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In today's class we'll go over some formal results. Some of these will be required
or helpful for later classes; others will not be directly related to the remaining
classes but should be part of every philosophical logician's toolkit. I assume that
students have taken an intermediate logic course (or perhaps even just a demanding
introductory course, like the Oxford one), in which they have gained familiarity
with propositional and �rst-order logic (also known as predicate logic). In any case,
I've included a review of �rst-order logic and its semantics in section 2 below, for
completeness.

1 Languages

Let's begin by distinguishing sentences of (a) natural language, (b) an interpreted
formal language, and (c) an uninterpreted formal language. Examples of natural-
language sentences:

• Everyone is self-identical.

• If Joe is tall then Joe is tall.

• No even numbers are odd.

Some examples of interpreted formal-language sentences:

• ∀x(x = x) with the following interpretation: the domain is the set of
people, the identity sign is interpreted as identity, and the universal
quanti�er symbol as the universal quanti�er over all people.

• p → p with the interpretation: p means that Joe is tall and the
arrow is interpreted as the truth-functional (material) conditional.

• ∀x(Ex → ¬Ox) with the interpretation: the domain is the set of
all numbers, the �rst predicate symbol is interpreted as `is even',
the second as `is odd', the arrow as the material conditional, the
negation symbol as truth-functional (sentential) negation, and the
universal quanti�er symbol ranges over all numbers.

Some examples of uninterpreted formal-language sentences:

• ∀x(x = x)

1Some of the material in section 4 draws on my forthcoming encyclopaedia article on the Com-
pactness Theorem co-written with Robert Leek and some of the material in section 5 on lecture
notes co-written with Dan Isaacson.



• p→ p

• ∀x(Ex→ ¬Ox)

Natural-language sentences and interpreted formal sentences are capable of having
a truth-value. In contrast, the third batch of sentences are not interpreted, so can't
be true or false, still less logically true or false. Do not confuse a logical truth, which
must be interpreted/meaningful, with a validity, which is a formal sentence satis�ed
in all interpretations.

2 First-order logic

We give the vocabulary, grammar and semantics of �rst-order logic with identity,
culminating in the de�nition of model-theoretic consequence for this logic.

Vocabulary

The vocabulary of �rst-order logic consists of the following:

• Symbols for propositional connectives: ∧,∨,→,↔,¬ (or any other expres-
sively adequate set).

• Object variables: x0, x1, x2, · · ·

• Quanti�ers: ∀ and ∃ (or one de�ned in terms of the other).

• The identity symbol: =.

• Left and right parentheses: (,)

• Non-logical constants: c0, c1, c2, · · ·

• Non-logical function constants: f0, f1, f2, · · · (in�nitely many of each adicity)

• Non-logical predicate constants: R0, R1, R2, · · · (in�nitely many of each adic-
ity)

One can be more precise than we have been here about how many object variables,
non-logical constants, function constants and predicate constants each �rst-order
logic contains.

Grammar

The grammar of �rst-order logic is given by specifying the set of terms and well-
formed formulas (w�s). Terms:

• An object variable or a constant is a term. Terms of this form are known as
atomic.

• If ζ is an n-place function constant and τ1, · · · , τn are terms, then ζ(τ1, · · · , τn)
is a term.

Well-formed formulas (w�s) are speci�ed as follows:
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• If τ1 and τ2 are terms, then τ1 = τ2 is a w�.

• If π is an n-place predicate constant and τ1, · · · , τn are terms, then πτ1 · · · τn
is a w�.

• If φ is a w� so is ¬φ; if φ and ψ are w�s, so are (φ∧ψ), (φ∨ψ), (φ→ ψ) and
(φ↔ ψ).

• If φ is a w� and α is an object variable then ∀αφ and ∃αφ are w�s.

We often drop brackets in w�s.

Model and Term Assignment

To de�ne the notion of satisfaction, we �rst need to de�ne the notions of a model
and of a term assignment. A model M consists of a set M known as the model's
domain, and an interpretation (here denoted by the superscriptM) of the constants,
function constants and predicate constants given by:

• If α is a constant, then αM is an element of M .

• If ζ is an n-place function constant then ζM is an n-place function on M .

• If π is an n-place predicate constant then πM is an n-place relation on M (i.e.
a set of n-tuples of M).

A variable assignment g is a function with domain the set of variables such that:

• If α is a variable, g(α) is an element of M .

We denote by g+M the term assignment uniquely determined by the model M and
variable assignment g. By de�nition, g+M is a function with domain the set of terms
that satis�es these conditions:

• If α is a constant, then g+M(α) = αM.

• If α is a variable, then g+M(α) = g(α).

• For any complex term τ = ζ(τ1, · · · , τn), where ζ is a function constant,

g+M(τ) = ζM((g+M(τ1), · · · , g+M(τn))

Satisfaction

The notion of satisfaction is a ternary relation between models M, variable assign-
ments g, and formulas φ. It is de�ned recursively on the complexity of formulas, as
follows.2 For any n-place predicate constant π and terms τ1, · · · , τn:

Sat(M, g, πτ1 · · · τn) i� 〈g+M(τ1), · · · , g+M(τn)〉 ∈ πM

2For brevity, we omit the condition from the de�nitions' right-hand sides that M is a model of
some �rst-order language, g is a variable assignment, and φ is a w� in M's language.
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Sat(M, g, τ1 = τ2) i� g
+
M(τ1) = g+M(τ2)

(As usual, we use `=' as a symbol in both the object language and the metalanguage.)
For any w�s φ and ψ and variable α (dropping brackets in some w�s):

• Sat(M, g,¬φ) i� it's not the case that Sat(M, g, φ).

• Sat(M, g, φ ∧ ψ) i� Sat(M, g, φ) and Sat(M, g, ψ).

• Sat(M, g, φ ∨ ψ) i� Sat(M, g, φ) or Sat(M, g, ψ) (or both).

• Sat(M, g, φ→ ψ) i� it's not the case that Sat(M, g, φ) or Sat(M, g, ψ)
(or both).

• Sat(M, g, φ ↔ ψ) i� Sat(M, g, φ) and Sat(M, g, ψ) or it's not the
case that Sat(M, g, φ) and it's not the case that Sat(M, g, ψ) .

• Sat(M, g,∀αφ) i� Sat(M, h, φ) for any h that is a variable assign-
ment agreeing with g on all variables, with the possible exception
of variable α.

Sat(M, g, φ) is often written as (M, g) � φ, or M �g φ. Sat(M, g,Γ) means that
Sat(M, g, γ) for every γ in Γ.

Model-Theoretic Consequence

If Γ is a set of �rst-order formulas and δ is a �rst-order formula, we write

Γ � δ

to mean that for any model M and variable assignment g, if Sat(M, g,Γ) then
Sat(M, g, δ). We are often interested in the case in which Γ is a set of �rst-order
sentences (formulas with no free variables) and δ is a �rst-order sentence.

Remarks:

(i) It is unfortunate that the symbol � is used ambiguously in logic, for both the
relation of satisfaction and that of model-theoretic consequence.

(ii) A further ambiguity is that � in either sense is a logic-relative notion: strictly
speaking, we should write �L. Usually, context makes it clear which logic is
in question.

(iii) The speci�cation just given is usually called `a semantics' for �rst-order logic.
Its relation to a semantics of natural language�an account of the meanings of
natural-language sentences�is a delicate question. Shared terminology should
not prejudice the answer.

(iv) We often say that

φ is true in an interpretation 〈M, g〉

instead of
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Sat(M, g, φ)

or

(M, g) � φ

When φ is a sentence, we say more simply that φ is true or false in M, since
in the former case φ is true in 〈M, g〉 for all variable assignments g and in the
latter case φ is false in 〈M, g〉 for all variable assignments g. Since satisfaction
is a technical notion, so is the notion of `truth in'. Its relation to truth outright
is also a moot question, not to be settled by common terminology.

3 Second-order logic

3.1 Second-order logic

Second-order logic is the logic obtained by adding function and relation variables
to �rst-order logic. I list supplementary clauses to the �rst-order ones previously
speci�ed.

Vocabulary

The extra vocabulary of second-order logic consists of:

• Function variables: f0, f1, f2, · · · (in�nitely many of each adicity)

• Predicate variables: X0, X1, X2, · · · (in�nitely many of each adicity)

Grammar

The supplementary clauses to the �rst-order ones are:

• If Z is an n-place function variable and τ1, · · · , τn are terms, then Z(τ1, · · · , τn)
is a term.

• If Π is an n-place predicate variable and τ1, · · · , τn are terms, then Πτ1 · · · τn
is a w�.

• If φ is a w� and Ξ is a predicate or function variable then ∀Ξφ and ∃Ξφ are
w�s.

Model and Term Assignment

A second-order modelM is identical to a �rst-order model. A second-order variable
assignment g is a �rst-order variable assignment with the extra properties:

• If Z is an n-place function variable then g(Z) is an n-place function on M .

• If Π is an n-place predicate variable then g(Π) is an n-place relation on M
(i.e. a set of n-tuples of M).
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Let g+M be the term assignment uniquely determined by the modelM and the second-
order variable assignment g. By de�nition, g+M agrees with g on variables of any
kind (object, function or predicate), takes the value αM for constant α, and for any
complex term τ = ζ(τ1, · · · , τn), where ζ is either a function constant or a function
variable,

g+M(τ) = ζM(g+M(τ1)), · · · , g+M(τn))

Satisfaction

The supplementary clauses are as follows. For any n-place predicate variable Ψ and
terms α1, · · · , αn:

Sat(M, g,Ψτ1 · · · τn) i� 〈g+M(τ1), · · · , g+M(τn)〉 ∈ ΨM

For any function variable Φ:

Sat(M, g,∀Φφ) i� Sat(M, h, φ) for any h that is a second-order variable
assignment agreeing with g on all variables, with the possible exception
of the function variable Φ.

For any predicate variable Ψ:

Sat(M, g,∀Ψφ) i� Sat(M, h, φ) for any h that is a second-order variable
assignment agreeing with g on all variables, with the possible exception
of the predicate variable Ψ.

Model-Theoretic Consequence

As in the �rst-order case.

3.2 Second-order logic and the Continuum Hypothesis

To appreciate some of the literature on logical consequence,3 it will be useful to
know that there is a sentence SCH which is a second-order validity i� the Continuum
Hypothesis is true. As it would take us too far a�eld to justify this claim in detail,
we merely sketch some of the ideas behind its justi�cation.

The Continuum Hypothesis is an interpreted �rst-order sentence in the language
of set theory which we may take to be:

CH 2ℵ0 = ℵ1; in words: the cardinality of the set of functions from ℵ0 to 2 = {0,1}
is the �rst uncountable cardinal.

An easy argument shows that 2ℵ0 is the size of the real numbers, so that CH is
equivalent to the claim that if a subset of the real numbers is strictly larger than the
natural numbers then it is at least as large as the set of real numbers�and therefore
exactly as large as this set.

3In particular, the `overgeneration argument' advanced in Etchemendy (1990) and discussed in
many articles since, including Gri�ths & Paseau (2016).
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We show that there is a second-formula Nat(X) whose only free variable is
the monadic second-order variable X as displayed with the following property: it
is satis�ed in an interpretation by a subset of the domain just when that subset
is equinumerous with the natural numbers. We do this by listing a sequence of
properties and their de�nitions.

1. XM is a subset of Y M; XM is a proper subset of Y M (here X and Y are
one-place predicate variables or constants).

De�nition: the former is ∀x(Xx → Y x), abbreviated as X ⊆ Y ; the latter is
∀x(Xx→ Y x) ∧ ∃y(¬Xy ∧ Y y), abbreviated as X ( Y .

2. fM is a function with codomain Y M (here f is a one-place function variable
or constant and Y is a one-place predicate variable or constant).

De�nition: ∀x∀y(fx = y → Y y).

3. fM is injective on XM (f is a one-place function variable or constant and X
is a one-place predicate variable or constant).

De�nition: ∀x∀y((Xx ∧Xy)→ (fx = fy → x = y)).

4. XM is of cardinality smaller or equal to Y M (X and Y are one-place predicate
variables or constants).

De�nition: ∃f(f is injective on X and has codomain Y ). We abbreviate this
as X ≤ Y .

5. XM is in�nite (X is a one-place predicate variable or constant).

De�nition: ∃f∃Y (Y ( X ∧ f is injective on X ∧ f has codomain Y ).

6. XM is of the same size of the natural numbers (X is a one-place predicate
variable or constant).

De�nition: X is in�nite ∧ ∀Y (Y is in�nite → X ≤ Y ). We abbreviate this
formula as Nat(X).

The last clause shows that `XM is of the same size as the set of natural numbers' is
de�nable by Nat(X); so we have found the formula we were looking for.

It turns out that `Y M is of the same size as the set of real numbers' is also de-
�nable by a second-order formula Real(Y ). To see this in detail would require more
mathematics than we have time to present. The idea is that the real numbers with
the operations + and × and the relation < enjoy a uniqueness property: any other
structure satisfying the conditions enjoyed by this structure must be isomorphic to
it. The more precise statement is that the reals are the up-to-isomorphism unique
ordered �eld with the least upper bound property. If this structure is de�ned by
φ(Y, f1, f2, R) then Real(Y ) may be de�ned as ∃f1∃f2∃Rφ(Y, f1, f2, R).

Using the two formulas Nat(X) and Real(Y ), it is now easy to de�ne the fol-
lowing second-order sentence SCH:

SCH ∀X∀Y ∀Z((Nat(X) ∧Real(Y ) ∧ Z ⊆ Y ∧X < Z)→ Y ≤ Z)
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Suppose SCH is true in all second-order interpretations. It is true in particular in
the model whose domain is the real numbers. It follows that any subset of the reals
whose size is greater than that of the natural numbers is of the same size as the
real numbers; i.e. it follows that CH is true. Conversely, if CH is true, then by a
similar argument SCH must be true in all interpretations. The upshot is that SCH
is a second-order validity i� CH is true.

4 Compactness

4.1 General properties

Suppose a logic consisting of a language, grammar, semantics and consequence re-
lation � has been speci�ed. As usual, and as just elaborated in the case of �rst-
and second-order logic, if Γ is a set of sentences of the logic and δ a single sentence,
Γ � δ means that any model of Γ (i.e. of all the sentences in Γ) is a model of δ. The
logic in question is said to be compact when one of the following three statements
holds:4

• If Γ � δ then Γfin � δ for some �nite subset Γfin of Γ.

• If Γ is an unsatis�able set of sentences then so is Γfin for some �nite subset
Γfin of Γ.

• If every �nite subset Γfin of Γ is satis�able then so is Γ.

The equivalence of these three characterisations of compactness is immediate: the
third statement is the contrapositive of the second, and in a logic containing negation
the equivalence of the �rst and second statements follows from

Γ � δ if and only if Γ ∪ {¬δ} is unsatis�able.

The compactness theorem is said to hold for a logic precisely when the logic is
compact.

Two important examples of compact logics are propositional logic and �rst-order
logic. First-order logic's compactness is of tremendous importance, since to this
day it remains the canonical logic within mathematics, the widespread interest in
higher, supplementary and alternative logics notwithstanding. By `�rst-order logic',
we understand throughout �rst-order logic with identity; �rst-order logic without
identity is of course also compact, as it is a sublogic of �rst-order logic with identity.

Second-order logic with standard or full semantics, in which second-order n-place
predicate variables range over all the n-tuples from the domain of interpretation (and
similarly for functional variables), is in contrast not compact. To see this, let ∃≥n
be a sentence of �rst-order logic satis�ed in all and only models with domain of size
≥ n; ∃≥1 may be taken to be ∃x(x = x), ∃≥2 as ∃x∃y¬(x = y), and so on. Since
�rst-order logic is a sublogic of second-order logic, ∃≥n is a sentence of second-order
logic too. Consider next the sentence

4Some authors take the compactness of a logic to be its satisfaction of the statements' bicondi-
tional versions.
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∃R(R is functional ∧R is injective ∧ ¬R is surjective)

with R a two-place predicate. The clause `R is functional' abbreviates

∀x∃yRxy ∧ ∀x∀y1∀y2((Rxy1 ∧Rxy2)→ y1 = y2),

`R is injective' abbreviates

∀x1∀x2∀y((Rx1y ∧Rx2y)→ x1 = x2)

and `R is surjective' abbreviates

∀y∃xRxy

Alternatively, use the sentence

∃X∃f∃Y (Y ( X ∧ f is injective on X ∧ f has codomain Y ),

which existentially quanti�es the formula in the previous section. Any interpretation
of either of these two sentences states that the domain is Dedekind in�nite. The
following second-order argument is then valid:

∃≥1
∃≥2
...

∃≥n
...

∃R(R is functional ∧R is injective ∧ ¬R is surjective)

But no �nite subset of the premisses entails the conclusion. For let the �nite subset
be {∃≥i1 ,∃≥i2 , . . . ,∃≥ik} and take m ≥ max{i1, i2, . . . , ik}. Then there is a model
of size m in which the k premisses ∃≥i1 ,∃≥i2 , . . . ,∃≥ik are true but the argument's
conclusion is false. Hence second-order logic is not compact.

It follows from its incompactness that second-order logic is also incompletable.
For a simple argument demonstrates that if a logic has a sound and complete proof
procedure, then it must be compact:

(1) Γ � δ Assumption
(2) Γ ` δ From (1) by Completeness
(3) Γfin ` δ From (2) by the �niteness of proofs
(4) Γfin � δ From (3) by Soundness
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Here Γfin is some �nite subset of Γ. The validity of the inference from (2) to (3)
follows from the requirement that proofs draw only on �nitely many premisses. The
argument just given therefore applies to any logic which has a sound and complete
proof procedure in this liberal sense. It follows that second-order logic is incom-
pletable (by a sound proof procedure) as well as incompact.

The compactness theorem also typically, but not invariably, fails for in�nitary
logics (see below). Any logic which allows in�nite disjunctions, for example, is
incompact, since the set of sentences {c 6= ci : i ∈ ω} ∪ {

∨
i∈ω c = ci} is �nitely

satis�able but unsatis�able.
Not all logics with higher-order (second-order or above) quanti�ers are incom-

pact. Second-order logic with Henkin semantics is compact.5 A less familiar example
is so-called pure second-order logic with identity.(Beware: `pure second-order logic'
is also used to mean second-order logic without any non-logical vocabulary, with
no non-logical constants, function constants or predicate constants.) Pure second-
order logic with identity lacks functional and �rst-order variables, but has predicate
variables and quanti�ers as well as both second-order and �rst-order identity. It
may be thought of as the complement of �rst-order logic relative to second-order
logic in the following sense: �rst-order logic has object but not predicate quanti�ers;
pure second-order logic has predicate but not object quanti�ers; and second-order
logic combines the two.6 In other words second-order logic merges �rst-order and
pure second-order logic. Pure second-order logic with identity is also known to be
compact.7 The moral is that the incompactness of second-order logic is not owed
solely to the presence of second-order quanti�ers but to the combination of both
�rst- and second-order quanti�ers.

What about natural language? Is it compact? First, let's clarify what the
question means. Assume there is such a thing as the relation of logical consequence
in natural example. For example, consider these two natural-language arguments:

Hypatia is a woman. Hypatia is mortal.
All women are mortal. All women are mortal.

Hypatia is mortal. Hypatia is a woman.

The argument on the left is logically valid, whereas the argument on the right is
invalid. Let's say that a natural language N is compact just when, for any logically
valid N -argument, there is a logically valid argument whose premiss set is a �nite
subset of the orginal argument's premiss set and whose conclusion is the same as the
original argument's conclusion. This de�nition is the analogue of the �rst de�nition
of compactness above for a formal language (viz. if Γ � δ then Γfin � δ for some
�nite subset Γfin of Γ).

Consider now the following English analogue of the second-order-logic argument
presented earlier:

5For an account of Henkin semantics, see e.g. chapter 4 of Enderton (2001).
6Of course, standard second-order logic also has functional variables and quanti�ers, but in the

presence of predicate variables and quanti�ers these are dispensable.
7See my (2010). Denyer (1992) gives an argument that applies to pure second-order logic

without identity.
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There is at least one thing.

There are at least two things.

...

There are at least n things.

...

There are in�nitely many things.

If this argument is valid, as some philosophers believe,8 then the consequence re-
lation in English is incompact, since no �nite subset of the premiss set entails the
conclusion. We shall return to the compactness or otherwise of natural language in
next week's class.

4.2 Semantic and deductive completeness

It is worth brie�y pausing to explain what a complete theory (as opposed to a
complete proof system) is, in case anyone hasn't encountered this notion before. A
theory T in a formal language L is understood as a set of L-sentences. Then:

T is semantically complete =df for any L-sentence φ, T � φ or T � ¬φ.
T is deductively complete =df for any L-sentence φ, T ` φ or T ` ¬φ.

Note that these de�nitions apply to sentences and not open formulas. (A notion
of completeness that took in open formulas as well as sentences would not be very
useful, since any theory T satis�able by a model of domain size greater than 1 is
such that T 2 x = y and T 2∼ x = y.) It is immediate from the de�nitions just
given that in any logic L with a sound and complete proof system (e.g. �rst-order
logic), T is semantically complete i� it is deductively complete.

4.3 First-order logic's expressive limitations

This subsection brie�y draws some implications of the compactness of �rst-order
logic. The sample below is a tiny selection from a list that could �ll volumes. We
assume knowledge of elementary model theory.9

Any compact logic extending �rst-order logic cannot express the notions of �ni-
tude or in�nitude (of a model). Suppose towards a contradiction that φF is satis�ed
by all and only �nite models. Then the set {φF} ∪ {∃≥n : n ∈ ω} is unsatis�able,
and hence by compactness must have an unsatis�able �nite subset, which must be
a subset of {φF} ∪ {∃≥i1 , . . . ,∃≥ik} for some i1 < . . . < ik. But any �nite model
with domain of size ≥ ik satis�es (any subset of) {φF} ∪ {∃≥i1 , . . . ,∃≥ik}, thereby

8See for example Oliver & Smiley (2013, p. 238), or Yi (2006, p. 262) for a similar claim.
9Standard references are Chang & Keisler (1990), Hodges (1993) and Hodges (1997).
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contradicting our hypothesis. And if there were a sentence φI satis�ed by all and
only in�nite models then ¬φI would be satis�ed by all and only �nite models, a
hypothesis we have just refuted. Thus no such sentence φI exists either.

This application of the compactness theorem is entirely typical. Schematically,
one shows by contradiction that the class of models with some ω-property expressible
by a set of �rst-order sentences is not de�nable by a single sentence φ. In that case,
¬φ and the union of the set whose sentences are `the model has the n-property'
for each �nite n (plus any background assumptions) is unsatis�able, but any of
its �nite subsets is satis�able, contradicting compactness. Informally speaking, in
these applications the ω-property is the conjunction of all the n-properties; in our
example, the n-property is having size ≥ n and the ω-property is having in�nite
size.

The compactness theorem may be used to show that any �rst-order theory of
arithmetic TAR satis�ed by the standard model has a non-standard model.10 As-
suming that each numeral n is de�nable in TAR, consider

T+
AR = TAR ∪ {c 6= n : n ∈ ω}

where c is any constant not in TAR's language. Any �nite subset of T
+
AR is satis�ed by

the standard model, because we may interpret c as a number larger than the largest
n such that the sentence c 6= n is in the given �nite subset. Hence by compactness,
T+
ar has a model M. The reduct of M to the language of TAR is non-standard since

it contains an element not identical to any natural number, viz. cM, the denotation
of c in M.

Extending the argument just given with an appeal to the downward Löwenheim-
Skolem Theorem shows that any such �rst-order theory of arithmetic TAR is not even
ℵ0-categorical, since it contains a countably in�nite non-standard model. Beware:
this does not imply that arithmetic is incomplete. Gödel (1931) proved that for any
consistent �rst-order theory of arithmetic T with a recursively enumerable set of
theorems, there is a sentence φ such that neither φ nor ¬φ is a theorem of T . That
a theory fails to be ℵ0-categorical is, however, compatible with its being (deductively
or semantically) complete. To see this, run the previous argument supplemented by
an application of the downward Löwenheim-Skolem Theorem for a complete theory
of arithmetic TAR, for example the �rst-order theory of all true arithmetical sen-
tences in the �rst-order language which contains the constant 0 (whose intended
interpretation is 0), the one-place symbol S (whose intended interpretation is the
successor function), the two-place symbol + (whose intended interpretation is addi-
tion), and the two-place symbol × (whose intended interpretation is multiplication).
By the above argument, the theory TAR has a non-standard model, complete though
it may be.

The same general idea can be used to demonstrate the existence of non-standard
models of real analysis. Let TAN be a �rst-order theory of analysis satis�ed by
the standard model (the ordered �eld of real numbers). As above, consider T+

AN =

10By the standard model of arithmetic (for the theory TAR in question), we mean the structure
of natural numbers with the standard interpretation of the non-logical symbols in the language of
TAR: the constant 0 denotes 0, the two-place symbol + denotes addition, × denotes multiplication,
etc.
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TAN ∪{0 < c < 1
n

: n = 1, 2, . . .} where c is any constant not in TAN 's language. Any
�nite subset of T+

AN is satis�ed by the standard model, because we may interpret c
as a positive real number smaller than 1

n
, where n is the largest number for which

the sentence 0 < c < 1
n
is in the given �nite subset. Hence by compactness, T+

AN

has a model M. The reduct of M to the language of TAN is non-standard since it
contains an element not identical to any real number, viz. cM, the denotation of c
in M. Indeed, this element must be a positive in�nitesimal, meaning that it is a
number greater than 0 but smaller than every fraction 1

n
. As well as in�nitesimals,

our non-standard model also contains in�nite elements, since the model satis�es
∀x 6= 0∃y(x · y = 1) and thus any non-zero element has an inverse. From these
foundations, a consistent version of the calculus that revives to a fashion the use of
in�nitesimals in early modern mathematics may be constructed.11

Since second-order logic with standard semantics is incompact, the arguments
just given fail for second-order theories of arithmetic and analysis. Indeed, there are
categorical second-order axiomatisations of arithmetic and real analysis, as men-
tioned above. The standard second-order axiomatisation of arithmetic is given by
the following three axioms:

• ¬∃x(Sx = 0)

• ∀x∀y(Sx = Sy → x = y)

• ∀X[(X0 ∧ ∀x(Xx→ XSx))→ ∀xXx]

This axiomatisation, usually known as second-order Peano Arithmetic, is categorical.
Assuming the downward Löwenheim-Skolem theorem, another corollary to the

compactness of �rst-order logic is the upward Löwenheim-Skolem theorem. This
upward version of the theorem states that if a �rst-order language L has cardinality
≤ λ and M is an in�nite model with domain of cardinality ≤ λ then M has an
elementary extension of cardinality λ. For the proof, we consider the set of sentences
consisting of the elementary diagram of M and each sentence in {cα 6= cβ : α, β ∈
λ s.t. α 6= β}, where the cα are new constants. This set is �nitely satis�able (because
the in�nite model M satis�es any �nite subset), and hence by compactness it is
satis�able, satis�ed by a model N say, which must be of size ≥ λ as it satis�es
{cα 6= cβ : α, β ∈ λ s.t. α 6= β}. Since N also satis�es the elementary diagram of
M, an elementary embedding of M into N exists, and thus there is an elementary
extension O of M with domain of size ≥ λ (O is an isomorph of N whose domain
includes that of M). To �nd an elementary extension of M of size exactly λ, now
apply the downward Löwenheim-Skolem theorem to O.

The upward Löwenheim-Skolem theorem may be applied to show not only that
theories of arithmetic and analysis satis�ed by their respective standard models have
non-standard models, but also that they have non-standard models of every in�nite
cardinality. More generally, any �rst-order theory in a countable language satis�ed
by an in�nite model has models of every in�nite cardinality.

The compactness theorem for �rst-order logic has a great many other applications
to model theory�as Keisler has put it, `The most useful theorem in model theory

11See Goldblatt (1998) or the original Robinson (1966).
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is probably the compactness theorem' (Keisler 1965, p. 113)�as well as to many
other parts of mathematics; see chapter 6 of Hodges (1993) for more.

5 The ω-rule

The ω-rule is an in�nitary rule that may be added to systems of arithmetic. If added
to su�ciently strong �rst-order systems, it allows them to overcome incompleteness.
In this section, we introduce the ω-rule and sketch why its addition to an arithmetical
theory that enjoys a weak completeness property turns the latter into a complete
theory.

Suppose our theory of arithmetic TAr has numerals of the form 0, 1, · · · , n, · · · .
Typically, such a system will generate these numerals by taking 0 as a constant and
by applying the successor function symbol S to it, so that 1 = S(0), 2 = SS(0),
etc. The �rst-order systems of Peano Arithmetic or Robinson Arithmetic are of this
form. Suppose that φ(x) is a formula with one free variable, x. The ω-rule is the
following inference:

φ(0), φ(1), . . . , φ(n), . . .

∀xφ(x)

This rule is obviously sound with respect to truth in the standard model of arith-
metic: if the premisses are all true in that model so is the conclusion. We de�ne
T ωAr as the system TAr augmented with the ω-rule. A derivation using the ω-rule
has in�nitely many premisses so is an in�nite object, unlike a typical formal proof
or our usual informal idea of proof. Indeed, derivability from the axioms of T ωAr for
a typical �rst-order system TAr is tantamount to truth in the standard model.

To see this in a bit more (though far from complete) detail, we must appreciate
that in a typical arithmetical system, every formula is equivalent to one of a special
form. For x any variable, and n any numeral, quanti�cation in either of the forms
∀x(x ≤ n → φ) or ∃x(x ≤ n ∧ φ) is called bounded quanti�cation, abbreviated as
(∀x ≤ n)φ and (∃x ≤ n)φ respectively. Also, for x and y distinct variables and φ
any formula, quanti�cation in either of the forms ∀x(x ≤ y → φ) and ∃x(x ≤ y ∧φ)
is also called bounded quanti�cation, abbreviated as (∀x ≤ y)φ and (∃x ≤ y)φ,
respectively.12

The de�nition of a Σ0-formula is then: every atomic formula of the language
of TAr is Σ0; and Σ0-formulas are closed under Boolean operations and bounded
existential and universal quanti�cation. Σ0-formulas are also known as Π0-formulas
(as well as ∆0-formulas, though this won't be relevant here). In typical systems of
arithmetic, we can e�ectively decide (compute) the truth or falsity in the standard
model of each Σ0-sentence, i.e. closed Σ0-formula.

A Σ1-formula is any formula of the form ∃xφ where φ is a Σ0-formula, and a
Π1-formula is any formula of the form ∀xφ where φ is a Σ0-formula. More generally,

12The restriction that the variables x and y be distinct when the bound on the quanti�cation
is a variable is essential, since ∀x(x ≤ x → φ) is logically equivalent to ∀xφ, which is unbounded
quanti�cation.
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a Σn+1-formula prefaces a Πn-formula with an existential quanti�er, and a Πn+1-
formula prefaces a Πn-formula with an existential quanti�er. In a typical theory
TAR, one can use prenex normal form theorems plus some arithmetical coding to
show that every formula is TAR-equivalent to a Σn-formula or a Πn-formula.

Given these facts, it is easy to show that if TAr is Σ0-complete, then T ωAr is
complete. To say that TAr is Σ0-complete (equivalent to its being Π0-complete) is to
say that if a Σ0 sentence φ is true in the standard model of arithmetic then TAr ` φ.
The result is proved by induction, the base case being the argument's assumption.

Assume for the Induction Hypothesis that the result holds for Σn- and Πn-
sentences. First, letX be a true-in-the-standard-model Σn+1-sentence ∃xφ(x), where
φ(x) is a Πn-formula. Then for some natural number m, φ(m) is a true Πn-sentence.
By the Induction Hypothesis, T ωAr ` φ(m). Since TAr ` φ(m) → ∃xφ(x), T ωAr `
∃xφ(x). Second, letX be a true-in-the-standard-model Πn+1-sentence ∀xφ(x). Then
for each number n, φ(n) is a true-in-the-standard-model Σn-sentence. Then by the
Induction Hypothesis, for each n, T ωAr ` φ(n). So by one application of the ω-rule,
T ωAr ` ∀xφ(x).

6 The undecidability of �rst-order logic

6.1 Decision Problems and Decidability

A problem is e�ectively decidable (or decidable or solvable) i� there is an algorithm
(or e�ective procedure) for resolving whether any given x of kind K has or lacks
proprty P : it delivers YES or NO within a �nite number of steps and �nite amount
of time. N.B. The algorithm need not be known.

What is an algorithm? A mechanical procedure for deciding a problem. It can
be given as a �nite set of instructions which are executed in a stepwise manner,
without appeal to random processes or ingenuity. We ignore `accidental' limits on
the amount of time, speed of computation and matter in the universe, requiring all
of them to be �nite but setting no �nite upper bound. The notion of algorithm,
note, is informal.

Some example problems, all of which are e�ectively decidable:

• Is a given sentence of the propositional calculus a tautology?

• Is a given sentence of the English language a palindrome?

• Is a positive integer expressed as an Arabic numeral prime?

• Is a given �nite sequence of symbols of propositional calculus a sentence (w�)?

• Is a given �nite sequence of �nite sequences of symbols of propositional calculus
a proof of its last member?

The �rst problem, for instance, is e�ectively decidable because we may use the
truth-table test to determine whether the sentence is a tautology. If the sentence
has n distinct sentence letters, we will have to check 2n rows. If n is very large, we
may in practice never complete this test; indeed, we may not even get started on it
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because it would take too long even to process the sentence�no computer can even
store it. For the third problem, we can use any of the well-known tests for primality,
e.g. the sieve of Eratosthenes which runs through each of the numbers up to

√
N

and checks whether it divides N . What this third problem illustrates is that the
problem's presentation a�ects its decidability. The following problem, for example,
is not e�ectively decidable (recall the de�nition of the Continuum Hypothesis�CH�
from earlier):

Determine whether N is prime, where N is de�ned by

N =

{
3 if CH is true
4 if CH is false

The property P mentioned within a problem is e�ectively decidable (or decidable
or e�ective) i� the problem is; the e�ective procedure deciding P is a decision
procedure for P . Similarly, a set is decidable i� there is a decision procedure for
determining whether a given object is or is not a member of the set. A relation is
decidable i� there is a decision procedure for determining whether given objects (in
an order) stand in the relation or do not so stand.

6.2 Church's Theorem

What does it mean to say that a logic is or is not decidable? Associated with
any logic (including a semantics) is a salient set: the set of its validities. A logic
is decidable i� the set of its validities is decidable. As just mentioned, we know
that the propositional calculus is decidable. In 1936, Alonzo Church proved that
�rst-order logic with or without identity is not decidable. Do not confuse Church's
Theorem with Church's Thesis (equivalently: Turing's Thesis), although the latter
is used in the proof of the former.

The behaviour of logics which lie between propositional calculus and �rst-order
logic with identity is curious. Let monadic and dyadic �rst-order logic be �rst-order
logic with only monadic (one-place) and dyadic (two-place) predicates respectively.
First-order logic is undecidable. Monadic �rst-order logic, with or without identity,
is decidable. Dyadic �rst-order logic is undecidable. It follows that any logic which
includes �rst-order logic is also undecidable, assuming that the property of being
among the �rst-order sentences of this particular logic is decidable, as it usually is.

A standard way of proving �rst-order logic's undecidabilty is to derive it from
the undecidability of the Halting Problem. We sketch a proof of the latter, and
mention how to use it to prove the former. Suppose we equate computability with
computability by a Turing Machine (Turing's Thesis). It is not hard to see that the
set of Turing Machines (TMs) can be algorithmically generated in a list. Suppose
TMi is the ith Turing Machine and that the Halting Problem is decidable, i.e. there
is a TM that decides whether TMi with input j halts or not. We may then de�ne
another TM�TMk for some k�which halts if TMi with input i does not halt and
does not halt if TMi with input i does halt. TMk then halts on input k i� it does
not; a contradiction. The conclusion is that the Halting Problem is undecidable.
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First-order logic's undecidability may be demonstrated by expressing (a version
of) the Halting Problem in �rst-order terms. For example, for each TM M we can
come up with a �rst-order formula φM that is valid i� M halts with input 0 (say).
The formula φM can be constructed by describing what M does in �rst-order terms.
This is not too hard to see since M 's states are �nite, its list of symbols it writes
is �nite, and its rules (instructions for what to do in a given state when scanning
a particular symbol) are also �nite. So we can come up with a �rst-order sentence
expressing the following claim: `If the input to machine M with rules ... and states
... is 0 then M halts (i.e. is in the halting state)'. First-order logic's undecidablity
then follows from the Halting Problem's undecidability. Of course, there's a lot
of detail to �ll in, but that's the basic strategy. More detailed discussion of these
matters may be found in, for example, chapter 21 of Boolos, Burgess and Je�rey
(2007).

6.3 Decidability of English validity

At least as far back as Leibniz, logicians have aspired to �nd a mechanical means
of testing an argument's validity. In the usual jargon, we say that argumentative
validity is decidable i� such a mechanical means exists. Suppose you take valid-
ity in English to be correctly modelled by semantic consequence in logic L; for
example W.V. Quine equated �rst-order validity with validity simpliciter. Let's
call FormL(s) the formalisation of an English sentence s into L, and FormL(S)
the formalisation of a set S of English sentences into L, which is the same as the
set of formalisations of the sentences in S. The standpoint of the L-logician (who
takes L to correctly model English logical consequence) is captured by the following
biconditional:

S logically entails s i� FormL(S) �L FormL(s).

From this standpoint, two conditions su�cient for the decidability of argumentative
validity are:

• that the formalisation of natural-language sentences into L-sentences be a
mechanical procedure;

• that FormL(S) �L FormL(s) be decidable for any set of natural-language
sentences S and any natural-language sentence s.

Whether the �rst condition obtains depends on L; for the usual choices of L, it's at
best moot. However that may be, Church's result shows that the second condition
fails for any L that incorporates �rst-order logic,13 since being a �rst-order validity
is undecidable.

13Assuming once more that the sentences of �rst-order logic are `detachable' from those of L, as
above.
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7 Notation, in�nitary logics and Lindenbaum alge-

bras

7.1 Notation

We may distinguish between propositional, �rst-order and second-order logics whose
sentence sets have di�erent cardinalities. For κ a cardinal, PLκ is any propositional
logic with κ-many sentence letters; for example, PL1 has one sentence letter. There
are of course lots of propositional logics with κ sentence letters, the two dimensions of
variation being the logic's set of sentence letters (e.g. p1, · · · pn, · · · or q1, · · · qn, · · · )
and its truth-functional connectives. The di�erences between these are usually im-
material if the propositional logic has a truth-functionally complete set of connec-
tives, as is almost required. Accordingly, we happily speak of the logic PLκ for a
given κ, assuming unless otherwise stated that it comes with a truth-functionally
complete set of connectives.

PLκ has a countable in�nity of sentences when 1 ≤ κ ≤ ω, and κ-many sentences
when κ is in�nite (these two cases overlap when κ = ω).14 Notice that when κ = n
is �nite, the compactness of the propositional logic PLn is a trivial consequence of
the fact that any sentence of PLn is logically equivalent to a sentence drawn from a
�xed set of size no greater than 22n .15 For example, PL1 is the propositional logic
with a truth-functionally complete set of connectives and a single sentence letter p.
Each of PL1's in�nitely many sentences is logically equivalent to one of the following
four: p,¬p, p ∨ ¬p, p ∧ ¬p.

Similarly, FOLκ is �rst-order logic with κ-many variables, constants, predicate
and function symbols of all arities; a countable and expressively adequate set of
truth-functional connectives; standard formation rules; and its standard consequence
relation. If it were of relevance, which it won't be for us, one could draw further car-
dinality distinctions between �rst-order logics that have κ1 variables, κ2 constants,
κ3 truth-functional connectives, λi predicate symbols of arity i, and µj function
symbols of arity j.

Turn now to second-order logic, very brie�y. As well as a countable and expres-
sively adequate set of connectives, the language of SOLκ has κ many: �rst-order
variables, second-order predicate and function variables of all arities, non-logical
predicates of all arities (including arity 0, i.e. constants), and function symbols of
all arities.

7.2 In�nitary logics

In�nitary logics play an important in contemporary discussions of logical constants.
One simple way to extend �nitary logics is to allow in�nitary conjunctions and
disjunctions and well-formed formulas. Take for example the much-studied logic
Lω1ω = FOLω1ω.

16 Let FOL∗ be �rst-order logic with a countable in�nity of rela-
tion, function and constant symbols, ω1-many variables, as well as parentheses and

14Assuming PLκ has at least one n-ary connective for some n > 0.
15The set is of size exactly 22

n

just when the set of connectives is truth-functionally complete.
16For much more on Lω1ω, see Keisler (1971).
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the usual logical vocabulary. The latter includes a countable and truth-functionally
complete set of connectives containing inter alia the negation symbol ¬, the con-
junction symbol ∧ and the disjunction symbol ∨. The last two symbols are usually
written as

∧
and

∨
when they conjoin statements in a set (see below). The syntax

of Lω1ω is given by:

Vocabulary The vocabulary of Lω1ω is that of FOL∗.

Grammar The class of all well-formed formulas of Lω1ω is the least class C such that:

(i) Each atomic FOL∗-formula is in C;

(ii) If φ is in C and v is a variable, then ¬φ is in C, ∀vφ is in C, and ∃vφ is in C;

(iii) If Φ is a countable (�nite or countably in�nite) non-empty subset of C, then∧
Φ is in C, and

∨
Φ is in C.

As for its semantics, we may de�ne satisfaction for the pure language of Lω1ω as
follows (here σ is a variable assignment):17

(M, σ) � xi = xj i� σ(xi) = σ(xj);

(M, σ) �
∨
{φi : i < κ} i� (M, σ) � φi for some φi in the sequence

{φi : i < κ};
(M, σ) � ¬φ i� it is not the case that (M, σ) � φ;

(M, σ) � ∃xφ i� there is a variable assignment ρ that di�ers from σ at
most over the variable x such that (M, ρ) � φ.

A full Lω1ω-interpretation consists not just of a domain, but also of an interpretation
of the non-logical constants over that domain. The satisfaction relation for full Lω1ω

is these clauses' obvious extension to sentences containing non-logical constants.
The logic Lω1ω is only the tip of the in�nitary iceberg. The logic Lκλ, where κ

and λ are in�nite cardinals, extends �rst-order logic by allowing < κ conjunctions
and disjunctions of well-formed formulas for any κ, and by allowing quanti�cation
over < λ variables. In this terminology, �rst-order logic is then Lωω, as it allows only
�nitary conjunction/disjunction and quanti�cation. The logic L∞∞ extends FOL by
allowing κ-ary conjunctions and disjunctions of well-formed formulas for any κ, and
by allowing κ-ary quanti�cation over variables for any in�nite κ. Its semantics also
extends that of �rst-order logic and Lω1ω in the obvious way.

7.3 Lindenbaum algebras

The Lindenbaum algebra of a logic that contains a truth-functionally complete set of
connectives is a particular kind of Boolean algebra. Its elements are the equivalence
classes of the logic's sentences under the relation of logical equivalence. We give a
brief and informal characterisation of Lindenbaum algebras by developing a partic-
ular example, referring you to Halmos & Durant (2009) for a complete introduction

17The formulas in question are assumed to be well-formed.

19



to Boolean algebras, and Hinman (2005, pp. 74-9) for a bit more on Lindenbaum
algebras in particular.

The Lindenbaum algebra of FOLω is the Boolean algebra of FOLω quotiented by
�FOLω -equivalence. Two elements [γ1] and [γ2] of this Boolean algebra are equal if
and only if �FOLω γ1 ↔ γ2. A Boolean algebra's three operations are join, meet

and complement. Intuitively, join is disjunction, meet is conjunction and comple-
mentation is negation. More precisely, the three operations are respectively de�ned
by:

[γ1] ∨ [γ2] = [γ1 ∨ γ2]
[γ1] ∧ [γ2] = [γ1 ∧ γ2]
[γ] = [¬γ],

In these equations, we are using the symbols ∧,∨ ambiguously, as is customary: on
the left, ∧ and ∨ are used as Boolean algebra operators, and on the right (within the
square brackets) as connectives of FOLω. To check that the left-hand side symbols are
well-de�ned we must check that they don't depend on the choice of representatives;
for example, if γ1 and δ1 are equivalent, and γ2 and δ2 are also equivalent, then
γ1 ∧ δ1 is equivalent to γ2 ∧ δ2.

The Boolean algebra's top element [>] is the equivalence class of any validity
>, and the bottom element [⊥] the equivalence class of any contradiction ⊥. For
elements α and β of a Boolean algebra, we write β ≤ α if α ∧ β = β, and β < α if
β ≤ α and α 6= β. An atom of a Boolean algebra is an element α distinct from the
bottom element ⊥ such that there is no β with the property ⊥ < β < α. A Boolean
algebra is atomless if it has no atoms.

It is easily seen that FOLω's Lindenbaum algebra contains countably many el-
ements, since for example [∃xF1x], · · · [∃xFnx], · · · are all distinct elements. It is
also atomless because if α is any element of FOLω's Lindenbaum algebra distinct
from the bottom element, there is another element β such that ⊥ < β < α. To
put it in terms of FOLω-sentences: given any non-contradictory sentence γ, there
is a non-contradictory δ that is stronger than γ (i.e. δ implies γ but not the other
way around). Given such a non-contradictory γ, we may for example take δ to be
γ ∧ ∃xFx where F is a monadic predicate constant not appearing in γ. That

⊥ � γ ∧ ∃xFx � γ

and

γ 2 γ ∧ ∃xFx 2 ⊥

is easily checked.
A useful exercise is to check that PLn's Lindenbaum algebra consists of 22n

elements and that if the sentence letters of PLn are p1, · · · , pn, the algebra's atoms
are of the form [±p1 ∧ · · · ∧ ±pn], where ±pi is either pi or ¬pi.
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8 MPL, S5 in particular

Modal propositional logicMPL is (classical) propositional logic plus the propositional
operator �.

Vocabulary

The vocabulary of MPL consists of:

• Sentence letters: p1, p2, · · · , pn, · · ·

• Boolean operator symbols: ∧,∨,→,↔,¬

• The modal operator: �

We often abbreviate ¬�¬ as ♦.

Grammar

MPL's grammar is given by specifying the set of terms and well-formed formulas
(w�s).

• Any sentence letter is a w�.

• If φ is a w� so is ¬φ; if φ1 and φ2 are w�s, so are (φ1∧φ2), (φ1∨φ2), (φ1 → φ2)
and (φ1 ↔ φ2).

• If φ is a w� so is �φ.

As above, we often drop brackets in w�s.

8.1 S5

There are various systems of modal propositional logic. We present the best-known
system: S5.

Theorems of S5

• Any substitution instance (in the language of MPL) of a propositional tautol-
ogy is an axiom.

• Any instance of the K-schema is an axiom: �(φ→ ψ)→ (�φ→ �ψ)

• Any instance of the T-schema is an axiom: �φ→ φ

• Any instance of the S4-schema is an axiom: �φ→ ��φ

• Any instance of the S5-schema is an axiom: ¬�φ→ �¬�φ

• If φ and φ→ ψ are theorems so is ψ (Modus Ponens). If φ is a theorem so is
�φ (Necessitation).

It is explicit in the �rst clause and implicit in all the others that an acceptable
substitution instance must be a w� in the language of MPL.
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8.2 Possible worlds semantics for S5

There is a possible world semantics for S5 for which the proof system just given is
sound and complete. We give the semantics in terms of universal models. Another
sound and complete semantics may be given in terms of models based on frames in
which there is an accessibility relation and this relation is an equivalence relation
on the set of worlds. This latter semantics generalises better to other modal logics,
but our very limited purposes do not require it.

S5 models

An S5 model is an ordered pair 〈W , I〉:

• W is a non-empty set of objects usually known as possible worlds;

• I is a two-place function that assigns 0 or 1 to each sentence letter relative to
a world, i.e. I(α,w) = 0 or 1, for any sentence letter α and world w in W .

S5 valuation

Where 〈W , I〉 is an S5 model, the valuation VI based on it is de�ned as follows,
where α is any sentence letter, φ and ψ are any MPL-w�s, and w any member of
W :18

• VI(α,w) = I(α,w);

• VI(¬φ,w) = 1− VI(α,w);

• VI(φ ∧ ψ,w) = min{VI(φ,w),VI(ψ,w)};

• VI(φ ∨ ψ,w) = max{VI(φ,w),VI(ψ,w)};

• VI(�φ,w) = 1 i� for each w ∈ W , VI(φ,w) = 1.

We write Γ � δ i� for every S5-model 〈W , I〉, for every w inW , if VI(Γ, w) = 1 then
VI(δ, w) = 1. (As usual, we say that VI(Γ, w) = 1 i� VI(γ, w) = 1 for every γ ∈ Γ.)
In particular, we say that δ is an S5 validity i� VI(δ, w) = 1 for each w in any W
that makes up an S5-model 〈W , I〉. One can then show that this semantics is sound
and complete with respect to S5-theoremhood, i.e. that φ is an S5-theorem i� φ
is an S5-validity. (This is sometimes known as weak soundness and completeness.)
Moreover, S5 has the �nite model property: the soundness and completeness claim
just given holds for the class of �nite models, i.e. models with �nite set of worlds
W .19

18We give the clauses for ¬,∧,∨, which determine those for the other propositional connectives.
19For more on the �nite model property, see ch. 8 of Hughes & Cresswell (1996).
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