
Chapter 5

The XXZ chain and the six-vertex
model

The purpose of this chapter is to focus on two models fundamental to the study of both
1d quantum systems and 2d classical systems. They are the XXZ chain (and its 2d
classical analog, the six-vertex model), and the 2d classical rotor or “XY” model. The
XXZ model is a deformation of the Heisenberg model breaking the SU(2) symmetry
down to a U(1) subgroup. The degrees of freedom of the XY model are classical fixed-
length “spins” pointing anywhere in a plane, and so can be represented by an angle
0 ≤ θ < 2π. The latter also has a U(1) symmetry given by shifting θ by a constant mod
2π.

The physics of the two models is closely related; in fact in a sense to be described
precisely, it is identical. Both are worth studying in their own right. From the physics
point of view, the rotor model describes for example the transition in superfluids: the
value θ is the phase of the expectation value of the wave function. Even though the
existence of superfluids of course is a quantum-mechanical effect , quantum effects are
essentially negligible when studying the transition between the superfluid and the normal
phase. Thus the classical rotor model provides a way of quantitatively understanding
this transition. Physically, the XXZ chain is one of the simplest models of a magnet. The
free parameter describing the anisotropy (the breaking of rotational symmetry in spin
space) also provides a very useful tool in describing the behavior; one can continuously
tune in between ferromagnets and antiferromagnets.

From the formal point of view, both models are also of fundamental importance. The
rotor model provides a direct and obvious connection with the physics of a free bosonic
field. This provides a simple intuitive way of understanding the Mermin-Wagner theorem,
which show that in two-dimensional classical and one-dimensional quantum systems, a
continuous symmetry cannot be spontaneously broken. However, a phase transition of
Kosterlitz-Thouless transition still occurs, and the rotor model provides a very clear
qualitative understanding of the transition. Moreover, when the Boltzmann weights are
chosen to take a particular (Villain) form, the analysis of the different operators and
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their scaling dimensions becomes very transparent.
Intuitive arguments can also be applied usefully to the one-dimensional XXZ chain

and the six-vertex model. However, a real merit of studying these models is that exact
computations can be done. The behavior is much richer (and the analysis more elaborate)
than that of the Ising case. Models of this type are sometimes referred to as “exactly
solvable”, but a better word than solvable is “integrable”. This implies that there an
infinite number of conserved charges, i.e. explicit quantities that commute with the
Hamiltonian. Not only does this allow for example the free energy to be computed,
but it allows one to show that the 1d XXZ Hamiltonian and the transfer matrix of the
six-vertex model have the same eigenvectors, thus cementing the connection between the
two.

An unusual feature of these models is they exhibit a line of critical points with
continuously varying critical exponents. This behavior is almost impossible outside 1+1
dimensions, and not even that common there.

5.1 The XXZ Hamiltonian

Both are built from spin operators Sxi , Syi and Szi at each site i satisfying su(2) commu-
tation rules

[Saj , S
b
k] = iδjkεabcS

c
j , (5.1)

with spin operators on different sites commuting. The XXZ model however allows an
arbitrary coupling between neighboring Szi , namely

H = −
∑
<jk>

[
J⊥
(
Sxj S

x
k + Syj S

y
k

)
+ JzS

z
jS

z
k

]
. (5.2)

Although this is no longer SU(2) symmetric, the z component of the total spin

Sz =
∑
j

Szj

still commutes with HXXZ, generating a U(1) symmetry. This U(1) symmetry Even
though the full SU(2) symmetry is broken, the degrees of freedom are still typically
referred to as “spins”, and the dimension-2s + 1 representation of the spin operators is
referred to as spin-s.

The sign of J⊥ is unimportant on any bipartite lattice; redefining the states by
Sx → −Sx and Sy → −Sy on half the sites leaves the algebra (??) unchanged, but flips
J⊥. The sign of Jz therefore determines whether the model is ferromagnetic (Jz > 0) or
antiferromagnetic (Jz < 0). The physically meaningful coupling is therefore

∆ =
Jz
|J⊥|

, (5.3)
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so that ∆ = 1 and ∆ = −1 are the Heisenberg ferromagnet and antiferromagnet re-
spectively. In the ∆ → ±∞ limit, only the Jz term remains, so the model is effectively
classical. For the ferromagnetic case Jz > 0, all the spins simply line up with the max-
imum value of Sz. In the antiferromagnetic case ∆ → −∞ on a bipartite lattice, the
spins take their maximum opposite values on every other site.

For the remainder of this chapter, I focus only on the spin-1/2 case in one dimension.
The spin-1/2 XXZ Hamiltonian on a chain in terms of raising/lowering operators then
can be rescaled to be:

HXXZ = −
N∑
i=1

(
(σ+

i σ
−
i+1 + σ−i σ

i
i+1) +

∆

2
σzi σ

z
i+1

)
(5.4)

For spin 1/2, this is the most general nearest-neighbor Hamiltonian consistent with U(1)
symmetry, but for higher spins, there are many possible nearest-neighbor couplings one
can add consistent with this symmetry.

The Heisenberg spin-1/2 ferromagnet ∆ = 1 was already explained in chapter 3.
Its Hamiltonian can be written as a sum of projection operators with positive coeffi-
cients. Moreover, the completely ferromagnetic states (and the other parts of the N + 1-
dimensional spin-N multiplet) are annihilated by each projector, so it must be an exact
ground state. The excitations obey the dispersion relation E ∝ k2, so whereas this
theory is gapless, it is not Lorentz invariant in the continuum limit.

This result for the ferromagnet can be extended to ∆ > 1, since increasing ∆ favors
spin alignment even further. The Hamiltonian HXXZ can be rewritten (after rescaling
and shifting) as

H =
N∑
i=1

(
2P (0)(~Si + ~Si+1) +

∆− 1

2
(1− σzi σzi+1)

)
.

with ~S = ~σ/2 as always for spin-1/2 particles. The last term, while breaking the SU(2)
symmetry, is also a projector times the coefficient (∆− 1), since

[
1

2
(1− σzi σzi+1)

]2

=
1

2
(1− σzi σzi+1)

This projector annihilates the completely ferromagnetic states with all spins aligned
(although not the full spin-N + 1 multiplet). Thus for ∆ > 1 the state with all spins up
and that with all spins down remain ground states of the system. The system is gapped
for ∆ > 1: the other ground states at ∆ = 1 now are excitations with energy ∝ (∆− 1)
over the ground state. In general, a spin wave has energy shifted by 2(∆ − 1) in this
normalization. Thus for ∆ > 1, the XXZ chain is in a gapped, ordered phase.
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5.2 The XX chain

The point ∆ = 0 is very special. By using the Jordan-Wigner transformation described
in chapter 4, the free fermion system in chapter 2 maps directly on to it. A redefinition
of the Jordan-Wigner relations (exchanging σx ↔ σz and sending σy → −σy) leaves the
su(2) algebra unchanged, and gives

cj =

(∏
k<j

σzk

)
σ−j , c†j =

(∏
k<j

σzk

)
σ+
j (5.5)

Ignoring the boundary conditions, the hopping Hamiltonian for spineless fermions then
becomes exactly the XXZ Hamiltonian at ∆ = 0:

HXX =
∑
j

(c†jcj+1 + c†j+1cj) (5.6)

=
∑
j

(σ+
j σ
−
j+1 + σ+

j+1σ
−
j ). (5.7)

The latter model is sometimes called the XX chain, for obvious reasons. The entire
spectrum of the XX chain can therefore be computed exactly, by the same methods as
for free fermions.

For any boundary condition, the XX chain is gapless, with dispersion relation E ∝
|k − kF | at each of the two Fermi points kF = ±π/2. LIke with the hopping fermion
chain

A further elegant result is that the XX chain, up to boundary conditions, decouples
into two copies of the critical Ising model. This fits with the fermionization result,
since the hopping Hamiltonian has two Fermi points (i.e. two points in momentum space
around which there are gapless excitations), where as a single Ising model has only one.
The XX Hamiltonian can trivially be rewritten as

HXX =
∑
i

(
σx2i−1σ

x
2i + σy2i σ

y
2i+1

)
+
∑
i

(
σx2i σ

x
2i+1 + σy2i−1σ

y
2i

)
= H1 + H2

where H1 and H2 are the two respective sums. It does not require fermionization to see
the decoupling, merely the observations that

[σxj σ
x
j+1 , σ

x
j+1σ

x
j+2] = [σyjσ

y
j+1 , σ

y
j+1σ

y
j+2] = 0; [σxj σ

x
j+1 , σ

y
jσ

y
j+1] = 0,

the latter following from the fact that different Pauli matrices at the same site anticom-
mute. Thus [H1, H2] = 0 and so the eigenstates of HXX can be made into eigenstates
of both H1 and H2. With an appropriate choice of boundary conditions, H1 and H2
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each have the same spectrum of a single Ising chain. This follows from fermionization,
yielding e.g.

H1 =
∑
i

(ψ2i−1χ2i + χ2iψ2i+1) .

This is equivalent to the critical Ising Hamiltonian on half the sites, since the only Majo-
rana fermions appearing inH1 are ψ2i−1 and χ2i. One can then reverse the Jordan-Wigner
transformation using only these fermions, i.e. define τxi ≡ ψ2i−1χ2i and τ zi τ

z
i+1 = χ2iψ2i+1.

Then τxi and τ zi indeed anticommute, and so with appropriate boundary conditions the
spectrum of H1 is indeed that of a single critical Ising chain on N/2 sites. Likewise, the
only Majorana fermions appearing in H2 are ψ2i and χ2i−1, so corresponding operators
τ̃x and τ̃ z can be defined analogously, with the same result that the spectrum of H2 with
appropriate boundary conditions is that of a critical Ising chain on N/2 sites.

This can be extended to different couplings in the two terms in XX chain; the resulting
Ising models are then no longer identical or critical. It is also straightforward to relate
correlation functions of the spin operators in the XX chain to those in the Ising case.
The operator σz here has dimension 1/4...

5.3 The six-vertex model

The quantum-classical correspondence applies to the Heisenberg and XXZ chains as well.
In this section I will show how the XXZ chain can be obtained by taking an anisotropic
limit of the classical six-vertex model on the square lattice. The relation, however,
goes much deeper than that. With an appropriate identification of parameters, the
XXZ chain and the transfer matrix of the six-vertex model have the same eigenvectors.
Thus this shows that the quantum-classical correspondence can be much more than
a heuristic statement about a certain limit, but instead allow an exact relation to be
made between physical quantities in the two models, even without taking the anisotropic
and/or continuum limit.

Figure 5.1: The Boltzmann weights for the six-vertex model

The degrees of freedom in the six-vertex model are placed on the links of the square
lattice. There are two states per link, which are most conveniently presented as an arrow
pointing in one of the two directions along the link. Allowed configurations must have
the same number of arrows pointing into each site as they do outward. This can be
thought of as forbidding “sources” or ”sinks”. There are thus six possible configurations
for each vertex, illustrated in fig. 5.1, hence the name of the model. One can allow for
an arbitrary Boltzmann weight for each vertex, but it is simplest and most common
to consider the “zero-field” case, where the weights are invariant under reversing all the
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Figure 5.2: The six-vertex model transfer matrix.

arrows. This gives three distinct types of weights, conventionally labelled a, b and c. The
model is isotropic (i.e. invariant under 90-degree rotations) when a = b. The partition
function is then simply

Z6v =
∑

anabnbcnc , (5.8)

where ni is the number of vertices of type i.
The transfer matrix can be built up a single vertex at a time. Consider first just a

single vertex, where the transfer matrix takes a system of two links to another system
of two links. Labeling the two links i and i+ 1, the single-vertex transfer matrix is then
the 4× 4 matrix

Ri,i+1 =


a 0 0 0
0 c b 0
0 b c 0
0 0 0 0


= a(1 + σzi σ

z
i+1)/2 + c(1− σzi σzi+1)/2 + b(σ+

i σ
−
i+1 + σ+

i+1σ
−
i ) . (5.9)

where for the initial state, an arrow in to the vertex corresponds to σz = 1, while an
arrow out of the vertex corresponds to σz = −1. For the final state, these conventions
are reversed so that an arrow out of the vertex is σz = 1. This convention means that
U(1) charge

Sz =
∑
j

σzj = #(up arrows) −#(down arrows)

is conserved: [Ri,i+1,Sz] = 0 for all i. The transfer matrix for open boundary conditions
can be pictured as in fig. 5.2, and is simply

T (open)ab = (R1,2R2,3 . . . RN,N+1)ab . (5.10)

The labels in the picture indicate which vector space the R-matrix acts on; when the
vertices are drawn like this, R acts up and to the left. The indices a = ±1 and b = ±1
represent respectively the end states at the left and right, i.e. the final value of σz1 and
the initial value of σzN+1. For periodic boundary conditions,

T =
∑
a=±1

T (open)aa . (5.11)

6



This is a 2N × 2N matrix, and commutes with Sz =
∑N

j=1 σ
z
j .

Finding the relation of this transfer matrix to the XXZ chain is now easy. From (5.9),
it is obvious that the transfer matrix is close to the identity if a and c are close to 1 and
b very small. Writing

a = 1 + δa, b = δb, c = 1 + δc ,

the transfer matrix for one vertex is

Ri,i+1 ≈ I + δb(σ+
i σ
−
i+1 + σ+

i+1σ
−
i ) +

δa− δc
2

σzi σ
z
i+1 .

Then for δa, δb and δc small, expanding out the product in T gives

T = I +HXXZ + . . . , (5.12)

where J⊥ = 2δb and Jz = 2(δa− δc) and the boundary conditions on HXXZ are periodic.
Thus the correspondence between the XXZ parameter ∆ and the six-vertex parameters
in this limit is

∆ =
δa− δc
δb

. (5.13)

From this one expects the physics of the two models to be related; in the next section it
will be shown that the relation is much deeper.

Before moving on to a detailed analysis of the six-vertex model, it is worth noting
that a special case long ago in a context completely different from that of magnets: ice!
In the hexagonal or cubic phase of an ice crystal (the stuff that is found in a freezer),
each oxygen atom is surrounded by four other oxygen atoms forming a tetrahedron. The
Bernal-Fowler ice rules 1 state that each hydrogen atom is associated with two oxygen
atoms, one bonded strongly and the other weakly. Only one hydrogen atom is associated
with each linkage, so that means that each oxygen atom is associated with four hydrogen
atoms, one bound weakly, and the other strongly. (Thus indeed there are two hydrogens
for each oxygen.) is thus the oxygen and its two strongly-bonded partners.) Pauling
observed that there were thus multiple ways of that the hydrogens can pair with the
oxygens, even at zero temperature. This is called the residual or geometric entropy. In
fact, this provided the first known natural example of geometric frustration! Each bond
can be labelled by an arrow along each link pointing in the direction of the oxygen atom
with the strong bond. The ice rules mean that are two arrows pointing in and two arrows
pointing out at each oxygen atom, i.e. the same six vertices as in fig. 5.1. Computing the
geometric entropy is tantamount to computing the six-vertex model partition function
on this three-dimensional lattice with weights a = b = c = 1.

The three-dimensional problem cannot be solved exactly, although Pauling2 estimated
the residual entropy by noting that for A oxygen atoms there are 22A configurations

1J.D. Bernal and R.H. Fowler, J. Chem. Phys. 1, 515 (1933)
2L.J. Pauling, Am. Chem. Soc. 57 : 2680-2684 (1935)
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without the six-vertex restriction, and that only 6 of the 16 vertices are allowed. Thus
the total number of configurations is approximately

22A

(
6

16

)A
=

(
3

2

)A
.

This estimate turns out to be remarkably close, and in fact a lower bound, as shown by
Onsager and Dupuis. An improved estimate (1.50685± .00015)A was derived by Nagle3

using series expansions. This gives for the entropy (in chemist’s units) S = .8145± .0002
cal/deg/mole. The 1936 experimental value4 is .82 ± .05 cal/deg/mole; shockingly this
does not seem to have been improved upon!

The six-vertex model on the square lattice with a = b = c = 1 can be thought of as
“square ice”. Obviously, it is not the real thing, but not only does the entropy behave
simply, but it can be derived exactly for M large. This will be done below.

5.4 Connecting XXZ and 6v exactly: Commuting

transfer matrices

The six-vertex model is integrable. A lattice model is integrable if one can find an series of
local quantities Qn commuting with the transfer matrix: [Qn, T ] = 0. Baxter recognized
that such commuting quantities could be generated if commuting transfer matrices could
be found. Any transfer matrix depends on some parameters; for the Ising model these
are Jx and Jy, while for the six-vertex model these are a, b and c. Commuting transfer
matrices require finding a special parametrization for the Boltzmann weights such that
transfer matrices for different values of one of these new parameters commute. For
example, for the six-vertex model, the Boltzmann weights can be written in terms of
new variables ρ, λ and u, given in (5.18) below. What Baxter showed was that here (and
in many other cases), the transfer matrices obey

[T (ρ, λ, u), T (ρ, λ, u′)] = 0 (5.14)

for any u and u′. To make this equation general, it is convenient to suppress all param-
eters other than u so that

[T (u), T (u′)] = 0 ;

all other parameters are the same in both transfer matrices. By expanding say T (u′) in
powers of u′, each term in the resulting expansion commutes with T (u). If u is defined
so that T (0) = I, then a quantum Hamiltonian is defined by taking

H = lim
u→0

1

u
(T (u)− I) .

3J.F. Nagle, J. Math. Phys. 7, 1484 (1966)
4W.F. Giauque and J.W. Stout, J. Am. Chem. Soc. 58, 1144 (1936)
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Commuting transfer matrices follow from requiring that the Boltzmann weights sat-
isfy the Yang-Baxter equation

Ri,i+1R
′
i+1,i+2R

′′
i,i+1 = R′′i+1,i+2R

′
i,i+1R

′′
i+1,i+2 (5.15)

This is a matrix equation; for the six-vertex model, before symmetries are exploited this
results in 64 separate equations. The U(1) symmetry in the six-vertex model is very
powerful, and this reduces to three equations

a′′ca′ = b′cb′′ + c′ac′′

a′′bc′ = c′ab′′ + b′cc′′ (5.16)

c′′ba′ = b′ac′′ + c′cb′′

Using these equations to eliminate a′′, b′′, c′′ gives the simple relation

a2 + b2 − c2

2ab
=
a′2 + b′2 − c′2

2a′b′
.

Defining

∆ ≡ a2 + b2 − c2

2ab
(5.17)

The Yang-Baxter equation is therefore satisfied if ∆ = ∆′. The use of the same parameter
∆ here and in the XXZ chain is not a notational oversight. By taking

a = 1 + δa; b = uδb; c = 1 + uδc

as before, in the limit of u small

∆ =
2δa+ 2δc

2δb
=

Jz
|J⊥|

indeed. Going back to the original equations shows that they are satisfied ∆′′ = ∆ = ∆′

as well.
The simplicity of this relation hides its profound nature. Most models do not possess

Boltzmann weights that solve the Yang-Baxter equation, as one easily finds by trying
to solve the equation – there are far more equations than unknowns. For the six-vertex
model, any value of a, b and c still results in commuting transfer matrices. The only
constraint is that the different transfer matrices have the same value of ∆. There are
essentially two unknown Boltzmann weights (since one can always rescale all weights to
make any single non-vanishing weight to be 1), so this still gives a one-parameter family
of commuting transfer matrices.

A very useful and illuminating parametrization for the Boltzmann weights and trans-
fer matrices is given by

a = ρ sin(λ− u) ,

b = ρ sin(u) , (5.18)

c = ρ sin(λ) .
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The parameter ρ is an unimportant overall constant and can be set to any convenient
value Such Boltzmann weights are real, if all of λ, u and ρ are real and positive and
0 ≤ u ≤ λ. They are also real and positive if λ, u and ρ are imaginary, so that sin
can be replaced with sinh. The limit λ → 0 makes sense if one takes ρ = 1/ sin(λ)
and rescales u appropriately. The parameter u is sometimes called “anisotropy” or
“spectral” parameter. Rotations by 90 degrees interchange the a and b vertices, while
leaving c invariant, so sending u → λ − u is equivalent to rotating the lattice by 90
degrees. Taking u = λ/2 gives the isotropic case a = b, while taking u → 0 gives the
very anisotropic XXZ limit.

This parametrization is very useful because ∆ is independent of u. Using a few
trigonometric identities gives

∆ = − cos(λ) , (5.19)

Transfer matrices at different values of u but the same values of λ commute: (5.14) holds
as claimed!

This means that the six-vertex model has an infinite sequence (as N →∞) of charges
commuting with the transfer matrix. Since they share the same eigenvectors, this infinite
sequence also commutes with the XXZ Hamiltonian. For example, a local conserved
charge can be found by taking the logarithmic derivative:

H(2) ∝
(
∂2

∂u2
lnT (u)

)
u=0

This reduces to commutators of individual terms in H. For ∆ = ±1, this can be rewritten
in the simple form

H(2) ∝
∑
j

~Sj · (~Sj+1 × ~Sj+2) =
∑
j

εabcS
a
j S

b
j+1S

c
j+2

does indeed commute with HXXX.
The parameters u and λ play very different roles. The physics strongly depends on

λ; for example universal quantities such as critical exponents depend on it but not on
u. Intuitively, this comes from the fact that u is governing a purely lattice property, the
relative couplings in the x and y directions. When the continuum limit of the lattice
model is a rotationally invariant field theory, then u only governs the anisotropy of the
discretized version. Thus the field theory depends only on λ, as will be discussed in this
example in the next chapter. Varying u does not change for example the phase structure
of the model. For these reasons, u is also often called “spectral” parameter, because
while the eigenvectors of T (u) and so much of the physics of the problem is independent
of it, the eigenvalues (the spectrum) of course do depend on it.

Determining the phase diagram of the six-vertex model is therefore essentially equiv-
alent to determining that of the XXZ chain. Naming the quantity ∆ in the six-vertex
model as (5.17) and in the XXZ model as (5.13) was not being lax; the former reduces
to the latter as δa, δb and δc are made small. Thus the six-vertex model should have the
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same phase diagram as the XXZ chain as a function of ∆. The fact that the Boltzmann
weights change form at λ = 0 from trigonometric to hyperbolic is a hint that a phase
transition is taking place here. Thus a putative phase diagram...

The six-vertex model is somewhat unusual in that it has a two-parameter family (both
λ and u) of solutions to the Yang-Baxter equation. The resulting line of critical points
with continuously varying critical exponents are somewhat unusual in 1+1 dimensions,
and very rare in higher dimensions.

An important (seemingly technical but in fact very fundamental) point is in order.
Once the six-vertex weights are parametrized in terms of λ and u, solving the Yang-
Baxter equation (5.15) requires that u′′ = u − u′. Thus the YBE can be rewritten
as

Ri,i+1(u− u′)Ri+1,i+2(u)Ri,i+1(u′) = Ri+1,i+2(u′)Ri,i+1(u)Ri+1,i+2(u− u′) (5.20)

Most (but not all) integrable models obey the YBE in this “difference” form . However,
it is important to note that all that is required to have a commuting transfer matrix
is the original relation (5.15). When the YBE is obeyed in the difference form (5.20) ,
additional special properties follow. A simple but profound one is that if the equation
is drawn as triangles as in figure ???, u, u − u′ and u′ can be interpreted as the angles
between the lines in the picture, a fact that means that the six-vertex model and its
generalization the eight-vertex model are integrable on any planar lattice comprised
of lines intersecting so that only two lines ever meet at a point (sometimes called the
“Baxter” lattice).

The Yang-Baxter equation in difference form also arises in 1+1 dimensional integrable
continuum theories with exact scattering matrices. The YBE is a consistency condition
on the requirement that the three-particle scattering matrix factorizes into a product
of two-body ones; the two sites of the equation represent the two ways this is possible.
The lines in figure ??? can be interpreted as the world lines of the particles, and the
parameters u, u − u′ and u as the difference of rapidities of the each of the pairs of
particles. The fact that the scattering matrices depend only on the rapidity differences
is a consequence of Lorentz invariance.

Writing the Boltzmann weights as a function of the anisotropy/spectral parameter
u uncovers a host of profound results that can be derived simply by assuming certain
analyticity properties in u. In the next section, the leading contribution to the free
energy will be found by this method.

5.5 The exact free energy in the large-volume limit

On an N × M lattice with periodic boundary conditions in the direction of transfer
matrix evolution.

Z = tr TM .
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In the limit of a large number of sites, this is therefore dominated by the largest eigenvalue
of T . The logarithm of this eigenvalue is proportional to the free energy, which is
∝ N . In general, the N -dependent contribution to the free energy and hence the largest
eigenvalue is independent of boundary conditions, since the boundaries will not affect an
N -dependent quantity. Defining this largest eigenvalue to be κ(u)N gives

Z ≈ κ(u)NM . (5.21)

as the number of sites NM gets large.
The free energy per site (divided by the temperature) in this limit is therefore inde-

pendent of N , so
The trick of Baxter’s inversion relation method is to derive several relations for κ(u).

These relations are sufficient to find an exact expression for κ(u) if certain analyticity
assumptions are made about the behavior with u complex. The first relation for κ(u)
follows from the observation that rotating by 90 degrees is the same as sending u→ λ−u.
Thus

κ(λ− u) = κ(u) (5.22)

To find the first inversion relation, note that

Wi,i+1(u)Wi,i+1(−u) = ρ2 sin(λ+ u) sin(λ− u)I .

This can be derived directly, or it follows from the Yang-Baxter equation by setting
u′ = 0 and noting that W (0) ∝ I. (The property is thus not a fluke of the six-vertex
model, and so this trick can be applied to many integrable models; in knot theory this
turns out to be related to the second Reidemeister move.) Since κ(u) is independent of
boundary conditions... Defining Trefl(u) here with “reflecting” boundary conditions

Trefl(u)Trefl(−u) = (ρ2 sin(λ+ u) sin(λ− u))NI .

Notice that the Boltzmann weights are periodic if v → v+2πi. and make the following
assumption:

ln(κ(v)) is analytic in an open region containing the vertical strip 0 ≤
Re(v) ≤ λ, and is periodic under shifts v → v + πi.

This assumption can be checked by analyzing the low- and high-temperature expansions
of the model (and of course by using the exact Bethe ansatz result). Even number of
sites, even number of c vertices with periodic boundary conditions.

κ(v)κ(−v) = ρ2 sinh(µ− v) sinh(µ+ v) (5.23)

κ(µ− v) = κ(v) (5.24)

12



Expand ln(κ(v)) in a Laurent series inside the region of analyticity:

ln(κ(v)) =
∞∑

n=−∞

cne
−2nv .

which indeed is periodic under shifts of v → v+πi. The rotation relation (5.24) therefore
requires that

c−n = e−2µncn

and

ln(sinh(µ− v) sinh(µ+ v)) =
∞∑
n=1

1

n

(
e−2(µ+v)n + e−2(µ−v)n

)
=
∑
n6=0

1

|n|
e−2vne−2µ|n|

Therefore for n > 0

cn =
e−2µn

n(1 + e−2µn)
=

e−µn

2n cosh(µn)
(5.25)

Taking ρ = 1/ sinh(ν) gives then

ln(κ(v)) = ln(ρ2/4) + 4µ+
∞∑
n=1

e−µn

2n cosh(µn)

(
e−2nv + e2n(v−µ)

)
= 2

∞∑
n=1

e−2nµ sinh(nv) sinh(n(µ− v))

n cosh(nµ)

which converges in the strip.
For the case |∆| < 1, there is not periodicity in imaginary u like in the ∆ > 1 case.

Instead, the weights a and b grow as Im(u)→ ±∞ as e∓iµ whereas the c weight remains
finite. The partition function can easily be computed then, and so κ(u) grows as e∓iµ

in these limits. Therefore the second derivative can be Fourier integrated, i.e. define a
function k(t) so that

d2 ln(κ(u))

du2
=

∫ ∞
−∞

k(t)e2utdt

The function k(t) is then analytic in some strip about the real t axis, and the integral
converges for u in the domain.

ln(κ(u)) =

∫ ∞
−∞

cosh(π − 2λ)t sinhut sinh(λ− u)t

t sinhπt cosh(λt)
.

Then after Fourier transforming the inversion equations

c(t) + c(−t) = −4t
cosh(π − 2λ)t

sinh(πt)

c(t) + e−4λtc(−t) = −4te−2µt cosh(π − 2λ)t

sinh(πt)
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5.6 KT transition

The energy of a single vortex is
E ≈ J ln(R/a)

while the number of vortices possible is (R/a)2.
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