Processing of Advanced Materials - Professor Patrick Grant

Processing of Advanced Materials Group

Welcome to the page for Patrick Grant, Vesuvius Professor of Materials, and the Processing of Advanced Materials research group at Oxford University. Our research takes place at the interface between advanced materials and manufacturing. Particular applications include electrodes for energy storage and advanced metallic alloys for power generation.

Many of our research projects are concerned with solidification behaviour in complex alloys, and/or the use of liquid metal, ceramic or polymer droplet and powder sprays to create unusual materials. The group works closely with industry and other universities, and has many specialised synthesis and fabrication facilities.

The group is primarily based at Oxford University's Begbroke Science Park, approximately 5 miles north of Oxford. The Begbroke Science Park provides large-scale laboratories unavailable in Oxford - critical for manufacturing research at a meaningful scale - and the 350sqm Advanced Processing Laboratory is the hub for the group's research. Examples of our research, the group equipment and research outputs are described below. Please get in contact if you would like any further information.


- News -

Studying crystallization using X-ray radiography and machine learning. We describe an X-ray radiographic study of the crystallization behaviour of liquid alloys using X-ray radiography and machine learning in Science Advances. Working with colleagues from Andrew Zisserman's computer vision group in the Department of Engineering Science, we used machine learning techniques to teach a computer to automatically detect the nucleation of crystals in terra-bytes of X-ray radiographic videos obtained during solidification experiments at the European Synchrotron Radiation Facility (ESRF). The quality of the videos combined with computer vision techniques allows the alloy composition at the point and instant of nucleation to be determined automatically, which in turn allows an estimate of the temperature and nucleation undercooling for every crystallization event. Studying thousands of nucleation events, we show how undercooling varies with solidification conditions, and explain how sudden bursts of crystallization are linked to the thermal-solute conditions in the liquid. Machine learning computer vision allowed enormous volumes of data that were unanalysable by hand to be converted robustly into distributions of nucleation undercoolings.

The group will lead the University's contribution to one of the UK's new Future Manufacturing Hubs, announced on Monday 5 December 2016 by the Minister of State for Universities, Science, Research and Innovation, Jo Johnson. The UK's Engineering and Physical Sciences Research Council (EPSRC) will invest £10M into the Manufacture using Advanced Powder Processes (MAPP) Hub, led by the University of Sheffield and also involving the universities of Oxford, Leeds, Manchester and Imperial College London; 17 industry partners; and six centres within the UK’s High Value Manufacturing Catapult.

MAPP will focus on developing new powder-based manufacturing processes that provide low energy, low cost and low waste manufacturing routes and products for UK industry, and will be part of the Sir Henry Royce Institute for Materials Research. The work in the Processing of Advanced Materials group will concern novel uses of field assisted sintering for controlling the microstructure of structural and functional materials.

Dr Fritsch field assisted sintering technique (FAST) apparatus was commissioned in December 2015. FAST is a powder consolidation process in which a pulsed direct current is passed through a green powder compact and/or a graphite die under vacuum and uniaxial pressure. Joule heating in the die and/or the compact (depending on die arrangement and materials used) reduces consolidation times from many hours to a few minutes. FAST is similar to the Spark Plasma Sintering (SPS) process.

The FAST is being used to consolidate Fe, Cu and W based dispersion strengthened powders produced in-house for nuclear power applications. Consolidation investigations of various functional materials has also started, along with using the FAST to join materials.

In August 2015 we started working with our new North Star Imaging Imagix 150 kV microfocus X-ray tomography (XRT) unit. The XRT is being used to map and quantify the 3D distributions of any pores or voids in advanced alloys, to study the distribution of dielectric and magnetic micro-particles in 3D printed functional composites, and to investigate the internal structure of Li-ion battery and supercapacitor cells being manufactured in the group using layer-by-layer processing.

The XRT also complements our synchrotron X-ray research on the dynamics of solidification and the manipulation of cast microstructure, allowing some experimental debugging and prelimiinary data capture before transferring our solidification rigs to national synchrotron X-ray sources such as the Diamond Light Source.

- Previous news -


- Major project areas -

Materials for Fission and Fusion Power is research cluster based in the Department of Materials, spanning many research groups and research specialisms. It concerns an integrated research approach to understand, at the microstructural level, the key structural integrity issues that underpin development and application of alloys for high temperature and high neutron flux environments typical of next generation fission and fusion reactors.

Our role is to research the manufacture of oxide dispersion strengthened steels and copper alloys, and ultra-thick tungsten coatings for use in future fission and fusion power reactors. Key sponsors are the Culham Centre for Fusion Energy (CCFE) and the National Nuclear Laboratory (NNL).

The EPSRC Future Liquid Metal Engineering (LiME) Hub, involves the universities of Brunel, Oxford, Manchester and Leeds, and Imperial College London, along with industrial partners, to undertake a major programme of integrated research to reduce dependency on primary metals, increase recycling and boost the performance of castings.

Our work concerns real-time X-ray synchrotron imaging of solidification, quantification of important dynamic processes such as crystal nucleation, growth and fragmentation, together with detailed microstructural examination and numerical modelling. Our aim is to develop a new family of more tolerant alloy-process combinations.

Adaptive Tools for Electromagnetics and Materials Modelling to Bridge the Gap between Design and Manufacturing (AOTOMAT) .

The group is developing the new materials and manufacturing technology required for practical applications, including the manufacture of graded electrical and magnetic materials using new adaptations of 3D printing. In some arrangments, the structured materials - or meta-materials - produce unusual interactions with microwaves unavailable in conventional materials. We are also studying active meta-materials where their microwave response is controlled by an external stimulus.

The SuperGen Energy Storage Hub is a national collaboration funded by EPSRC for research on all types of storage technologies. Our work focuses on the manufacture of improved, structured electrodes for batteries and supercapacitors, particularly new approaches for structured electrodes.

We are researching new manufacturing-material combinations for grid-scale storage in EPSRC Grand Challenge: Energy Storage for Low Carbon Grids, led by Imperial College London. Both these projects form part of our contribution to The Energy Storage Research Network.

Oxford Energy provides more information on how our work links with Oxford University's wider energy research activities.

- More projects and facilities -


A gallery of photos of the group, visitors and other activities:


- Research projects available -

Research studentships

Research studentship opportunities in the group are given on the departmental website along with how to apply and closing dates for gathered field assessment of applications HERE

Post-doctoral positions

Funded post-doctoral research assistant jobs in the group are posted here as and when external funding is available - please check back later.


- Publications -

Some recent journal publications:

Coral-like directional porous lithium ion battery cathodes by ice templating, C. Huang and P.S. Grant, J. Mat. Chem. A (2018).

Spray printing of self-assembled porous structures for high power battery electrodes, S-H.Lee, A. Mahadevegowda, C. Huang, J.D. Evans and P.S. Grant, J. Mat. Chem. A (2018).

Modelling and neutron diffraction characterization of the interfacial bonding of spray formed dissimilar steels, T.L. Lee, J. Mi, S.B. Ren, J.F. Fan, S. Kabra, S.Y. Zhang and P.S. Grant, Acta Mat., 155 (2018), 318-330.

Microstructural and mechanical characterisation of Fe-14Cr-0.22Hf alloy fabricated by spark plasma sintering, M.A. Auger, Y. Huang, H. Zhang, C. Jones, Z. Hong, M.P. Moody, S.G. Roberts and P.S. Grant, J. Alloys Comp., 762 (2018), 678-687.

Multi-scale engineered Si-SiO2 nanocomposite electrodes for lithium ion batteries using layer-by-layer spray deposition, C. Huang, A. Kim, D.J. Chung, E. Park, N.P. Young, K. Jurkschat, H. Kim and P.S. Grant, ACS Appl. Mat. Interfaces, 10 (2018), 15624-15633.

Crystal nucleation in metallic alloys using X-ray radiography and machine learning, E. Liotti, C. Arteta, A. Zisserman, A. Lui, V. Lempitsky and P.S. Grant, Sci. Adv., 4 (2018), eaar4004.

Development of a novel melt spinning based processing route for oxide dispersion strengthened steels, Z. Hong, A. Morrison, H. Zhang, S.G. Roberts and P.S. Grant, Mat. Trans. A, 49 (2018), 604-612.

An in situ method to estimate the tip temperature and phase selection of secondary Fe-rich intermetallics using synchrotron X-ray radiography, S. Feng, E. Liotti, A. Lui, S. Kumar, A. Mahadevegowda, K.A.Q. O'Reilly and P.S. Grant, Scripta Mat., 149 (2018), 44-48.

High-frequency supercapacitors based on doped carbon nanotube arrays, Z. Han, C. Huang, S.S. Meysami, D. Piche, D.H. Seo, S. Pineda, A.T. Murdock, P.G. Bruce, P.S. Grant and N. Grobert, Carbon, 126 (2018), 305-312.

Fabrication of composite filaments with high dielectric permittivity for fused deposition 3D printing, Y. Wu, D. Isakov and P.S. Grant, Materials, 10 (2017), 1218.

The generalised Maxwell fish-eye lens as a beam splitter: a case study in realising all-dielectric devices from transformation electromagnetics, Q. Lei, R. Foster, P.S. Grant and C. Grovenor, IEEE Trans. Microwave Theory Techn., 65 (2017), 4823-4835.

Vertically-aligned silicon carbide nanowires as visible-light-driven photocatalysts, J. Hong, S. S. Meysami, V. Babenko, C. Huang, S. Luanwuthi, J. Acapulco, P. Holdway, P.S. Grant and N. Grobert, Appl. Catalysis B: Environ., 218 (2017), 267-276.

A new approach to fabricate superconducting NbTi alloys, T. Mousavi, Z. Hong, A. Morrison, A. London, P.S. Grant, C.R.M. Grovenor and S. Speller, Supercond. Sci. Technol., 30 (2017), 094001 (11pp).

A split ring resonator dielectric probe for near-field dielectric imaging, D. Isakov, C.J. Stevens, F. Castles and P.S. Grant, Sci. Rep., 7 (2017), 2038-1-9.

Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders, L. Zheng, T.L. Lee, N. Liu, Z. Li, G. Zhang, J. Mi and P.S. Grant, Mat. & Design, 117 (2017), 157-167.

A two layer electrode structure for improved Li ion diffusion and volumetric capacity in Li ion batteries, C. Huang, N.P. Young, J. Zhang, H.J. Snaith and P.S. Grant, Nano Energy, 31 (2017), 377-385.

- More papers -

Other publications:

A white paper from 2016: UK research needs in grid scale energy storage technologies, N.P. Brandon et al.

A report from 2004: The Aircraft at End of Life Sector: a Preliminary Study, I. Towle, C. Johnston and P.S. Grant


- Contact -

Professor Patrick Grant
Department of Materials, Oxford University
Parks Road, Oxford OX1 3PH, UK
T: 44-1865-283763 or 283324
F: 44-1865-848785
patrick.grant@materials.ox.ac.uk

Return to Department of Materials