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Background

The data: gene expression on a single cell level

I The gene expression of a gene is an measurement of how
much each gene is being used.

I There are around 20,000 genes in the human genome. The
gene expression of all these genes is the transcriptome.

I We can measure the transcriptome for thousands of cells in
a sample simultaneously.

I This data can be thought of as thousands of points in R20000.

The problem: gene selection

I In biology, we want to understand this data in terms of genes.
I Which genes describe a particular cell type? Which genes

drive differences in expression within a sample?
I The usual solution is to cluster the data into cell types and

then use a statistical A/B test to find statistically significant
genes that differentially expressed between clusters.

I This fails when the data has a high degree of continuity.
What if a gene is expressed on the boundary of two clusters?
What if the cell states do not naturally form clusters?

The solution: graph Laplacians and Rayleigh quotients

I Modelling the data as a graph (or simplicial complex etc.)
allows us to not draw arbitrary boundaries between cell
states. We need then a way to understand functions on the
graph with respect to the topology.

I Given a graph G = (V,E) the graph Laplacian L is defined as

L = D − A
where D and A are the degree and adjacency matrices of
the graph. The Laplacian is a discrete analogue of the
Laplace-Beltrami operator on manifolds. Applying L to a
function g : V → R computes the difference between the
value of g on a node and the average of the value of g on its
neighbours.

I The Rayleigh quotient of the function g given L is defined as

RL(g) =
gTLg

gTg
=

∑
u∼v ‖g(u)− g(v)‖2

‖g‖2
.

The Rayleigh quotient is non-negative and measures how
‘smooth’ g is with respect to the graph G, with a smaller
value RL(g) being smoother.

I Viewing each gene g as a real-valued function on V we can
rank each gene by how smooth g with smoother genes being
more interesting. This idea for feature selection was
introduced in [HCN05] and applied to single cell data
in [GYC19].
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Methods

Extending the Rayleigh quotient: introducing time

I Often biological data has an associated time component.
Cell differentiation is the process in which one cell type (e.g
a blood stem cell) becomes more specialised (e.g. a white
blood cell).

I We want to be able to describe how gene expression relates
to this time direction in our topology.

Kron reduction and the Persistent Laplacian

I We can view time data as a filtration on our graph and we
would like to reduce our graph based on the superlevel sets
of this filtration.

I For subsets α, β ⊆ V let L[α, β] be the submatrix of L with
rows indexed by α and columns indexed by β. Under an
appropriate reordering of the node labels, the Laplacian L
has block form

L =

[
L[α, α] L[α, αc]
L[αc, α] L[αc, αc]

]
,

where αc = V \ α is the complement of α in V .
I The Kron reduced Laplacian [DB13] (or 0-degree persistent

Laplacian [MWW21; WNW19]) of L with respect to α is the
matrix

Lα = L[α, α]− L[α, αc]L[αc, αc]−1L[αc, α],
which is also known as the Schur complement L/L[αc, αc].

I The Kron reduced Laplacian Lα is a bona fide Laplacian in
the sense that there exists a weighted graph Gα with
Laplacian Lα.

above: bottom graph is the Kron reduction of the top graph by
the red nodes

The persistent Rayleigh quotient

I Suppose we have a filtration f on the nodes of the graph G,
a function f : V → Z with

α(i) = {v ∈ V : f (v) ≤ i}
being the sublevel set for each i ∈ Z. For i, j ∈ Z with i ≤ j
define

L
j
i =

(
Lα(i)

)
α(j)

the (i, j)-persistent Laplacian, where Lα(j) is the Laplacian
of the induced subgraph of G with nodes in α(j).

I We define the persistent Rayleigh quotient for a graph signal
g : V → R as

PRQ(i, j)(g) = R
L
j
i
(g) =

〈g, Ljig〉
〈g, g〉

,

which is the Rayleigh quotient using the (i, j)-persistent
Laplacian.
We further define the normalised persistent Rayleigh
quotient to be

P̂RQ(i, j)(g) =
〈g, Ljig〉
〈g,Dj

i g〉
,

where Dj
i is the degree matrix of the graph corresponding to

L
j
i .

above: the PRQ gives a 2-dimensional non-negative value for
each graph signal

Results

For cell differentiation

We apply the PRQ to cell differentiation processes.
I A) The model for the bifurcating differentiation process. A

parent cell type c bifurcates over time to daughter cell types
a and b.

I (B) The effects on the graph and graph Laplacian after
applying the Kron reduction process to the daughter cells.

I (C) The normalised Rayleigh quotients of (x-axis) full
Laplacian Lt1−t0t1−t0 and (y-axis) persistent Laplacian Lt1−t00 for
binary functions on the graph, representing genes, separates
these based on relevance to the bifurcation.

On mouse foetal liver cells

We apply the PRQ on public data obtained from sampling devel-
oping mouse liver cells over the course of 8 days [Yan+17].
I (C) We plot these values for each gene for (i = 7, j = 7) on

the x-axis and (i = 2, j = 7) on the y-axis.
I Selected for display (A,B,D,E) are top differentially expressed

genes from [Mu+20].
I Genes Tubb5, Mdk, and Igfbp1 are expressed in parent and

one daughter cell lineage, hepatoblast to (A) cholangiocyte
or (B) hepatocyte and lie above the diagonal.

I Genes Aldob and Mt2 are expressed in both daughter cell
types but not in the parent cell type (D), and lie below the
diagonal.

I Genes Ahsg and Fabp1 are only expressed in one daughter
cell type (E) and lie on the diagonal.
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