ciη =
⊕

dimσ=i

ησ.

Then C•η is a chain map.

Proof. This just follows from the fact that G(σ ≤ τ) ◦ ιτ = ισ ◦ F(σ ≤ τ) and
by linearity.
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Hence η : F → G induces a linear map H•η : H•(X;F) → H•(X;G). Thus
given a sequence

F0 F1 . . . F j . . .
η0 η1 ηj−1 ηj

we have an induced sequence

H•(X;F0) H•(X;F1) . . . H•(X;F i) . . .
H•η

0 H•η
1 H•η

i−1 H•η
i

Definition 2.3 (persistent homology). Suppose we have a sequence (F•, η•)
of cosheaves over X. We define the persistent homology groups of X with
coefficients in this sequence as the vector spaces

Hl,k
i (X;F•) := im(Hiη

l ◦ · · · ◦Hiη
k+1 ◦Hiη

k)

for i ≥ 0 and l ≥ k ≥ 0.

2.2 Task V

Definition 2.4. Suppose we have a sequence (F•, η•) of cosheaves over X.
Define a partial matching on X with respect to (F•, η•) as a set Σ of pairs of
simplices (σ < τ) of X such that:

1. dim(τ)− dim(σ) = 1.

2. F j(σ < τ) is invertible for all j = 0, 1, . . ..

3. neither σ nor τ appear in any other pair of Σ.

Thus Σ is a partial matching for each individual F j in the sense of [2].

Definition 2.5. Given a partial matching Σ, a Σ gradient path is a sequence
p of simplices (σ0, τ0, σ1, τ1, . . . , σk, τk) of X such that

σ0 < τ0︸ ︷︷ ︸
∈Σ

> σ1 < τ1︸ ︷︷ ︸
∈Σ

> · · · > σk < τk︸ ︷︷ ︸
∈Σ

with all σi having the same dimension, i.e. dim τi − dimσi−1 = 1.

Definition 2.6. We say a partial matching Σ is acyclic if there are no Σ gradient
paths

p = (σ0, τ0, σ1, τ1, . . . , σk, τk)

with k > 0 and σ0 a face of τk.

Definition 2.7. Given an acyclic partial matching Σ on X, we say a simplex
σ is Σ-critical if it does not appear in any pair of Σ.

Example 2.8. We can retrieve an acyclic partial matching for a filtration of a
simplicial complex as in the sense of [1, 4].
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Suppose X is a subcomplex of Y Then we can extend the constant cosheaf
on X to a cosheaf of Y by the pushforward. Define the cosheaf RX∗ on Y by

RX(σ) =

{
F, if σ ∈ X
0 otherwise

.

The maps RX∗(τ ≥ σ) are idF if both σ and τ are in X and zero otherwise. We
also have a morphism ι : RX∗ → RY with components identity maps.

Suppose then that we have a filtration on finite simplicial complex X:

X0 ⊆ X1 ⊆ · · · ⊆ Xn = X

Then we have a sequence of cosheaves on X

R0 R1 · · · Rkι0 ι1 ιk−1
.

Define for σ ∈ X
b(σ) = min{i ≥ 0 : Ri(σ) = F}.

Then as each Xi is a subcomplex, if σ ≤ τ ∈ Xi then σ ∈ Xi hence b(σ) ≤ b(τ).
Suppose then we have an acyclic partial matching Σ in the sense of definition
2.4. Then if (σ < τ) ∈ Σ by definition we have Ri(τ > σ) invertible for all i ≥ 0
thus we must in fact have b(σ) = b(τ). Hence Σ is a acyclic partial matching
compatible with the filtration in the sense of [1, 4].

2.3 Task VI

Definition 2.9. Given a Σ gradient path p = (σ0, τ0, σ1, τ1, . . . , σk, τk) we define
its j-multiplicity as

mj(p) = [τk : σk]F j(τk > σk)−1 ◦ [τk−1 : σk]F j(τk − 1 > σk)−1 ◦ · · ·
· · · ◦ [τ0 : σ1]F j(τ0 > σ1) ◦ [τ0 : σ0]F j(τ0 > σ0)−1

which is a linear map mj(p) : F i(σ0)→ F i(τk).

Definition 2.10. Suppose γ and δ are two Σ-critical cells of dimensions i and
i−1 respectively. We define the (i, j)th Morse boundary operator between them
as

ejγ,δ = [γ : δ]F j(γ > δ)

+
∑

p=(σ0,...,τk)
p a Σ gradient path
γ>σ0 and τk>δ

[τk : δ]F j(τk > δ) ◦mj(p) ◦ [γ : σ0]F j(γ > σ0)

which is a linear map ejγ,δ : F j(γ)→ Fj(δ).
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Definition 2.11. The jth Morse chain complex associated to Σ is the sequence
Mj of vector spaces

· · · Mj
i · · · Mj

1 Mj
0 0

eji+1 eji ej2 ej1

where
Mj
i =

⊕
dimσ=i
σ critical

F j(σ)

and the block of eji from F j(γ) to F j(δ) is ejγ,δ.

So far, we know that this Morse chain complex simplifies our computations
for the homology of each cosheaf:

Theorem 2.12 (Sköldberg). For each i, the ith Morse chain complex associ-
ated to Σ is a bone fide chain complex with homology groups isomorphic to the
homology of X with coefficients in F i.

As the next theorem shows however, the acyclic partial matching we have
defined is compatible with the sequence and computes its persistence.

Definition 2.13. For each i, j ≥ 0 define η̂ji : Mj
i → Mj+1

i by

η̂ji =
⊕

dimσ=j
σ critical

ηjσ .

Theorem 2.14. (a) η̂j = (η̂ji : Mj
i → Mj+1

i )i≥0 is a chain map from Mj to
Mj+1 for each j ≥ 0, hence we have an induced sequence

H•(M
0) H•(M

1) · · · H•(M
j) · · ·H•η̂

0 H•η̂
1 H•η̂

j−1 H•η̂
j

.

(b) The persistent homology groups of this sequence of Morse complexes are
isomorphic to the persistent homology groups of X with coefficients in the
sequence (F•, η•) :

Hl,k
i (M•) := im(Hiη̂

l ◦ · · · ◦Hiη̂
k+1 ◦Hiη̂

k) ∼= Hl,k
i (X;F•)

for i ≥ 0 and l ≥ k ≥ 0.

Sketch Proof. The following proof is essentially an extension of the proof of
2.12 given in [2] to our persistent homology of cosheaves. To fully complete
the proof one would have to slightly generalise our definitions of cosheaves on
simplicial complexes to ‘coparametrizations’ of chain complexes on a poset as in
[2]. Here we give a proof of the inductive step by considering a partial matching
containing only one pair. For ease of notation, define Cji := Ci(X;F j).
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Figure 1:
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Let our partial matching Σ be just one pair x∗ < y∗ where dimx = i. Then
by definition, Σ is a acyclic partial matching for each F j so we can use the
results of [2]. Thus define a map ψji : Cji → Mj

i by the block form

ψjz,z̃ =


[y∗ : z̃][y∗ : x∗]F j(y∗ > z̃) ◦ F j(y∗ > x∗)−1 if z = x∗,

idFi(z) if z = z̃,

0 otherwise

and define ψjk : Cjk → Mj
k as the identity map for k 6= i. Then as in the dual

proofs in section 3 of [2], ψj is in fact a chain map and there is another chain
map φj : Mj → Cj such that ψj ◦ φj = idMj and φj ◦ ψj is chain homotopic to
idCj . Hence, as in theorem 2.12, we have for each j ≥ 0

Hi(M
j) ∼= Hi(X;F j)

Now we wish to extend this to show that:

(a) The Morse complexes Mj are compatible, i.e. for each j the collection of
maps in definition 2.13 is actually a chain map.

(b) The induced sequence of this sequence of Morse complexes give us the per-
sistent homology groups of X with coefficients in our sequence of cosheaves.

Consider figure 1. To show η̂j is a chain map we need to show the ‘pink’
square commutes. Firstly however, we need to prove that the ‘green’ square
commutes. We only need to prove the case z = x∗ as the rest are all identity
maps. Let z̃ be a dimension i critical simplex. Consider the block ψjx∗,z̃. We

need to show that ηjz̃ ◦ ψ
j
x∗,z̃ = ψj+1

x∗,z̃ ◦ η
j
x∗ . We have

ηjz̃ ◦ [y∗ : z̃][y∗ : x∗]F j(y∗ > z̃) ◦ F j(y∗ > x∗)−1

= [y∗ : z̃][y∗ : x∗]F j+1(y∗ > z̃) ◦ ηjy∗ ◦ F j(y∗ > x∗)−1

= [y∗ : z̃][y∗ : x∗]F j+1(y∗ > z̃) ◦ F j+1(y∗ > x∗)−1 ◦ ηjx∗ .

Hence the ‘green’ square commutes. Now to prove that the ‘pink’ square com-
mutes, consider the composition

Cji Mj
i Mj

i−1 Mi−1
j+1

ψji eji η̂ji−1

and the sequence of ‘moves’ in figure 2.

• Composition (2) is equal to (1) by commutativity of the ‘blue’ square.

• Composition (3) is equal to (2) by commutativity of the square opposite
the ‘green’ square.

• Composition (4) is equal to (3) by commutativity of the square opposite
the ‘pink’ square.
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• Composition (5) is equal to (4) by commutativity of the square opposite
the ‘blue’ square.

• Finally, Compositon (6) is equal to (5) by commutativity of the ‘green’
square.

Thus η̂ji−1 ◦ e
j
i ◦ ψ

j
i = ej+1

i ◦ η̂ji ◦ ψ
j
i . Importantly however, ψji is a surjection

thus we can cancel it from the right (i.e. it has a right inverse namely φji ) hence

η̂ji−1 ◦ e
j
i = ej+1

i ◦ η̂ji . Thus the ‘pink’ square commutes and we have proven (a).

We have Hiφ
l = (Hiψ

l)−1 and Hiη̂
l ◦ Hiψ

l = Hψl+1 ◦ Hiη
l hence Hiη̂

l =
Hψl+1 ◦Hiη

l ◦Hiφ
l. Thus by induction

Hiη̂
l ◦ · · · ◦Hiη̂

k = Hψl+1 ◦Hiη
l ◦ · · · ◦Hiη

k ◦Hiφ
k.

Therefore, Hψl+1 gives an isomorphism between Hl,k
i (X;F•) and Hl,k

i (M•), and
we have proved (b).

In conclusion, we have described what the obscure sounding ‘persistent ho-
mology of sequences of cosheaves over a finite simplicial complex’ is and given
a (sketch) proof of how to extend discrete Morse theory to simplify its compu-
tation. The question that remains however is what is an efficient algorithm for
constructing a good acyclic partial matching? Indeed, [2] gives an efficient algo-
rithm for finding a matching for each cosheaf in the sequence but it might not
be the case that this matching is the ‘most’ efficient over the whole sequence.
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