
Chapter 4

The 1+1-dimensional Ising model

The 1+1-dimensional Ising model is one of the most important models in statistical
mechanics. It is an interacting system, and behaves accordingly. Yet for a variety of
reasons, it is analytically very tractable because of a variety of special properties. Among
them are the facts that it has an exact duality between ordered and disordered phases,
and can be mapped exactly (albeit non-locally) onto a system of free fermions. While
these properties are special, they are not unique to the Ising model, and so they are
important to understand. This chapter therefore contains a detailed analysis of the 1+1-
dimensional Ising model in both its classical and quantum versions. Two key references
are given by the review article by Schultz, Mattis and Lieb, and the original research
article by Kadanoff and Ceva.

Although thus far most of the discussion has been in terms of the square lattice, the
Ising model can be defined on any lattice, or for that matter, any graph. A graph is
a collection of vertices, which are connected by edges. In the physics literature, when
dealing with a lattice, it is common to call the vertices sites, and the edges links, since
the words vertices and edges are often used to mean other things. Ising model can be
defined on an arbitrary graph by putting the spins σi = ±1 on the sites labeled by i.
The most general nearest-neighbor interaction gives an energy

E({σi}) = −
∑
<ij>

J<ij>σiσj (4.1)

allowed to depend on arbitrary nearest-neighbor couplings J<ij>, where < ij > labels
the link between sites i and j.

4.1 The low-temperature expansion and the phase

transition

In any interacting system in two dimensions and higher, the classical partition function
is a complicated object. To gain some more intuition into it and the resulting physics,
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it is often useful to develop expansions around the T → 0 and T → ∞ limits. Roughly
speaking, in the two limits the dominant effects arise from energy and entropy respec-
tively.

At low temperatures in the Ising model, the configurations with aligned spins have
much larger Boltzmann weights than those without. The low-temperature expansion is
therefore done by rewriting the states of the system in terms of domain walls, as done
in chapter 1 to use for the Peierls argument. For a system in d spatial dimensions, the
domain walls are d− 1-dimensional objects. Thus in the two-dimensional classical Ising
model the domain walls are lines on the links of the dual lattice, and separate regions of
spin up and spin down.

The sites of a dual lattice in two dimensions are at the center of the faces (aka
“plaquettes”) of the original lattice. Two dual sites are connected by a link on the
dual lattice if the corresponding faces on the original lattice share a link in common.
It is easy to see (draw a picture) that the links on the dual lattice are in one-to-one
correspondence with the links of the original lattice. If two faces only touch at a point,
there is no corresponding link on the dual lattice. The dual lattice to the square lattice
is also a square lattice, but e.g. the dual of the triangular lattice is the honeycomb lattice
(where the sites form hexagons).

The Boltzmann weight for any dual link with a domain wall present is e−2βJ<ij>

relative to the link without the domain wall. In the simplest case where the coupling is
independent of link, J<ij> = J , the two-dimensional Ising partition function

Z =
∑
σi=±1

eβJ
∑

<ij> σiσj

can be rewritten in terms of domain walls as

Z = eβJN
∑
σi=±1

e−2βJL̂ , (4.2)

where L̂ is the number of domain walls, i.e. their length, and N the total number of sites.
The hat on L̂ is a reminder that these walls live on links on the dual lattice.

The sum in (4.2) remains over spin configurations, and how it is rewritten in terms
of domain walls depends on the boundary conditions. If the boundary conditions are
fixed to some value (say up) all around the boundary, then domain walls form closed
loops on the dual lattice. In this case, these loops are in one-to-one correspondence with
the spin configurations, so Z(fixed) is equivalent to a sum over closed loops with weight
e−2βJ per unit length of loop. For free boundary conditions, the domain walls can end
at the boundary. Z(free) is thus twice the sum over all closed loops and loops ending
on the boundary; the factor of two is because there are two spin configurations for every
domain wall configuration. For periodic boundary conditions in one direction (where
space is topologically a cylinder) or in both (a torus), the situation is more intricate, and
is discussed below in the context of duality.
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The partition function written in the form (4.2) is a low-temperature expansion. At
low temperature βJ is large, so e−2βJ is very small, and the sum is indeed dominated
by terms with small L̂, i.e. short loops. This result is in harmony with the proof in
chapter 1 that the Ising model in two and greater dimensions is ordered. With all the
boundary spins fixed to be up, small L̂ means that most spins are in the same cluster as
the boundary, and so indeed are spin up.

Writing the partition function in terms of domain walls provides a convenient way
of understanding the competition between energy and entropy that causes the phase
transition. The partition function can be rewritten in a similar fashion as that done in
chapter 1, by breaking it in up into terms of fixed energy. Since all terms with a given
total length L̂ of the domain walls have the same energy,

Z =
∑
L̂

n(L̂)e−2βL̂ , (4.3)

where n(L̂) is the number of configurations of closed loops on the dual lattice at this

particular value of L̂. The energy amounts to an exponentially small suppression of large
L̂, but the number of loops grows exponentially with L over a wide range of L. For large
number of sites, this number is typically of the form

n(L̂) ∝ KL̂ (4.4)

The (as yet unknown) constant K is a purely geometrical quantity: it depending on the
lattice but not on any couplings or temperature in the model.

Written this way, it is clear that which types of configurations dominate the partition
function depend crucially on the temperature. The exponent in the argument of the
summand is simply (lnK − 2βJ)L̂. If 2βJ > lnK, then the coefficient of L̂ in the

exponent is negative. The sum therefore is dominated by configurations with short L̂.
This is the low-temperature ordered phase, where most spins take on the same value.
Conversely, if 2βJ < lnK, then the sum is dominated by long loops. Even in the limit
of a large number of sites, a non-vanishing fraction of the dual lattice is covered by
loops. Thus even if all the spins are fixed up at the boundary, the partition function is
dominated by configurations with the roughly the same numbers of up and and down
spins, so that the expectation value of the magnetization per site

〈N↑ −N↓〉
N

goes to zero as N →∞. This is the disordered phase.
The preceding is a strong argument that a phase transition between order and disorder

takes place at a single value of the temperature

Tc =
2J

lnK
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(henceforth, Boltzmann’s constant is set to 1). A number of loops growing as in (4.4)
implies that the transition is at least somewhat abrupt: at Tc the behavior of the system
changes qualitatively. This argument does not really indicate what happens precisely
at the transition, since among other things what happens here will depend on the L̂-
dependent coefficient neglected in (4.4). Two possibilities are that the magnetization per
site gradually decreases to zero as T is increased Tc, or that it abruptly drops to zero
there from some finite value. As will be shown later in this chapter, it turns out that
here the former happens.

Of course, this argument is not a proof that there is no intermediate phase somehow
in between order and disorder, because there is no guarantee that the number of loops
will depend on the length in a simple a fashion as in (4.4). However, the form (4.4)
does apply generically to such geometrical quantities, so this argument frequently works
for understanding when such phase transitions between order and disorder happen in
classical statistical mechanics.

The low-temperature expansion can be generalized in an obvious way to any spin
model without geometric frustration in any dimension. If there are more than two types
of spin at each site, then there can be different types of domain walls, but the basic idea
is the same.

4.2 The high-temperature expansion and Kramers-

Wannier duality

The high-temperature expansion in the Ising model is not as obvious as the low-temperature
expansion. The first step in its derivation comes from rewriting the partition function
as a product over each link. For a given link, the Boltzmann weight can be written a
fashion similar to that done when deriving the quantum Hamiltonian from the transfer
matrix in chapter 2:

eβJσiσj = cosh(βJ) + σiσj sinh(βJ) .

The sum over all spins in the energy can thus be recast as a product as

Z =
∑
{σi=±1}

∏
<ij>

eβJσiσj =
∑
{σi=±1}

∏
<ij>

(cosh(βJ) + σiσj sinh(βJ)) .

This product can be expanded out into a sum of 2Nl terms, where Nl is the number of
links on the dual lattice. This is conveniently written in terms of a variable d<ij> for
each link, where d<ij> = 0 if the cosh(βJ) terms is on this link, while d<ij> = 1 if the
σiσj sinh(βJ) term. Then

Z = cosh(βJ)Nl

∑
{σi=±1}

∑
{d<ij>=0,1}

∏
<ij>

(σiσj tanh(βJ))d<ij> .
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So far, this looks much more complicated, but the trick in the high-temperature
expansion is to interchange the order of the sums over the σi and d<ij>:

Z = cosh(βJ)Nl

∑
{d<ij>=0,1}

tanh(βJ)
∑

<ij> d<ij>

∑
{σi=±1}

∏
<ij>

(σiσj)
d<ij> .

The sums over the variables d<ij> = 0, 1 is on the same footing as the sum over spin
configurations: each is an independent variable. Thus one can fix a “configuration” of
the d<ij> and then do the sums over all the {σj}. These sums are∑

{σi=±1}

∏
<ij>

(σiσj)
d<ij> =

∑
{σi=±1}

∏
i

(σi)
bi ,

where
bi =

∑
j next to i

d<ij> .

Because ∑
σj=±1

σj = 0

and (σj)
2 = 1, these sums are

∑
{σi=±1}

∏
i

(σi)
bi =

{
0 any bi odd

2Nl all bi even

Thus if any bi is odd for this particular set of d<ij>, this particular set has vanishing
contribution to the partition function. In other words, the sum over spin configurations
forces all the bi to be even to contribute to the partition function. The sum over the the
different configurations of d<ij> therefore can be taken to be only over those where all
bi are even:

Z = (2 cosh(βJ))Nl

∑
{d<ij>=0,1;bi=0,2,4,... }

(tanh(βJ))
∑

<ij> d<ij> (4.5)

One can thus think of the d<ij> as now being the degrees of freedom in the model akin
to the spins in the original definition; one important difference however is that these
degrees of freedom live on the links of the lattice.

The high-temperature expansion (4.5) has a very nice (and familiar) graphical pre-
sentation. Each term in the sum over d<ij> (i.e. a fixed configuration of d<ij> can be
represented graphically by drawing a line on the lattice along the link from i to j if
d<ij>=1, and leaving it empty if d<ij> = 0). The rule that bi must be even now has
an obvious graphical meaning – the lines must form closed loops! After summing over
spins, the high-temperature expansion is exactly the same form as the low temperature
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expansion: the remaining sum is over all loop configurations on the lattice. The weight
is simply the total length L =

∑
<ij> d<ij> of the loops, so

Z = (2 cosh(βJ))Nl

∑
closed loops

(tanh(βJ))L . (4.6)

The sum here is over all closed loops on the original lattice. Comparing the high-
temperature expansion (4.6) with the low-temperature expansion (4.2) makes it obvious
that the two are the same kind of expansion. Not only are the sums over closed loops,
but the Boltzmann weights: up to overall unimportant constants both are of the form∑

closed loops

(w(J))L .

In the low-temperature case, the loops are on the dual lattice.
This can be exploited to give an exact relation between the partition functions of

different Ising models. Consider the Ising model with coupling J and all sites on the
boundary fixed to be spin up. A fixed boundary condition means that no domain walls
in the low-temperature expansion can end, and so form closed loops. Getting rid of the
constant in front by shifting the energy gives its partition function to be

Z(J ; fixed) =
∑
L̂

e−2βJL̂ ,

where the notation in sum indicates it is summed over all closed loops on the dual lattice.
Now consider an Ising model where the spins live on the dual lattice of the original and
the coupling is Ĵ , and the boundary conditions are free along the boundary. If the
original is a square lattice, then its dual is also a square lattice with sites at the centers
of the squares of the original. Doing the high-temperature expansion for this model on
the dual lattice and getting rid of the overall constant gives

Ẑ(Ĵ ; free)
∑
L̂

(tanh(βĴ))L̂ .

The hat on Z emphasizes the fact that this is an Ising model with spins on the dual
lattice. The reason the sum on the right-hand side is over the dual lattice is that the
high-temperature expansion has loops connecting the sites of the lattice the spins with
the spins. The two are obviously identical if the couplings obey the relation

e−2βJ = tanh(βĴ) . (4.7)

This is known as the Kramers-Wannier duality in the Ising model.
A duality is a transformation, typically non-local, that maps a given model onto

another. Here it shows that

Ẑ(Ĵ ; free) = Z(J ; fixed) .

6



This relation is truly remarkable, because a model with βJ large (low temperature)

is equivalent to a model on the dual lattice with βĴ small, high temperature. As an
important check, a little algebra shows that the relation (4.7) can be rewritten as

e−2βĴ = tanh(βJ) .

This means that taking the dual of the dual gives the original model back again.
The duality remains valid even if the couplings J vary from link to link, and for

arbitrary two-dimensional lattices (or for that matter, graphs). This is because both the
low-temperature and high-temperature expansions can be built up one nearest-neighbor
pair < ij > at a time, so the above arguments can be rerun for arbitrary J<ij>. The
resulting expressions are virtually identical, and so another Ising model can be defined
on the dual lattice with the same partition function (up to the usual unimportant overall
constant) when

e−2βĴ<îĵ> = tanh(βJ<ij>) (4.8)

The square lattice is special because it is self-dual, so even with varying couplings
the duality takes an Ising model on the square lattice to another on the square lattice.
An important example is the anisotropic case considered when deriving the quantum
Hamiltonian in chapter 2, where the couplings only depend on the direction of the link,
so J<ij> = Jx or = Jy when the links are along the x and y directions respectively. Since
on the dual lattice, a given link forms a right angle with the corresponding link on the
original lattice, the duality (4.8) implies that

e−2βĴx = tanh(βJy) , e−2βĴy = tanh(βJx). (4.9)

In chapter 1 it was proven that the Ising model orders at sufficiently small βJ . It
is also easy to prove that i cannot order at sufficiently large βJ . Thus an obvious
question is: how can an ordered model be equivalent to a disordered model? Recall the
definition of order in terms of the asymptotic value of the two-point 〈σaσb〉. The duality
mapping is highly non-local in terms of the spins: one must sum over the spins in order
to demonstrate it. A non-vanishing spin-spin correlator corresponds to an non-vanishing
correlator of the dual spins 〈µâµb̂〉, where any product of dual spins can be found by
taking products of the nearest-neighbor relation µîµĵ = 1 − 2d<ij> and exploiting the

fact that (µî)2 = 1.

4.3 Duality in the quantum model

The Hamiltonian of the quantum Ising chain is found by taking the strongly anisotropic
limit of the transfer matrix of the two-dimensional classical Ising model. It is thus natural
to expect that the duality has consequences for this Hamiltonian. In this subsection, I
show that the duality indeed arises very elegantly for the quantum chain. It not only
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gives an exact relation between the spectrum of the low-temperature phase and that of
the high, but also introduces the important concept of disorder operators in quantum
spin chains.

The geometrical degrees of freedom in the high-temperature expansion of the two-
dimensional classical Ising model contribute to the partition function only when they
form closed loops. The duality arises because the low-temperature expansion in terms
of domain walls is automatically written in terms of closed loops as well.

This correspondence suggests that it would be useful to rewrite the degrees of freedom
of the quantum chain in terms of the domain walls. In the quantum chain written in a
basis where all the σzj are diagonal, having a domain wall corresponds to adjacent sites
having different eigenvalues, i.e. σzjσ

z
j+1 = −1 when a domain wall is present between

sites j and j + 1, while it = 1 if none is present. The operator

µzj+1/2 = σzjσ
z
j+1 (4.10)

therefore is naturally defined on the dual site halfway between sites j and j + 1. This
operator thus is the analog of the disorder field defined in the classical model. It obeys
(µzj)

2 = 1, and so its eigenvalues are±1. Moreover, just as the energy term in the classical
Ising model measures the length of the domain walls, the

∑
j σ

z
jσ

z
j+1 =

∑
j µ

z
j+1/2 term in

the Ising quantum Hamiltonian effectively counts (minus twice) the number of domain
walls in a given configuration.

Half the quantum Ising Hamiltonian is therefore simply rewritten in terms of domain
walls. The other half is the sum of the spin-flip operators σxj . Because σx and σz

anticommute,

{σxj , µzj+1/2} = {σxj , µzj−1/2} = 0 . (4.11)

This means that acting with σxj on an eigenstate of µzj−1/2 and µzj+1/2 results in a state
where both eigenvalues are flipped. Thus a single spin flip on site j has the consequence
of “flipping” the two domain walls on sites j + 1/2 and j − 1/2; by flipping a domain
wall I mean that if a domain wall is present it is removed, if not present it is created.
This suggests defining an operator µxj+1/2 so that

µxj−1/2µ
x
j+1/2 = σxj . (4.12)

How this is achieved depends slightly on the boundary conditions. For simplicity, consider
free boundary conditions on the original Ising chain; others will be discussed later. Then
define µx1/2 = 1. Because (σxj )2 = 1 for all j, the remainder of the µxj are then given as
the product of the spin flips

µxj+1/2 =

j∏
k=1

σxk . (4.13)

With these definitions, the quantum Ising Hamiltonian with free boundary conditions
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can be rewritten in terms of domain-wall operators as

H = −
N∑
j=1

σxj − λ
N−1∑
j=1

σzjσ
z
j+1 (4.14)

= −
N∑
j=1

µxj−1/2µ
x
j+1/2 − λ

N−1∑
j=1

µzj+1/2 . (4.15)

The latter form often is called the “dual Hamiltonian”, but it is important to remember
that it is the same Hamiltonian – it is just rewritten in terms of different operators.

The dual Hamiltonian looks quite similar to the original. In fact, up to boundary
conditions and an overall unimportant rescaling, the former is given in terms of the latter
by sending

σx → µz, σz → µx, λ→ 1/λ.

The coupling λ was defined originally from the anisotropic limit Jx → ∞, Jy → 0 of

the transfer matrix while keeping λ ≡ e2βJx tanh(βJy) fixed. Thus if a dual coupling λ̂
is defined as

λ̂ ≡ e2βĴx tanh(βĴy)

the duality relation (4.9) for the anisotropic model means that

λ̂ =
1

λ
.

Thus to establish duality in the quantum Ising chain, one therefore must show that the
operators µx and µz are equivalent to σz and σx. More precisely, one must show that the
operators µx

ĵ
and µz

ĵ
obey the same algebra as σxj and σzj . The basic properties of Pauli

matrices mean that
(σaj )

2 = 1; {σzj , σxj } = 0; [σaj , σ
b
k] = 0

for j, k = 1 . . . N , k 6= j, and a, b = x or z. It is then simple to check that with the
definitions (4.10) and (4.13),

(µa
ĵ
)2 = 1; {µz

ĵ
, µx

ĵ
} = 0; [µa

ĵ
, µb

k̂
] = 0

for ĵ, k̂ = 3/2, 5/2, . . . N − 1/2 and k̂ 6= ĵ.
SInce the µ operators satisfy the same algebra as do the σ operators, the last thing

to understand is the Hilbert space on which they are acting. The entire 2N -dimensional
Hilbert space is spanned by the eigenstates of the N operators σzj , and any of these basis
states can obtained by acting on any of the other ones by a suitable product of the σxj .
In less mathematical language, any spin configuration can be obtained from any other
one by suitable spin flips. The situation for the µ operators is slightly different. Since
the role of σz in the original is played by µx in the dual, it is natural to then work in
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a basis where all the µx
ĵ

are diagonal. This the state where the eigenvalue of µxj is 1 or

−1 can be referred to as having a dual spin up or down respectively. When the original
spins have free boundary conditions, by definition µx1/2 = 1, so this corresponds to a fixed
boundary condition for this dual spin. Moreover, the dual spin at the other end

µxN+1/2 =
N∏
j=1

σxj

flips all of the original spins and commutes with the Hamiltonian; this symmetry is a
consequence of the original Z2 symmetry of the classical model. Acting with the Hamil-
tonian therefore does not change the value of µxN+1/2, and so the boundary condition at
this end is therefore fixed in terms of the dual spins as well. Free boundary conditions
in the original model therefore correspond to fixed in the dual. The N − 1 operators µzj
acting on a sector with a given fixed boundary condition µxN+1/2 = ±1 then give all 2N−1

basis states in this sector. In less mathematical language, any dual spin configuration
with a particular fixed boundary condition can be obtained from any other in that sector
by dual spin flips.

The dual Hamiltonian therefore describes a quantum Ising chain with fixed bound-
ary conditions and coupling λ̂ = 1/λ. The Hilbert space of the Ising chain with fixed
boundary conditions on N + 1 sites is 2N−1-dimensional; the original 2N -dimensional
Hilbert space is recovered by considering both ++ and +− boundary conditions for
(µx1/2, µ

x
N+1/2). Note that while

∏N
j=1 σ

x
j commutes with the Hamiltonian for free bound-

ary conditions, it cannot be utilized for fixed, because acting with it changes the bound-
ary conditions. Thus the Hamiltonian with free boundary conditions can be made block
diagonalized into two 2N−1 × 2N−1 dimensional matrices using this symmetry operator,
each corresponding to a given fixed boundary condition in the dual model. Letting
{E±(λ)} be the sets of energies of the quantum Ising Hamiltonian with free boundaries
and

∏N
j=1 σ

x
j = ±1 and {E(λ +±)} be the sets of energies with fixed boundaries,

{E±(λ)} = {λE(1/λ; +±)}

Up to an unimportant overall rescaling, the spectra are the same! )

4.4 Fermions from the Jordan-Wigner transforma-

tion

Objects with nice algebraic properties. )
Pauli matrices are naturally associated with fermions: they obey anticommutation

relations. Moreover, spin-statistics theorem for a Lorentz-invariant theory in spatial di-
mensions two and higher requires that any particle of half-integer spin is a fermion, while
those of integer spin are bosons. In one dimension, there is no notion of statistics, since
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there is no way of taking a particle around another without coming close. Nonetheless,
one can still discuss fermions in one dimension, in terms of operators that have the same
properties as fermionic operators in higher dimensions. For example, the Pauli exclusion
principle makes sense in any dimension: no identical particles can occupy the same state.
This is apparent in the fermionic operator commutation relations, since (c†)2 = 0.

Another hint that fermions are present in the 1+1d Ising model is in the fact that
the spin and disorder operators obey some interesting anticommutation relations (??).
In fact, because of the “string” in µx, these can hold true even for operators far from
each other, for example

{σzi , µxj+1/2} = 0 for i ≤ j .

Full-fledged fermionic anticommutation relations can be found by defining the combina-
tions

χj =

This leads to

χj =

(∏
k<j

σxk

)
σzj , ψj =

(∏
k<j

σxk

)
σyj (4.16)

These are what are usually known as “Majorana” or “real” fermions, because they are
hermitian operators: χ†j = χj and ψ†j = ψj. Their anticommutators obey the algebra

{χj, χk} = 2δjk; {ψj, ψk} = 2δjk; {χj, ψk} = 0 (4.17)

for any j and k. To obtain the standard “complex” fermion algebra described in chapter
2, one simply defines the combinations

cj = χj + iψj; c†j = χj − iψj . (4.18)

Note that there two states at every site here just as in the earlier fermion case, i.e. the
Hilbert space is 2N -dimensional for N sites.

translation symmetry, momentum space, still satisfies commutation relations. Just a
change of basis. Bogoliubov transformation. same ”reference” state eigenstates

4.5 “Solving” the quantum Ising chain

Could have directly diagonalized the Hamiltonian via the Bogoliubov transformation,
and ended up with the same results,

vanishing of gap as a function of λ = f/J .
The free energy of the two-dimensional classical Ising model can also be found using

free fermions. Since the transfer matrix acts on the same vector space as the quantum
Hamiltonian, the same change of basis into fermions can be used. The transfer matrix
is more complicated, however, so finding the free energy takes more work. The analysis
does simplify on the honeycomb lattice...

The universal results, of course are the same. So the vanishing of the gap...
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4.6 The two-point function

dynamical critical exponent.
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