
Chapter 7

Landau theory

7.1 Landau theory and phase transitions

At a first-order phase transition, an order parameter like the magnetization is discontin-
uous. At a critical point, the magnetization is continuous – as the parameters are tuned
closer to the critical point, it gets smaller, becoming zero at the critical point. How-
ever, experiments on the liquid-gas phase transition and on three-dimensional magnets
(and exact computations like Onsager and Yang’s for the two-dimensional Ising model)
both point that even though the magnetization is continuous, its derivative is not. In
mathematical language the magnetization is a continuous function, but not analytic. For
example, at h → 0+ in the Ising magnet in 3d, the magnetization vanishes as T → Tc
from below as

M ∝ (Tc − T ).315 T < Tc, 3d Ising . (7.1)

where all evidence suggests that the exponent is not even a rational number. In the
two-dimensional Ising model, the exact computations give

M ∝ (Tc − T )1/8 T < Tc, 2d Ising. (7.2)

Even though the exponent is rational, the function is decidedly not analytic.

This was (and remains) very strange compared to most of physics. The partition
function of any finite system is a continuous function of all the parameters. Thus if any
non-analyticity occurs, it must be a property of taking an infinite number of degrees of
freedom. We usually take this limit out of necessity – it’s not possible to follow 1023

(or for that matter even 100) particles individually, even with a computer. Even Monte
Carlo simulations can at best do thousands of particles. Now we’re saying that at a
critical point, the limit we so desperately need to take is suspect. Since dimensional-
analysis arguments rely on analyticity, these are also suspect. Of course, at the end of
the day all formulas are dimensionally consistent. What happens though is that at and
near critical points, a hidden parameter is necessary for describing the physics. This
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parameter arises from the short-distance physics – even if we are interested in describing
long-distance physics, critical physics necessarily involves all length scales!

To understanding how that happens requires considerable effort – this is why Wilson
won a Nobel Prize, and why many others provided essential ingredients. The first major
step toward theoretical understanding came from Landau, and his approach is still called
today Landau theory, or Landau-Ginzburg theory. Sometimes it is also called Ginzburg-
Landau theory, because the two wrote a paper applying these ideas to superconductivity.
However, the original insight came from a solo paper of Landau’s in 1937; Ginzburg later
understood how to see what goes wrong with Landau theory, explained below in section
7.7. It took several decades for Wilson and others to figure out how to fix it. (To
confuse the history more, allegedly Lifshitz did the writing, if not the physics, of many
of Landau’s papers!)

Landau theory is an effective theory for what happens at and near the critical point.
The experimental fact that very different systems can have quantitatively identical crit-
ical behavior suggests that one does not need to worry about every single detail of the
system to understand this behavior. We gave an explicit example of how if we ignored
many details of the liquid-gas system, we could obtain a lattice gas that was identical
to the Ising model. This provides a suggestion as to why the universality occurs; Lan-
dau theory is the first serious attempt to derive a theory that will describe the critical
behavior quantitatively.

Landau theory only describes the universal behavior of a system; by construction,
it cannot for example give non-universal numbers like the value of Tc for a given sys-
tem. But one of the miracles of critical behavior is that it can give precise results for
the universal behavior. It is important to emphasize that Landau’s original (genius)
idea for an effective theory was and remains completely correct. It’s just that the naive
computations do not give the right answers. To be precise, in the next section, I will
describe how the effective theory can arise from taking a specific approximation called
mean-field theory. This approximation breaks down in low dimensions, for reasons ex-
plained by Ginzburg. But one of the beautiful aspects of Landau theory is that it makes
deriving the consequences of mean-field theory really easy. The whole point is that the
effective theory is independent of the details, so one can just guess what it is based on
the symmetries and degrees of freedom of the system.

Landau theory is an effective theory of the order parameter. To be precise about it,
one first decides what the appropriate order parameter is to describe the phase transi-
tion. In one phase, the order parameter is non-vanishing, in another it vanishes. In a
ferromagnetic spin system, this very naturally is the magnetization ~M . In an antifer-
romagnetic systems, as discussed in earlier chapters, there are a variety of possibilities,
such as the staggered magnetization, which describes a transition away from Néel order.
For example, in the Ising model the order parameter is very naturally the magnetization
M(x), the continuum limit of the expectation value of the spin 〈Mk〉 = 〈σk〉 at the point
k.

It is worth noting that in work in the last decade describing a ”breakdown of Landau’s
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paradigm”, what sometimes is meant is that multiple order parameters are needed to
describe a given transition; subtle physics causes different order parameters to vanish at
the same point. Another possibility is that no local order parameters change values at
a phase transitions. One example of such is known as “topological order”, where only
non-local order parameters characterize the transition. Examples of this will be given
later in this book.

One of Landau’s insights was an easy way to see how the non-analyticity arises. The
basic assumption of Landau theory is that at a fixed value of the order parameter, the
free energy as a function of the order parameter is analytic, both in the parameters such
as J and T , and in the order parameter itself. The non-analyticity at a phase transition
then comes because in the partition function one must sum over all possible values of
the order parameter.

The Ising model provides the canonical way of illustrating the simplest version of the
idea: Landau theory without fluctuations. For reasons that will later be clear, such a
theory is called mean-field theory. The partition function is of course defined as the sum
over all configurations

Z =
∑

{σj=±1}

e−βE . (7.3)

The sum can be be done by first fixing an overall value of magnetization per site (here
M =

∑
j σj/N for N sites), and then summing over all values of M :

Z =
∑
M

∑
{σj=±1|

∑
j σj=MN}

e−βE (7.4)

The point of Landau theory is then to define

e−βV f(M) ≡
∑

{σj=±1|
∑
j σj=MN}

e−βE (7.5)

where V is the volume of the system. For large enough N , M essentially becomes a
continuous variable, so the sum over M can be replaced with an integral. This yields

Z =

∫ 1

−1
dMe−βV f(M) (7.6)

Similarly, for an n-component spin (n = 2 is usually called the XY model, n = 3 the

Heisenberg), one would define f( ~M).
One piece of notation needs some explanation. Previously I defined the expectation

value of the spin to be the magnetization M , with no brackets. When rewriting the
partition function as (7.6), one needs to considers all possible magnetizations in order
to sum over all configurations, not just the expectation value. While this is a little
confusing, it is not really that outrageous. Under standard assumptions, the integration
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in the partition function is dominated by configurations where F (M(x)) is a minimum.
This means that the expectation value 〈M(x)〉 is precisely this minimum. It is then
conventional to omit the brackets and just call this minimum M .

This procedure is quite analogous to the analysis of chapter 1, where I showed how
the thermodynamic notion of free energy as a function of fixed energy:

F(E) ≡ E − TS(E) (7.7)

is equivalent to the one from statistical mechanics

F = −kBT ln(Z) . (7.8)

The connection comes from noting that under very standard assumptions

Z =

∫
dE e−β(E−TS(E)) =

∫
dEe−βF(E) .

Under the further assumption that the sum over states in the partition function is dom-
inated by states that have energy all around the average energy 〈E〉, the two definitions
are related by

F ≈ F(〈E〉) .

Thus in Landau theory, the order parameter plays a similar role to the energy in ther-
modynamics. The function f(M) then plays the role of the free energy per site.

Once the order parameter has been identified (or perhaps conjectured), the next
step in Landau theory is to find an expression for f valid near the critical point. The
definition in (7.6) is exact, but a priori, it will be some complicated functional of the order
parameter. One can develop the mean-field approximation using the exact definition,
and indeed I will do this for the Ising model in the section 7.3. But Landau’s next
genius move was observing that with the analyticity assumption, no serious calculation
is necessary. Since different systems have identical critical behavior, this provides a
strong hint that universal properties will not depend on complicated details. Moreover,
an order parameter is chosen so that its expectation value vanishes at the critical point.
Thus with Landau’s assumption at at fixed value of the order parameter is analytic, the
free energy can be expanded in a Taylor series around the critical point. The symmetries
of the theory determine the form of this expansion.

First consider the Ising model neglecting all local fluctuations in the fields, so that
M(x) is constant in space. If there is no magnetic field, the partition function is invariant
under flipping the sign of the spins σk → −σk. Thus the free energy in this limit must
be an even function of M . The Taylor series for the free energy density for fixed M is
then

f(M) = a− hM + bM2 + cM4 + . . . (7.9)

for some numbers a, b and c. The linear term arises because the magnetic term in the
Ising energy is h

∑
j σj, so that with the assumption of uniform magnetization, so it
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results in a contribution of −hM to the energy density. The other coefficients a, b, c will
depend on which microscopic model is being studied. For the Ising model, these can be
related to the parameter J by using the mean-field approximation; this is discussed in
section 7.3. The sign of c must be positive, in order that the free energy be bounded from
below. If perchance the underlying physical model of interest results in a negative c, then
one must extend the expansion so that the highest-order term has positive coefficient.

For classical spin models with more components, the symmetry is larger, but the
argument is similar. The interaction term ~Si · ~Sj is invariant under rotation in the n-
component space of spin degrees of freedom. Thus in the absence of an external magnetic
field, the free energy function must be invariant under rotations of ~M and so a function
of |M |2 ≡ ~M · ~M . In the absence of spatial fluctuations, then

f( ~M) = a− ~H · ~M + b|M |2 + c|M |4 + . . . (7.10)

This indeed reduces to (7.9) when setting n = 1. In field-theory language, this is often
called the (linear) O(n) model, because the spin-rotation symmetry is the Lie group
O(n).

These examples are merely the simplest examples of Landau theory; literally hundreds
of generalizations have been considered over the decades. One can write down Landau
theories for models with gauge fields, fermions, phonons, spatial anisotropy, impurities
more exotic symmetries, and pretty much everything a physicist can imagine for degrees
of freedom. Although of course the analysis depends on these details, the philosophy is
very much the same as to that developed by Landau and those that followed.

7.2 Critical exponents (and more) by neglecting fluc-

tuations

In the mean-field approximation of Landau theory, the effect of fluctuations is completely
ignored – the magnetization is treated as being completely uniform in space. With this
approximation, Landau theory gives a very simple way of not only understanding why
there is a critical point, but also in computing critical exponents. The approximation
is typically not valid in lower dimensions, and the renormalization group is needed get
the correct numbers. Typically, and in the examples discussed here, this dimensionality
above which the approximation is valid is four; there presumably is cosmic significance
that this is precisely the dimensionality of space-time in our observable universe.

Neglecting fluctuations not only provides the first step in computing the critical
exponents in any dimension, but provides an huge amount of intuition. For example,
I will show here how the critical exponents are independent of many of the details of
the theory. This provides a posteriori support for the whole Landau approach. In fact,
simple arguments then give critical exponents exactly in this approximation.

The partition function is given by (7.6) using the approximation (7.9) for the free
energy density at fixed magnetization. Since we are interested in the behavior in the
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Figure 7.1: f(M) for various values of the couplings in the Landau theory for the Ising
model

large-volume limit, the integral over M is dominated by magnetizations where f(M) is
a minimum. These obey

∂f

∂M

∣∣∣∣∣
M=M0

= 0 . (7.11)

In the Landau theory for the Ising model (7.9), this yields

2bM0 + 4cM3
0 = h (7.12)

This is the equation of state, relating the magnetization to the couplings h, b and c in
the Landau theory. It is valid when the couplings are such that M is small, so that the
free energy is reasonably approximated by the expansion around M = 0.

The free energies for various regimes of the couplings are illustrated in the figure.
If h 6= 0, then there is the function f(M) may have two minima, but the lowest one
is where the magnetization has the same sign as h. The interesting behavior occurs at
h = 0. Since c must be positive, the results depend crucially on the sign of b. If b is
positive, then the minimum of f(M) must be at M = 0 for h = 0. If b is negative, the
minima are elsewhere:

M0 = ±
√
− b

2c
. (7.13)

The two degenerate minima are a consequence of the spin-flip symmetry occurring at
h = 0. For h→ 0+ the minimum with the + sign wins, and likewise for the minus sign.
Since the partition function is dominated by configurations with magnetization near M0,
this means that the expectation value of the magnetization is

〈M〉 = M0 .

The critical temperature thus corresponds to having b = 0, with T < Tc and T > Tc
corresponding to b negative and positive respectively. It is useful to define the reduced
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temperature

t ≡ T − Tc
Tc

(7.14)

so that t = 0 at the critical temperature. The reduced temperature is a dimensionless
quantity giving a measure of the distance from criticality. Since Landau theory assumes
that the free energy at fixed magnetization is analytic, then b is an analytic function of
t. Since b = 0 at t = 0, in the region of the critical point one can take

b = Bt+O(t2) , (7.15)

The other parameter c in the free energy at fixed magnetization does not vanish in general
at the critical temperature. (If it does vanish for some reason, then one must keep the
M6 term, and the universal behavior will be different.) Thus

c = C +O(t) . (7.16)

where C, like B is independent of t.
Putting this together means that when fluctuations are neglected,

〈M〉 = M0 ∝
√
Tc − T ∝ t1/2 (7.17)

for h = 0 and T < Tc. The coefficient depends on the details of the theory (the cou-
plings B, Tc and c), but the exponent does not! The exponent is also independent of
dimensionality. As is obvious from the plots, the magnetization has the same form as
determined by experiment and numerical computation

〈M〉 =

{
A(−t)β T < Tc

0 T > Tc

for some non-universal parameter A =
√
−B/(2CTc). The value βMFT = 1/2 predicted

by mean-field theory is different from the values 1/8 and .315 known for two and three
dimensions respectively. However, in four and higher dimensions, the numerically deter-
mined value of β is indeed 1/2, as predicted by Landau theory.

Landau theory also gives the qualitatively correct phase diagram in any d > 1. Since
for T > Tc, M0 = 0 for h = 0, bringing h through zero here still leaves M0 continuous.
However, for T < Tc, the value of M0 jumps from +

√
−b/2c to −

√
−b/2c as h is

decreased through zero. This is indeed a first-order transition. The only discontinuities
or non-analyticities in M0 as a function of the parameters occur at h = 0, so the dashed
line in the figure is not a phase transition. It is the point at which the second minimum
of the potential vanishes, and so the model cannot be thought of as a ferromagnet. This
gives a qualitative way of distinguishing between a ferromagnet, where interactions favor
spins lining up locally, and paramagnet, where the behavior is essentially determined by
the external magnetic field.
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Figure 7.2: Phase diagram for Landau theory for the Ising model

The non-analyticity of the magnetization as the temperature approaches Tc defines
one critical exponent. Another non-analyticity occurs in the magnetization as a function
of h precisely at the critical temperature:

〈M〉 ∝ h1/δ for T = Tc (7.18)

for positive h. This definition of the exponent δ is by historical convention. Calcluating
it by neglecting fluctuations in Landau theory is easy using the equation of state (7.12).
Since b = 0 when T = Tc, this gives h ∝M3, so that

δMFT = 3 .

Another exponent describes the behavior of the zero-field susceptibility near the crit-
ical point:

χ0 =
∂〈M〉
∂H

∣∣∣
h=0
∝ |t|−γ (7.19)

There are several interesting thing about this exponent. Notice that in the typical case
of γ positive, this means that the zero-field susceptibility diverges – a very small change
in magnetic field near the critical point causes a large change in magnetization. This
is a consequence of the discontinuity in the magnetization at the first-order transition.
Another interesting thing is that even though in principle the value of γ could depend on
whether the temperature is above or below the critical temperature, in practice it does
not. Neglecting fluctuations, differentiating (7.12) gives

2(Bt+ 6c〈M〉2)χ0 = 1 .

Since 〈M〉2 is either vanishes or is proportional to t, the constant of proportionality
in (7.19) will depend on whether t is positive or negative. In both cases, however the
exponent is

γMFT = 1 (7.20)

There are other critical exponents one can define, but I defer their definitions.
Universality goes deeper than critical exponents. The equation of state in the Ising

model can be written in the form

h = f(M, t) .
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If there are even more couplings in the problem, then there will be even more variables.
Widom’s scaling hypothesis says that near a critical point, the functional dependence
takes on a much simpler form:

h = M δΦ(t/M1/β) . (7.21)

Thus the particular combination hM−δ is a function of just one variable, not two. Thus
even though the identification of t with some microscopic parameter is not universal, once
this is determined different systems in the same universality class will exhibit the same
functional dependence on t/M1/β. The critical exponent will change once fluctuations
are included, but the functional form in (7.21) will still apply. Neglecting fluctuations,
the equation of state for Ising then gives Φ to be

hM−3 = ΦMFT

(
t/M2

)
= B

t

M2
+ C . (7.22)

Recall that in the critical region B and C are independent of t. Thus t appears only in
the combination t/M2 here.

7.3 Landau theory from the mean-field approxima-

tion

The complicated part in doing statistical mechanics is of course dealing with interac-
tions. By definition, an “interaction” means a term in the energy involving more than
one fluctuating variable. Even when the interactions are nearest-neighbor, only in very
special cases can the partition function be computed exactly. mean-field theory is an
approximation that simplifies the effect of interactions greatly, effectively reducing the
computation to that of independent degrees of freedom. In this approximation, one
replaces the effect of other spins on a given spin with the effect of the average on the
given spin. This average is the “mean field”. One can then determine the mean field
self-consistently.

While Landau’s approach explained in the previous section does not make such a
calculation strictly necessary, it is often quite useful to do so. It gives a way to relate
the microscopic parameters (e.g. the coupling J) to those in the mean-field theory (e.g.
a, b and c in (7.9), and so is very helpful qualitatively. It also allows a better under-
standing of the approximations the Landau approach subtly makes, for example the role
of dimensionality.

Mean-field theory is best understood by a specific example, which in this book almost
inevitably means the Ising model. Here one writes

σiσj = (σi−M+M)(σj−M+M) = M2+M(σi−M)+M(σj−M)+(σi−M)(σj−M) .

(I have reverted here to using M to denote the expectation value.) If the fluctuations
are small, the degree of freedom σj is typically very close to the average value M . The
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last term is quadratic in this small quantity, and the mean-field approximation amounts
to neglecting it. Using this approximation into the interaction part of the energy gives

EMFT = −h
∑
j

σj − J
∑
<ij>

σiσj (7.23)

≈ JNlM
2 − h

∑
j

σj − JM
∑
<ij>

(σi + σj) , (7.24)

=
Nz

2
JM2 − (h+ JzM)

∑
j

σj (7.25)

where z is the number of nearest neighbors each site has, and Nl is the total number of
links, which is related to the number of sites N by Nl = zN/2. The mean-field approach
therefore reduces the interactions to behave as an effective magnetic field, albeit one
that depends on the magnetization. This effective magnetic field is sometimes called the
molecular field, because it arises from the surrounding spins.

The magnetization still of course follows from taking the expectation value

M = 〈σk〉 =

∑
j σke

−βEMFT∑
j e
−βEMFT

=
1

Nβ

∂ ln(ZMFT)

∂h
.

Since EMFT depends on M as well, this amounts to a self-consistent equation for M , the
equation of state. This equation is easy to derive for Ising, because EMFT contains no
interactions, so

ZMFT = e−βJM
2Nz/2 (2 cosh(β(h+ JzM)))N . (7.26)

Thus the equation of state for the mean-field approximation to the Ising model is

M = tanh(β(h+ JzM)) . (7.27)

Another way of obtaining the same relation is to find the value of M that minimizes the
free energy per site

fMFT = − lnZMFT/(βN) =
1

2
zJM2 − 1

β
ln(2 cosh(β(h+ JzM))) . (7.28)

Setting ∂fMFT/∂M = 0 indeed yields (7.27), just as in the direct mean-field calculation.
This equation of state looks pretty different from that derived from Landau theory.

But recall that Landau theory applies only to the region around the critical point, where
the magnetization and magnetic field are small. Setting h = 0 initially and expanding
tanh in a Taylor series gives

M = βJzM − 1

6
(βJzM)3 + . . .
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Obviously M = 0 is a solution, but not necessarily the only one. If βJz − 1 > 0, then
there is another. This occurs for β large enough, i.e.

T < TMFT
c ≡ Jz . (7.29)

Then there are minima of the free energy at

M = ±
√
βJz − 1(βJz)3 =

√
TMFT
c − T
β2T 3

c

= t1/2
T

TMFT
c

. (7.30)

The mean-field approximation applied to the Ising model therefore gives a way of estimat-
ing the critical temperature. This typically is an overestimate, because the fluctuations
being neglected tend to favor disordering the system, and so lower the temperature at
which order does occur. For example, we saw in chapter 4 that the exact critical temper-
ature for the 2d Ising model on the square lattice is 2J/ ln(1+

√
2) ≈ 2.27J , substantially

smaller than the mean-field value 4J . Similarly, in three and four dimensions the numer-
ically determined values are 4.51J for the cubic lattice and 6.68J for the hypercubic, as
compared to the mean-field values of 6J and 8J respectively.

Mean-field theory also gives approximate relations between the microscopic parameter
J and the Landau parameters a, b, c. Expanding (7.28) around M = 0 gives

fMFT = −T ln 2 +
1

2
zJ(1− βJz)M2 +

1

12β
(βJz)4M4 + . . .

Matching this to (7.9) relates the coefficients of the Taylor series in Landau’s expansion
to the Ising parameters J and T . Since this expansion is (at best) valid near the critical
point, they should be related to the parameters B and C defined by b = Bt+O(t2) and
C = c+O(t), giving

B =
Jz

2
, C =

Jz

12
. (7.31)

The actual numbers are not particularly important, except for the fact that both are
positive. The fact that b is positive means that the ordered phase is indeed t < 0, while
having C > 0 is essential for the expansion to make sense. In some examples like the
Blume-Capel model in the homework, it is possible for C to be negative. Then one must
include the M6 term in the expansion, changing the mean-field critical exponents.

One of the nice things about the mean-field theory approximation is that it renders
any model solvable. For example, the mean-field solution of the Ising model with longer-
range interactions only changes non-universal parameters such as Tc. Namely, generalize
the nearest-neighbor interaction to ∑

j,j′

Jjj′σjσj′

where Jjj′ is an arbitrary interaction. The entire mean-field computation goes through
as before, except now zJ is replaced with

∑
j′ Jjj′ .
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This example illustrates why the effect of dimensionality is very minimal in mean-field
theory – it essentially only changes the strength of the mean field, and hence Tc, but not
the universality class. The physics only depends on

∑
j′ Jjj′ , not whether the interactions

are frustrated, or are short or medium or long range – the mean-field approximation is not
sensitive to this information. It seems obvious it will miss much interesting and subtle
physics. Nevertheless, given the crudity of this approximation, it remains remarkable
how useful it often is. Moreover, the arguments here suggest that the approximation
should become better in higher dimensions. Since the number of nearby degrees of
freedom increases exponentially with dimension,1 replacing individual interactions with
their average becomes a better and better approximation. Even better, I will show in
section 7.7 that in a suitably high dimension (≥ 4 for many theories) mean-field theory
is not merely a good approximation: it gives exact results.

7.4 The correlation length

mean-field theory requires making a very dramatic approximation, neglecting fluctua-
tions. Since the fundamental issue in statistical mechanics and thermodynamics is the
study of fluctuations, it is hardly acceptable to stop here. However, it is a tribute to
the fundamental simplicity of the field and to the insights of Landau that so much can
be extracted from so little. It gives a qualitatively correct picture in any dimension
higher than one, and exact quantitive results in high enough dimensions. It also gives a
framework for understanding how the non-analyticities arise in general.

Here I will use mean-field theory to compute the correlation length and verify that
it indeed has the advertised property: at the critical point it diverges. A self-consistent
check on Landau theory worked out in the next section will then be to use this result to
see if the fluctuations are indeed small.

Thus now it is necessary to start developing a framework for understanding when and
how mean-field theory goes wrong. A very useful quantity in this study is the correlation
length ξ. Roughly speaking, the value of ξ gives a notion of “how far the interactions
reach”, e.g. if one flips a single spin from say down to up, that flip affects the probabilities
for finding other spins down or up out to a distance ξ. It tells one how far away thermal
fluctuations have an effect. At very high temperature, the correlation length is small
because the fluctuations are so strong that they wipe out any correlations. At very low
temperature, the fluctuations are (in high enough dimension) very small, so again they
result in a very small correlation length. In the middle (i.e. when the temperature is at
the same scale as the energy scales coming from the couplings), then it is possible for
the correlation length to be much larger. To give away the ending, what we will show is
near critical points, the correlation length increases, diverging at the critical point. Thus

1In fact, when studying physics on irregular graphs instead of a lattice, one defines the effective
dimensionality of the system as how the number of sites n(R) within a region of radius R depends on
R, i.e. n(R) ∼ Rdeff . Thus the Bethe lattice/Cayley tree has deff =∞.
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fluctuations are extremely important near critical points.
As discussed in chapter 1, the behavior of correlators is one of the best ways of

understanding and characterizing different phases of matter. In this context it is natural
to look at the correlator of the operator used to define the order parameter, i.e. in a
ferromagnet we want to look at correlators, e.g. 〈σjσk〉 in Ising. In an ordered phase this
will go to a non-zero constant at |j−k| → ∞, while in a disordered phase it goes to zero
in this limit. Of interest here is how correlators approach this limit, so it useful to define
r = |j − k| and

G(r) = 〈σjσk〉 − 〈σj〉〈σk〉 (7.32)

so that

lim
r→∞

G(r) = 0 .

Then the correlation length is defined so that at very large r,

G(r) ∼ e−|a−b|/ξ (7.33)

This exponential depends is the dominant behavior at large r; in the omitted prefactor
there may very well contain powers of r. These do not affect the value of the correlation
length ξ. This thus defines a precise notion of how far away degrees of freedom can be
and still have an effect on each other.

The subtracted correlator G(r) almost always has the form (7.33). As shown in earlier
chapters, this can be computed easily and exactly for the one-dimensional Ising model,
and in free-fermion models. In the former, the correlation length is simply

ξ = − 1

ln(tanh(βJ))
. (7.34)

In one dimension there is no ordered phase, as follows from the Peierls argument given
in chapter 1, and from the Mermin-Wagner theorem described in a subsequent chapter.
Nonetheless, the correlation length gets larger and larger as the temperature is lowered.
It is easy to understand why. At exactly zero temperature, there are no thermal fluctu-
ations, so the partition function is dominated by the two ordered configurations. At any
non-vanishing temperature, fluctuations disorder the one-dimensional system. However,
the entropy contribution to the free energy grows only logarithmically with system size,
so for very low temperatures βJ � 1, the energy contribution still wins up to long length
scales. Thus the correlation length grows exponentially with βJ for large βJ , as is easy
to check from the exact result (7.34).

A diverging correlation length means that the mean-field approximation is highly
suspect in this regime; the Ginzburg criterion discussed in section 7.7 makes the issue
precise. In fact, at some values of the coupling, the correlation length becomes infinite,
so that (7.33) no longer implies: G(r) decays algebraically with distance. To give a
preview of the following, here is an extremely important piece of physics:
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The correlation length diverges at a critical point. This implies physics at all
length scales needs to be considered in understanding critical points.

This is why it took so long and was so difficult to quantitatively characterize critical
behavior. Simple assumptions about fluctuations do not work!

7.5 Including spatial dependence in Landau theory

In the mean-field approximation, a complicated interacting many-body system is turned
into a non-interacting by effectively averaging over all the interactions. By construction,
there is no way of computing a correlation length, since as long as the system is transla-
tion invariant, the mean field will be translation invariant. The next step is therefore to
include spatial dependence into Landau theory. This is fairly straightforward to do, and
is the task of this subsection. In 7.6, I compute the correlation length in a mean-field
fashion. This calculation allows a precise way to understand how and why mean-field
theory does not work in low dimensions, via the Ginzburg criterion discussed in section
7.7.

The approach is similar to before. However, here the system is divided up into a large
number of smaller subsystems, each with Ns spins. In the Ising case each subsystem has
a magnetization

Ms =
1

Ns

∑
j∈s

σj .

Then the partition sum can be divided up in a more elaborate version of the earlier
argument: ∑

{σj=±}

e−βE =
∑
s

∑
Ms

∑
σj∈s|

∑
j∈s=MNs

e−βE .

The beautiful thing about having large numbers of degrees of freedom is that these many
subsystems each still can contain many spins. Thus each Ms can be taken to be range
continuously from −1 to 1. Moreover, since there are many subsystems, their locations
of the systems can be labeled by a continuous variable ~x, and so Ms can be taken as a
function M(~x).

In Landau theory for the Ising model, one therefore considers a function f(M(~x)),
the free energy density at fixed magnetization. Then the partition function is given by

Z =

∫
[DM(~x)]e−β

∫
ddxf(M(~x)) . (7.35)

The integral is called a functional integral. One must integrate over all different field
configurations, i.e. do an integral from −1 to 1 at every point ~x in space. Many times
the measure [DM(~x)] is not well-defined, and so can send mathematicians into fits of
derision. Of course, in the context here each x is really a finite region of Ns spins, so
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one can use this to give a precise definition of the measure. That does not automatically
render the measure well-defined, as one must then show that the continuum limits is a
sensible one. In the cases of interest here, the continuum limits are sensible, and thus
without further ado I proceed.

A field is a degree of freedom for every point in space (or space-time). This is what
M(~x) is! It is akin to an electromagnetic field, but an even simpler object, since it has no
space or space-time indices. Landau theory provides a beautiful way of understanding
how and why field theory is a useful description of critical phenomena and beyond.
The effect of the magnetization varying in space is to include terms in the free energy
depending on spatial derivatives. When spatial variations are small, it is easy to include
their effect in the free energy density. Although of course the precise symmetry depends
on the underlying lattice, it is natural to assume that if the interactions are invariant
under the appropriate subgroup of rotations, then the theory in the continuum long-
distance limit should be fully invariant under rotations. Exceptions to this are possible
but rarely (never?) end up affecting universal properties, except as very small corrections.
The free-energy density for Ising in the limit of small fluctuations is then

f(M(x)) = a+ κ∇M · ∇M − hM + bM2 + cM4 + . . . (7.36)

where the dot product here is in real space; the generalization to n-component spins
is obvious. The coupling κ in many contexts is the stiffness, because when positive it
raises the free energy for spatial variations and so favors a uniform M . If κ for some
physical system is negative, one must include terms with four derivatives. Otherwise,
higher-derivative terms typcially can be neglected when the fluctuations are small. This
assumption can and will be checked.

It is usually convenient to define the field to be a suitably averaged difference between
a fluctuating degree of freedom and its expectation value. This definition is designed to
characterize fluctuations: its expectation value by definition is zero. The Landau field
theory for the Ising model involves a single field φ(~r). The simplest definition would
then be

φ(~r) ∼ σ~r − 〈M〉 . (7.37)

Since σ is a discrete variable, this obviously is not going to turn into a continuous func-
tion. To obtain something nicer, one needs to average over enough spins in a region
around ~r to give something near to the expectation value. One can define precise pro-
cedures for averaging and then prove various interesting things. The beauty of Landau
theory is that none of the precise choice are supposed to matter: one simply assumes that
only very gross behavior, such as the types of degrees of freedom and their symmetries,
matters. The genius of this ideas is that it works most of the time!

The first step is to rewrite the free energy density in terms of φ. For T > Tc and
vanishing magnetic field, the expectation value of the magnetization vanishes, so one
simply replace M with φ in f :

βf(φ(~r)) = κ|∇φ|2 + bφ2 + cφ4 + . . . for T > Tc . (7.38)
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One then does the partition sum (i.e. the functional integral) over φ just as for M ; I will
explain below how to define this sum precisely. Note that for convenience the couplings
have been rescaled to absorb the factor β.

For T < Tc and h = 0, the expectation value of M is non-vanishing, obeying M2 =
−b/(2c). To define φ one must therefore specify which minimum is of interest. As
long as the flucutations are small, this is consistent to do. Here the two minima are
related by the discrete symmetry σj → −σj, which translates in the field theory to
φ(~r) → −φ(~r)). (The low-temperature phase therefore provides an example of what is
called “spontaneous symmetry breaking”.) This gives here

βf(φ) = κ|∇φ|2 − 2bφ2 +O(φ3) for T < Tc (7.39)

for either minimum. The term odd in φ appears because the potential is not symmetric
around the minimum, as is obvious from the plotting bM2 + cM4 for b negative. Note
that since b is negative for T < Tc, the quadratic term indeed contributes something
positive to the free energy for both T > Tc and T = Tc, which is of course a consequence
of expanding around the minimum.

7.6 Diverging correlation length from mean-field the-

ory

Including spatial variation in Landau theory is so straightforward, it is hard to see
what could go wrong, but the correlation length provides a clue. In order to define a
continuous field, it was necessary to average over a box containing a large number of
spins, but of a size still much smaller than that of the full system. Moreover, neglecting
higher derivatives is reasonable only if the so-defined field does not vary quickly in space.
If the correlation length is smaller than that of the linear dimension of the box, then
these seem like a reasonable approximations. However, if the correlation length is larger
than the box dimension, one might worry that averaging over all the spins in a given box
will not give an accurate approximation of the full interactions between different boxes.

Thus in this section I find the correlation length by computing the correlator

G(r) = 〈φ(~r)φ(0)〉 . (7.40)

in the mean-field approximation. Namely, I neglect field-theory interactions by keeping
only terms quadratic in the field. For reasons that will soon be obvious, the resulting
simplified model is often called the Gaussian model. It turns out to be easier (and useful
later) to compute the more general correlator

Gα,α′(r) = 〈eαφ(~r)+α′φ(0)〉 (7.41)

so that

G(r) =
∂2

∂α∂α′
Gα,α′(r)

∣∣∣
α=α′=0

. (7.42)
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The way of making progess here (and in basically all of theoretical physics) is to work
in Fourier space. The transformed field is defined as

φ̃(~k) =

∫
V

ddxφ(~x)ei
~k·~x (7.43)

In a finite box of volume V , the values of ~k are quantized. The functional integral can
then simply be written as a product of integrals over each φ(~k):∫

[D(M(x))]→
∫

[Dφ] ≡
∏
k

∫
dφ̃(~k) . (7.44)

where the product is over all possible values consistent with the boundary conditions.
Because the form of f , the integrand e−βf is very small for configurations with large
φ(x). Thus is sensible to extend the integrals to all values of φ(x) instead of restricting

it to lie between −1 and 1, and so take each integral over φ̃(~k) to run from −∞ to ∞
with equal weight for all k.

Z =
∏
k

∫ ∞
−∞

dφ̃(~k)e−β
∫
ddxf(φ(~k)) . (7.45)

This is simply a collection of integrals, one for each momentum. For the correlator, this
is generalized to

Gα,α′(r) =
1

Z

∏
k

∫ ∞
−∞

dφ̃(~k)e−Sα,α′ , Sα,α′ = −αφ(~r)− α′φ(0) + β

∫
ddxf(φ(~k)) .

(7.46)

Since the integrals are over values of φ(~k), the next step is to rewrite the free-energy
density in Fourier space. Another very nice consequence that the spatial derivatives
simply yield powers of ~k. The downside is that for terms higher than quadratic in φ,
the expressions look nasty, with integrals over all the different momentum. Thus I make
here the drastic approximation to neglect all terms higher than quadratic in φ. A field
theory containing only terms up to quadratic in the fields is typically called free, because
going to Fourier space effectively decouples all degrees of freedom at different values of
|~k|. For example, (7.38) reduces to βffree(x) = κ|∇φ|2 + bφ2. Thus

β

∫
ddxffree(x) =

∫
dk((κk2 + b)φ̃(~k)φ̃(−~k) .

The partition function (7.45) and the correlator (7.46) become simply the product of
Gaussian integrals!

17



All correlators can be computed in a free field theory, by doing Gaussian integrals
or their fermionic analogs. In this free Gaussian field theory, the correlator is computed
simply by completing the square in the exponent. Namely, for T > Tc,

Sα,α′
∣∣∣
free

= V
∑
~k

(
(κk2 + b)φ̃(~k)φ̃(−~k)− αei~k·~rφ̃(~k)− α′φ̃(~k)

)
can be rewritten as

Sα,α′
∣∣∣
free

= V
∑
~k

(
(κk2 + b)

(
φ̃(~k)− αe−i

~k·~r + α′

2(κk2 + b)

)(
φ̃(−~k)− αei

~k·~r + α′

2(κk2 + b)

)
− |αe

−i~k·~r + α′|2

4(κk2 + b)

)
.

(7.47)

For T < Tc, b is replaced with −2b. Each φ(~k) in (7.46) is integrated independently from

−∞ to ∞, and so with the free Sα,α′ , the added to φ(~k) in the integrand can be shifted
away. The Gaussian integrals can now easily be done, but to compute Gα,α′ there is no
need to bother – the same integral also appears in the denominator! These two cancel,
and so the only remaining piece is the term added to complete the square. Thus

Gα,α′(r) = exp

V ∑
~k

|αe−i~k·~r + α′|2

4(κk2 + b)


with b→ −2b when T < Tc. Now there is no need for putting the system in a finite box
and quantizing k, and so the sum can be converted to an integral. Taking the derivatives
then gives for either case

G(r) =
1

2κ

∫
ddk

(2π)d
ei
~k·~r 1

k2 + ξ−2
(7.48)

where

ξ =

{√
κ
b

T > Tc√
κ
−2b T < Tc

(7.49)

Note that G(r) is a Green’s function for the wave equation, because it satisfies the
equation

(−∇2 + ξ−2)G(r) =
1

2κ
δ(~r) . (7.50)

This integral can now be done to show that ξ is indeed the correlation length. In one
dimension, it can be done by residue:

G(r)
∣∣∣
d=1

=
1

4κπ

∫ ∞
−∞

dk
eikr

k2 + ξ−2
=

ξ

4κ
e−r/ξ , (7.51)
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yielding indeed exponential decay for any finite correlation length. At ξ → ∞, the
Green’s function here blows up, indicating that there is no phase transition in 1d in this
model.

Ironically, the integral in (7.48) in three dimensions turns out to be easier than two.
It can be done simply by putting the integral in spherical coordinates:

G(r)
∣∣∣
d=3

=
1

2κ(2π)2

∫ ∞
0

dk k2
∫ π

0

dθ sin θ eikr cos(θ)
1

k2 + 1/ξ2

=
1

(2π)2κr

∫ ∞
0

dk k sin(kr)
1

k2 + 1/ξ2

=
1

8πκr
e−r/ξ (7.52)

where the k integral is done by residue. Thus indeed for b 6= 0, the correlator falls off
exponentially as advertised, with correlation length given by (7.49). As the coupling is
tuned to the critical point, the correlation length diverges. Defining a critical exponent
ν to characterize this divergence via

ξ ∝ t−ν (7.53)

gives in mean-field theory

νMFT = 1/2 (7.54)

both above and below the critical temperature.
In two dimensions, the trick to evaluate the correlator is to define the x direction to

be the direction of ~r, and then to evaluate the integral in Cartesian coordinates. One
then does the ky integral first by residue, and then looks up the integral (9.6.25) in
the marvelous (and free on the web) book by Abramowitz and Stegun (AS) on special
functions 2

G(r)
∣∣∣
d=2

=
1

2κ(2π)2

∫ ∞
−∞

dkxe
ikxr

∫ ∞
−∞

dky
1

k2x + k2y + ξ−2

=
1

8πκ

∫ ∞
−∞

dkx
eikxr√
k2x + ξ−2

=
1

4πκ
K0(r/ξ) (7.55)

where K0 is the modified Bessel function. Its behavior for small and large r is given
again in the good book (AS 9.6.12 and 9.7.2):

K0(r/ξ) ∼

{
− ln(r/ξ) r → 0√

πξ
2r
e−r/ξ r →∞

(7.56)

2There’s a pretty accurate way to tell a theoretical physicist from a pure mathematician in the 21st
century: typically the former like special functions while the latter try (usually successfully) to avoid
them.
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so that again the decay is exponential at large distances. At short distances (or at the
phase transition where the correlation length diverges), the correlator diverges logarith-
mically. This fact turns out to have many remarkable consequences I will describe later
in the book.

A diverging correlation length at a critical point is not a fluke of mean-field theory.
In fact, it is the defining physical characteristic of a critical point. Critical correlations
are not characterized by any length scale like a correlation length. The only way G(r)
can depend on the distance between the two fields is via a power law, so that for ξ = 0
and r much larger than the lattice separation,

G(r) =
A

κ
r−2xφ (7.57)

for some dimensionless constant A; in d = 3, (7.52) gives A = 1/8π. Since k is of
dimension energy and G is dimensionless, κ is of dimension (energy)d−2. It follows
immediately that

xφ,Gaussian =
d− 2

2
. (7.58)

in any d > 2.
It is fairly obvious from (7.48) that in any dimension G(r) will fall off exponentially

for large r/ξ, since the imaginary exponential oscillates wildly as a function of k in this
limit, and the integral can be done by saddle point. In fact, the integrals in (7.48) for
the correlator can be computed in any dimension, showing that the correlation length
obeys (7.49) in general. The standard physicist way to do this (see e.g. Goldenfeld) is to
solve the Green function equation (7.50) away from the origin, and then fix the solution
by showing that it has the correct behavior at r = ∞. While this technique gives the
correct answer with enough care, I always find it a bit bothersome, since it’s being rather
cavalier with assumptions about analyticity and so forth. Since I like special functions,
and wasted a day of my life finding the trick, here I’ll show how compute it directly.
One interesting fact of later importance is that the expressions below make sense for
any real value of d > 1, and so allows a “continuation” of the correlator to non-integer
dimensions.

In terms of d-dimensional spherical coordinates, the integrand in (7.48) depends only
on the magnitude k and a single angle θ. Doing the integral over the remaining d − 2
coordinates gives the area of a (d − 2)-dimensional sphere of radius 1, which is Sd−2 =
2π(d−1)/2/Γ((d− 1)/2). Thus for d ≥ 2,

G(r) =
Sd−2

2κ(2π)d

∫ ∞
0

dk
kd−1

k2 + ξ−2

∫ π

0

dθ sind−2 θ eikr cos θ (7.59)

The trick is to evaluate these integrals explicitly is to rewrite them in two-dimensional
Cartesian coordinates X = k cos θ, Y = k sin θ, giving

G(r) =
Sd−2

2κ(2π)d

∫ ∞
0

dY Y d−2
∫ ∞
−∞

dX
eiXr

X2 + Y 2 + ξ−2
.
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Doing the X integral by residue and then changing variables Y = sinh(t)/ξ gives

G(r) =
πSd−2

2κ(2π)d

∫ ∞
0

dY
Y d−2√
Y 2 + ξ−2

e−r
√
Y 2+ξ−2

=
πSd−2ξ

2−d

2κ(2π)d

∫ ∞
0

dt (sinh t)d−2e−r cosh(t)/ξ.

The good book (AS 9.6.23) gives the latter integral in terms of a Bessel function, yielding

G(r) =
1

4πκ(2πξr)(d−2)/2
K(d−2)/2(r/ξ) . (7.60)

As a check, note that (AS 10.2.16,10.2.17) K1/2(z) = e−z
√
π/2z = K−1/2(z), so that

(7.60) in d = 1 and d = 3 indeed reduces to (7.51,7.52). In general, the asymptotic value

of Bessel function remains
√

πξ
2r
e−r/ξ, so ξ defined by (7.49) is the correlation length in

any dimension. Similiarly, for any d > 2, K(d−2)/2(r/ξ) ∝ r(2−d)/2, and the appropriate
behavior (7.57) is recovered.

7.7 How mean-field theory goes wrong: the Ginzburg

criterion

In using the mean-field approximation to derive the location of the critical point, as
well as the critical exponents νMFT, γMFT and δMFT, fluctuations were neglected. In
other, terms in the energy beyond “one-body” are neglected. For example, in the Ising
model, the terms J(σi −M)(σj −M) in the energy are ignored, while the terms kept
contribute JM2 or JMσi. In order for this approximation to be consistent in the ordered
phase T < Tc, the the average of the terms kept must be larger than average of the
“fluctuations” 〈J(σi −M)(σj −M)〉 neglected. The analogous statement in the original
continuum approach in section 7.1 is that everything is independent of space. Once the
derivative term is included in the effective free energy, the way to suppress fluctuations
is to take κ→∞.

Since these correlations are substantial out to a distance |i − j| ∼ ξ, it is necessary
to average as well over a spatial region V of volume ξd. Thus∑

V

〈(σi −M)(σj −M)〉 �
∑
V

〈M〉2 ∼ ξd〈M〉2 , (7.61)

where
∑
V is the sum over all sites in the region V . Note that this criterion can equiv-

alently be stated by saying that the average of the fluctuations in the order parameter
must be much smaller than the order parameter itself.
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Translating this requirement into the language of mean-field theory using the field φ
with free energy (7.39) gives ∫

V
ddr G(r)� ξd〈M〉2 (7.62)

Since G(r) → 0 exponentially fast for r > ξ, the integral on the left-hand side can be
extended to be over all of space. This integral was already done in section (7.6), since it
is just the Fourier transform at k = 0:∫

ddr G(r) = G̃(k = 0) = − 1

2b
=
ξ2

κ
.

The right-hand side simplifies to

ξd〈M〉2 = −ξd b
2c

= ξd−2
κ

4c
.

Putting these into (7.62) gives the Ginzburg criterion

ξ4−d � κ2

4c
. (7.63)

This provides a powerful consistency condition.
No matter what the couplings are, the correlation length diverges as the critical

temperature is approached. Even if one takes κ very large to suppress the fluctuations,
close enough to the critical point, the Ginsparg criterion is violated when d < 4. mean-
field theory does not describe critical behavior quantitatively for d < 4! This dimension
d = 4 is called the upper critical dimension for φ4.

I emphasize that the Ginszburg criterion does not show that Landau’s effective field
theory approach is wrong. It shows only that the mean-field approximation does not
work in dimensions below the upper critical dimension. In other words, one cannot
neglect fluctuations in any effective approach in d < 4.

A remarkable converse is that this argument provides a strong piece of evidence that
in d ≥ 4, mean-field theory works. The resulting critical exponents are not merely a good
approximation, but exact. This indeed has been shown rigorously to be true in many
cases. People sometimes say that such theories are “trivial”. What they mean is that
even if one adds interactions like the φ4 term, the critical behavior is that of free-field
theory. Intuitively the fact that mean-field theory works better in higher dimensions is
not a complete shock; as the dimensionality increases the number of nearby degrees of
freedom increases exponentially, and so replacing interactions with the mean field might
be expected to work better and better. However, this intuition does not at all explain
why the mean-field exponents are exact in any dimension d ≥ 4, nor the remarkable fact
that such a simple approach as Landau’s yields them.
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Going back to d < 4, the question is then what use mean-field theory is. In d = 1,
it gives an qualitatively wrong answer, since there is no critical point; the correlation
length does diverge at T → 0, but this really isn’t a critical point in any other sense,
since there are no fluctuations of any sort. In d = 2, it gives qualitatively correct answers
for Ising, but numerically well off, i.e. it predicts η = 1/2, while the exact answer is 1/8.
Moreover, for the XY/Heisenberg models (or any with spontaneously broken continuous
symmetry), the Mermin-Wagner theorem means that there is no phase transition of the
usual order-disorder sort, so again mean-field theory isn’t even qualitatively correct. In
d = 3, it’s much better. So the question can be refined to: in d = 3 and perhaps d = 2,
can mean-field theory be modified in some fashion to fix it? The answer, more or less,
is no. A radically new approach is needed to the problem. This is the renormalization
group, discussed in the next chapter.
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