N VERSUS THE OTHER INFINITE

KENTARO SATO

First, crucial differences are demonstrated between Predicativity given the totality of ω and Predicativity given the totality of other infinite mathematical entities, such as the set $\mathcal{P}(\omega)$ of reals, the set $\mathcal{P}(\mathcal{P}(\omega))$ of functions and the universe V of sets: Let us concentrate on how we can proceed to generate subsets (subclasses) of the given entities. On the one hand, the following characterizations (A)-(C') of traditional ω -predicativity have been known to be all proof-theoretically equivalent (or equiconsistent) and hence considered as the right characterizations. On the other hand, (A)-(C') for the other kinds of predicativity, we lost such robustness and could not conclude which one is the right.

- (A) autonomous progression of elementary comprehension: since the quantifiers over the given entity make sense, elementary comprehension must be accepted, whose iterations along any "legitimately-defined" order should also be accepted provided that the proof of the well-orderedness have been accepted.
- (B) 2-fold autonomous progression of elementary comprehension: once (A) is accepted, the iteration (of the same type) of (A) itself should also be accepted.
- (C) general multi-fold autonomous progression.
- (A') (C') the same but "elementary" replaced by "recognizably invariant" (under the generating process), namely, essentially Δ_1^1 , denoted by Δ .

These investigations can be uniformed in the second order framework: elements of the given totality are of first order; subclasses (which are always being generated) of the given totality are of second order. What makes ω -predicativity exceptional is that well-foundedness is non-elementary in the context of ω whereas it is elementary in the others.

This motivates us to ask: among the results known in number theory, which survives when we replace ω by others, and which does not. The following is a partial list, where T > S means $T \vdash S + \text{Con}(S)$, where Γ -**TR**^k is the internalization of k-fold autonomous progression of Γ -comprehension (k omitted if k = 1) and where $k, j \ge 1$:

KENTARO SATO

given ω	given $\mathcal{P}^n(\omega)$ $(n \ge 1)$ and $\mathcal{P}^n(V)$ $(n \ge 0)$
Δ - TR ^{k+1} $\leftrightarrow \Delta_0^1$ - TR ^{j+2} $\leftrightarrow \Delta_0^1$ - TR	Δ -TR $^{k+1}$, Δ_0^1 -TR $^{j+2} > \Delta_0^1$ -TR
$\Delta_0^1 \text{-} \mathbf{LFP} > \Delta_0^1 \text{-} \mathbf{FP} \leftrightarrow \Pi_1^1 \text{-} \mathbf{Red} \leftrightarrow \Delta_0^1 \text{-} \mathbf{TR}$	Π_1^1 -Red > Δ_0^1 -LFP $\leftrightarrow \Delta_0^1$ -FP > Δ_0^1 -TR
$ID_1 \to \operatorname{Con}(\Delta_0^1 \operatorname{\mathbf{-TR}}); \Delta_0^1 \operatorname{\mathbf{-TR}} \to \operatorname{Con}(\widehat{ID}_1)$	$ID_k \leftrightarrow \widehat{ID}_k \to \operatorname{Con}(\Delta_0^1 \operatorname{\mathbf{TR}})$
Δ_0^1 -TR $ ightarrow \Delta_1^1$ -CA, Σ_1^1 -Coll	Δ_0^1 -TR $ e \Delta_1^1$ -CA, Σ_1^1 -Coll
$\Pi^1_{k+1} extsf{-}\mathbf{CA} > \Pi^1_k extsf{-}\mathbf{CA}; \qquad \Delta extsf{-}\mathbf{TR}^{k+2} \leftrightarrow \Delta extsf{-}\mathbf{TR}$	
$\operatorname{Con}(\Delta_0^1 \operatorname{\mathbf{TR}}) \leftrightarrow \operatorname{Con}(\Delta_0^1 \operatorname{\mathbf{TR}} + \Delta \operatorname{\mathbf{-CA}}) \leftrightarrow \operatorname{Con}(\Delta_0^1 \operatorname{\mathbf{TR}} + \Sigma_1^1 \operatorname{\mathbf{-Coll}})$	

Furthermore, the comparison with the case where totality is given only to finite entities will be provided. In this new case, the framework is two-sorted bounded arithmetic, where (A)-(C') characterize the polynomial-time computability, and the relations among the principles appearing in the table above differ from those in the previous cases.