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There is something fishy about the liar paradox:

(1) (1) is not true.

Somehow the sentence ‘says’ something about itself, and when
people are confronted with the paradox for the first time, they
usually think that this feature is the source of the paradox.



Self-reference

However, there are many self-referential sentence that are
completely unproblematic:

(2) (2) contains 5 occurences of the letter ‘c’.

If (1) is illegitimate because of its self-referentiality, then (2)
must be illegitimate as well. Moreover, the effect that is
achieved via the label ‘(1)’ can be achieved without this device.
At the same time one can dispense with demonstratives like
‘this’ that might be used to formulate the liar sentence:

This sentence is not true. In
fact, the effect can be achieved using weak arithmetical axioms
only. And the axioms employed are beyond any (serious) doubt.
This was shown by Gödel.



Arithmetic

The approach via arithmetic is indirect. Arithmetic talks about
numbers, not about sentences. Coding sentences and
expressions by numbers allows to talk about the numerical
codes of sentences and therefore arithmetic is indirectly about
sentences.

My approach here avoids this detour via numbers. I present a
theory of expressions that is given by some (as I hope) obvious
axioms on expressions. The trick (diagonalization) that is then
used for obtaining a self-referential sentence is the same as in
the case of arithmetic.



The alphabet
In the following I describe a language L. An expression of L is
an arbitrary finite string of the following symbols. Such strings
are also called expressions of L.

Definition
The symbols of L are:

1 infinitely many variable symbols v, v1, v2, v3,. . .
2 predicate symbols = and T ,
3 function symbols q,a and sub,
4 the connectives ¬, → and the quantifier symbol ∀,
5 auxiliary symbols ( and ),
6 possibly finitely many further function and predicate

symbols, and
7 If e is a string of symbols then e is also a symbol. e is

called a quotation constant.
All the mentioned symbols are pairwise different.



Notational conventions

In the following I shall use x, y and z as (meta-)variables for
variables. Thus x may stand for any symbol v, v1, v2, . . . It is
also assumed that x, y etc stand for different variables.
Moreover, it is always presupposed variable clashes are avoided
by renaming variables in a suitable way.

It is important that a is a single symbol and not a string of more
than one symbols even if a itself is a string built from several
symbols.

A string of symbols of L is any string of the above symbols.
Usually I suppress mention of L. The empty string is also a
string.



Terms

We shall now define the notions of a term and of a formula of
L.

Definition
The L-terms are defined as follows:

1 All variables are terms.
2 If e is a string of symbols, then e is a term.
3 If t, r and s are terms, then q(t), (sat), sub(r, s, t) are terms,

and similarly for all further function symbols



The empty string

Since the empty string is a string of symbols is a term. Since
looks so odd, I shall write 0 for . From an ontologically point
of view the empty string is a weird thing. One might be
inclined to say that it is not anything. I have only a pragmatic
excuse for assuming the empty string: it is useful, though not
indispensable.

What the empty string is for the expressions is the number zero
for the natural numbers. It is not hard to see that 0 is useful in
number theory.



Formulæ

Formulæ, sentences, free and bound occurrences of variables
are defined in the usual way.

Example

1 ∀v3(v3 = ∧∀ ∧ Tv3) is a sentence.
2 v12 = ¬T¬ is a sentence, i.e., the formula does not feature a

free variable.



A theory of expressions

The theory A which will be described in this section is
designed in order to obtain smooth proofs. I have not aimed at
a particularly elegant axiomatization.

A simple intended model of the theory has all expressions of L
as its domain. The intended interpretation of the function
symbols will become clear from the axioms A1–A4 except for
the interpretation of sub. I shall return to sub below.



The axioms

All instances of the following schemata and rules are axioms of
the theory A:

Definition

A1 all axioms and rules of first-order predicate logic including
the identity axioms.

A2 aab = ab, where a and b are arbitrary strings of symbols.

A3 q(a) = a

A4 sub(a, b, c) = d, where a and c are arbitrary strings of
symbols, b is a single symbol (or, equivalently, a string of
symbols of length 1), and d is the string of symbols
obtained from a by replacing all occurrences of the symbol
b by the strings c.



The axioms

Probably we won’t need the following axioms:

Definition (additional axioms)

A5 ∀x∀y∀z((xay)az) = (xa(yaz))

A6 ∀x∀y(xay = 0→ x = 0 ∧ y = 0)

A7 ∀x∀y(xay = x ↔ y = 0) ∧ ∀x∀y(yax = x ↔ y = 0)

A8 ∀x1∀x2∀y∀z(sub(x1, y, z)asub(x2, y, z)) = sub(x1
ax2, y, z)

A9 ¬a = b, if a and b are distinct expressions.



Comments

A1-A4 describe the functions of concatenation, quotation and
substitution by providing function values for specific entries.
From these axioms one cannot derive (non-trivial) universally
quantified principles and therefore axioms like the associative
law fora A5 are not derivable from A1–A4.



Comments

The concatenation of two expressions e1 and e2 is simply the
expression e1 followed by e2. For instance, ¬¬v is the
concatenation of ¬ and ¬v.

Therefore ¬¬v = ¬a¬v is an instance of A2 as well as
¬¬v = ¬¬av.

Concatenating the empty string with any expression e gives
again the same expression e. Therefore we have, for instance,
∀a0 = ∀ as an instance of A2.



Comments

An instance of A3 is the sentence qv¬ = v¬. Thus q describes
the function that takes an expression and returns its quotation
constant.



Comments

In A4 I have imposed the restriction that b must be a single
symbol. This does not imply that the substitution function
cannot be applied to complex expressions; just A4 does not say
anything about the result of substituting a complex expression.

The reason for this restriction is that the result of substitution of
a complex strings may be not unique. For instance, the result of
substituting ¬ for ∧∧ in ∧ ∧ ∧ might be either ∧¬ or ¬∧. The
problem can be fixed in several ways, but I do not need to
substitute complex expressions in the following. Therefore I do
not ‘solve’ the problem but avoid it by the restriction of b to a
single symbol.



Comments

A1-A4 are already sufficient for proving the diagonalization
Theorem 12.

A5 simplifies the reasoning with strings a great deal. Since
A ` (xay)az = xa(yaz), that is,a is associative by A5, I shall
simply write xayaz. for the sake of definiteness we can
stipulate that xayaz is short for (xay)az and similarly for
more applications ofa.



Comments

I write A ` ϕ if and only if the formula ϕ is a logical
consequence of the theory A.

Example

A ` sub(¬¬,¬,¬¬¬) = ¬¬¬¬¬¬

Example

A ` sub(v = v ∧ v = v,v,v2) = v2 = v2 ∧ v = v



Comments

These axioms suffice for proving Gödel’s celebrated
diagonalization lemma.

Remark
Of course, there is no such cheap way to Gödel’s theorems.
Gödel showed that the functions sub and q (and further
operations) can be defined in an arithmetical theory for
numerical codes of expressions. To this end he proved that all
recursive functions can be represented in a fixed arihmetical
system. And then he proved that the operation of substitution
etc. are recursive. This requires some work and ideas.



Diagonalization

The diagonalization function dia is defined in the following
way:

Definition
dia(x) = sub(x,v,q(x))

Remark
There are at least two ways to understand the syntactical status
of dia. It may be considered an additional unary functionof L,
and the above equation is then an additional axiom of A.
Alternatively, one can conceive dia as a metalinguistic
abbreviation, which does not form part of the language L, but
which is just short notation for a more complex expression. This
situation will encountered in the following frequently.



A lemma

Lemma
Assume ϕ(v) is a formula not containing bound occurrences of v.
Then the following holds:

A ` dia(ϕ(dia(v))) = ϕ(dia(ϕ(dia(v))))

Proof.
In A the following equations can be proved::

dia(ϕ(dia(v))) = sub(ϕ(dia(v)),v,q(ϕ(dia(v))))

= sub(ϕ(dia(v)),v, ϕ(dia(v)))

= ϕ(dia(ϕ(dia(v))))

a



The diagonal lemma

Theorem (diagonalization)

If ϕ(v) is a formula of L with no bound occurrences of v, then one
can find a formula γ such that the following holds:

A ` γ ↔ ϕ(γ)

Proof.

Choose as γ the formula ϕ(dia(ϕ(dia(v))). Then one has by the
previous Lemma:

A ` ϕ(dia(ϕ(dia(v)))︸ ︷︷ ︸
γ

↔ ϕ(ϕ(dia(ϕ(dia(v))))︸ ︷︷ ︸
γ

)

a
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Inconsistency

I shall prove the inconsistency of some theories with the theory
A. ‘inconsistent’ always means ‘inconsistent with A’.

Since I did not fix the axioms of A and admitted further axioms
in A, inconsistency results can be formulated in two ways. One
can either say ‘A is inconsistent if it contains the sentence ψ’ or
one says ‘ψ is inconsistent with A’.



The T-scheme

The first inconsistency result is the famous liar paradox. It is
plausible to assume that a truth predicate T for the language L
satisfies the T-scheme

(3) Tψ ↔ ψ

for all sentences ψ of L. This scheme corresponds to the scheme

‘A’ is true if and only if A,

where A is any English declarative sentence.



The liar in A

Theorem (liar paradox)

The T-scheme Tψ ↔ ψ for all sentences ψ of L is inconsistent.

Proof.
Apply the diagonalization theorem 12 to the formula ¬Tv. Then
theorem 12 implies the existence of a sentence γ such that the
following holds: A ` γ ↔ ¬Tγ . Together with the instance
Tγ ↔ γ of the T-scheme this yields an inconsistency. γ is called
the ‘liar sentence’. a



Tarski’s theorem

Since the scheme is inconsistent such a truth predicate cannot
be defined in A, unless A itself is inconsistent.

Corollary (Tarski’s theorem on the undefinability of truth)

There is no formula τ(v) such that τ(ψ)↔ ψ can be derived in A for
all sentences ψ of L, if A is consistent.

Proof.
Apply the diagonalization theorem 12 to τ(v) as above. If τ(v)
contains bound occurrences of v they can be renamed such that
there are no bound occurrences of v. a



The scope of Tarski’s theorem

It is not so much surprising that the axioms listed explicitly in
Definition 4 do not allow for a definition of such truth predciate
τ(v). According to Definition 4, however, A may contain
arbitrary additional axioms. Thus Tarski’s Theorem says that
adding axioms to A that allow for a truth definition renders A
inconsistent.



Extending the language

Nevertheless one can add a new predicate symbol which is not
in L, and add True ψ ↔ ψ as an axiom scheme for all sentences
of L. In this case ϕ cannot contain the symbol True and the
diagonalization theorem 12 does not apply to True v because it
applies only to formulæ ϕ(v) of L.

Theorem
Assume that the language L is expanded by a new predicate symbol
True and all sentences True ψ ↔ ψ (for ψ a sentence of L) are added
to A. The resulting theory is consistent if A is consistent.



The theory of disquotation

Call the theory A plus all these equivalences TB. Thus TB is
given by the following set of axioms:

A ∪ {True ψ ↔ ψ : ψ a sentence of L}



The proof
The idea for the proof is due to Tarski.

I shall show that a given proof of a contradiction ⊥ in the theory
TB can be transformed into a proof of ⊥ in A. In the given
proof only finitely many axioms with True can occur; let

True ψ0 ↔ ψ0,True ψ1 ↔ ψ1, . . .True ψn ↔ ψn

be these axioms. τ(v) is the following formula of the language
L:

(v = ψ0 ∧ ψ0) ∨ (v = ψ1 ∧ ψ1) ∨ . . . (v = ψn ∧ ψn)
Obviously one has

τ(ψ0)↔ ψ0

and similarly for all ψk (k ≤ n).

Now replace everywhere in the given proof any formula True t,
where t is any arbitrary term, by τ(t) and add above any former
axiom True ψk ↔ ψk a proof of τ(ψk)↔ ψk, respectively. The
resulting structure is a proof in A of the contradiction ⊥.



Conservativity

The proof establishes a stronger result: Adding the T-sentences

True ψ ↔ ψ

(ψ a sentence without True ) to A yields a conservative
extension of A:

Theorem
TB is conservative over A. That is, If ϕ is a sentence without True
that is provable in TB, then ϕ is already provable in A only.

Proof.
Just replace ⊥ by ϕ in the proof above. a

The proof shows that these T-sentences do not allow to prove
any new ‘substantial’ insights. Works also with full induction.



Conservativity over logic

The T-sentences are not conservative over pure logic. The
T-sentences prove that there are at least two different objects:

True ∀ = ∀ ↔ ∀ = ∀ T-sentence

∀ = ∀ tautology

True ∀ = ∀ two preceding lines

True ¬∀ = ∀ ↔ ¬∀ = ∀ T-sentence

¬True ¬∀ = ∀

∀ = ∀ 6= ¬∀ = ∀



Montague’s paradox

Theorem (Montague’s paradox [6])

The schema Tψ → ψ is inconsistent with the rule ψ
Tψ

.

The rule ψ
Tψ

is called NEC in the following.

Proof.

γ ↔ ¬Tγ diagonalization
Tγ ↔ ¬γ
Tγ → γ axiom
¬Tγ logic
γ first line
Tγ NEC

a



Another formulation of the T-sentences

Often the T-sentences ar stated in the following way:

Tψ ↔ ψ

where ψ must not contain T . It’s thought that this is safe. But I
don’t trust that formulation anymore.



How not to state the T-sentences

Theorem
Assume L contains a unary predicate symbol N (for necessity of some
kind, let’s say), and assume further:

T Tϕ↔ ϕ for all sentences ϕ of L not containing T .
N1 Nϕ→ ϕ for all sentences ϕ of L not containing N.
N2 Whenever A ` ϕ, then also A `Nϕ for all sentences ϕ of L not

containing N.
Then A is inconsistent.



Proof

γ ↔ ¬TNγ diagonalisation

TNγ ↔ ¬γ
Nγ → ¬γ
Nγ → γ (N1)
¬Nγ two previous lines

¬TNγ T
γ first and last line
Nγ (N2)



How not to state the T-sentences

Usually it is thought that typing is a remedy to the paradoxes.
The example shows that this works only as long as typing is not
applied to more than one predicate.

The result is the first of various paradoxes (vulgo
inconsistencies) that arise from the interaction of predicates.



Summary

Adding a new truth predicate to A and axiomatising it by
typed T-sentences yields a conservative extension of A.
The resulting theory TB does not prove generalisation such
as

∀x(Sent(x)→ (True x ∨ True ¬.x)) or
∀x∀y

(
Sent(x) ∧ Sent(y)→ (True (x∧. y)↔ (True x ∧ True y))

)

TB is not finitely axiomatisable.
According to Tarski, a decent theory of truth should not
only yield the T-sentences (and satisfy Convention T), but
also prove those generalisations.
‘Mixing’ the T-sentences with axiomatisations of other
notions such as necessity can lead to inconsistencies. So
type restrictions don’t solve all problems.



Liberalising the type restriction

There have been various proposals to lift the type restrictions on
the T-sentences.

Motives:
Eg the following T-sentence looks ok:

‘‘Grass is red’ is not true’ is true iff ‘Grass is red’ is not true.

A more liberal approach might help to regain deductive
power.

However, one seems to be caught between Scylla and
Charybdis: the typed truth predicate of TB is too weak, while
the full unrestricted T-schema is too strong.

It seems reasonable to steer between the two extremes in the
middle. . .

But there are other creatures as horrifying as deductive
weakness and inconsistency, as McGee [5] has demonstrated.



Horwich’s proposal

[. . . ] we must conclude that permissible instantiations of the
equivalence schema are restricted in some way so as to avoid
paradoxical results. [. . . ] Given our purposes it suffices for us to
concede that certain instances of the equivalence schema are not to be
included as axioms of the minimal theory, and to note that the
principles governing our selection of excluded instances are, in order
of priority: (a) that the minimal theory not engender ‘liar-type’
contradictions; (b) that the set of excluded instances be as small as
possible; and—perhaps just as important as (b)—(c) that there be a
constructive specification of the excluded instances that is as simple as
possible. Horwich 1990 p. 41f



Maximal consistent instances of schema T

So the aim is to find a set of sentences Tϕ↔ ϕ such that
The set is consistent.
The set is maximal, ie no further sentences of the form
Tϕ↔ ϕ can be consistently added over A.
The set is recursively enumerable (?).



Maximal consistent instances of schema T

Theorem (McGee)

Let ϕ be some sentence, then there is a sentence γ such that

A ` ϕ↔ (Tγ ↔ γ)

Proof.

A `γ ↔ (Tγ ↔ ϕ) diagonalisation
A `ϕ↔ (Tγ ↔ γ) propositional logic

a



Maximal consistent instances of schema T

McGee’s observation spells disaster for Horwich’s proposal.

Theorem (McGee)

If a consistent set of T-sentences is recursive, it’s not maximal: by
Gödel’s first incompleteness theorem there will be an undecidable
sentence ϕ, which is equivalent to a T-sentence.
Maximal sets are too complicated. They can’t be Π0

1 or Σ0
1.

There are many, in fact uncountably many different maximal
consistent sets of T-sentences (if A is consistent).
Consistent sets of T-sentences can prove horrible results worse
than any inconsistency.



Strong instances of schema T
McGee’s observation has its destructive uses, but it also has a
neglected constructive side.

It’s often assumed that an axiomatisation of truth by
T-sentences is either inacceptably weak or inconsistent. McGee’s
theorem shows that this view is incorrect.

Assume you have a favourite axiomatisation of truth (say the KF
axioms or the like). Let χ the conjunction of these axioms. Then
McGee’s theorem implies the existence of a T-sentence such that

A ` χ↔ (True γ ↔ γ)

Thus Davidson’s theory, KF and so on can be finitely
axiomatised by a single T-sentence.

The problem remains to tell a story why one should accept
Tγ ↔ γ . If one justifies the acceptance of that T-sentence by
appeal to your favourite theory, we have given up
disquotationalism.



Strong instances of schema T

Gut feeling

Tarski’s way of blocking the paradoxes is less damaging to the
‘inductive’ definition of truth than to the T-sentences as axioms.
The T-sentences are as good as any axiomatic theory of truth, if
the paradoxes are blocked in an appropriate way.
We need to come up with a better method for sorting the good
instances from the bad instances of schema T.

To me it’s still unclear whether it might be possible to defend a
theory based on T-sentence which is not deductively weak.

Missing: maximal conservative sets of instances of schema T
Cieśliński [2].‘Uniform’ T-sentences and positive T-sentences. I
don’t have the tools available for treating them now. But there
are well motivated and stron theories based on T-sentences.
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How things can go wrong

Paradox is not the same as mere inconsistency: there are many
ways things can go wrong:

The theory is inconsistent.
The theory cannot be combined with another plausible
theory. If a theory of future cannot be combined with the
analogous theory of past truth, something is wrong.
The theory is internally inconsistent: the theory proves that
everything is true.
The theory proves a false claim in the base language (ie in
the language without the truth predicate).
The theory has trivial models, eg, truth can be interpreted
by the empty set.
The theory is ω-inconsistent.

Generally, consistency proofs are good, but a full
proof-theoretic analysis is better. Only such an analysis can
prove that the theory doesn’t contain any hidden paradoxes.



The constructive applications

On the next couple of slides I sketch some classical applications
of diagonalisation.

Many of them can be turned into ‘paradoxes’.



Gödel’s first theorem

Ok, it isn’t Gödel’s incompleteness theorem, but it’s very
similar in structure:

Theorem (Gödel’s first theorem)

Assume A ` ϕ if and only if A ` Tϕ holds for all sentences. Then
there is a sentence γ , such that neither γ itself nor its negation is
derivable in A except that A itself is already inconsistent.



Proof

A `γ ↔ ¬Tγ diagonalisation(4)
A `γ assumption(5)
A `Tγ NEC(6)
A `¬Tγ (4)(7)
A `¬γ assumption(8)
A `Tγ (4)(9)
A `γ CONEC(10)



The liar again

Theorem
Assume A ` ϕ if and only if A ` Tϕ holds for all sentences. Then the
liar sentence is undecidable in A, if A is consistent.

Thus if the T-schema is weakened to a rule, the liar sentence
must be undecidable. Thus theories (such as KF) containing
NEC and deciding the liar sentence, cannot have CONEC.



The real incompleteness theorem

Gödel showed that a provability predicate Bew(v) can be
defined in a certain system of arithmetic corresponding to our
theory A. more precisely, he defined a formula Bew(v)

A ` ψ if and only if A ` Bew(ψ)

holds for all formulæ ψ of L if A is ω-consistent. ω-consistency
is a stronger condition than pure consistency.



A look at the second incompleteness theorem

The ‘modal’ reasoning leading to the second incompleteness
theorem can be paraphrased in A.

The second incompleteness theorem and Löb’s theorem have
been used to derive further paradoxes. I believe that most
paradoxes involving self-reference can be reduced to Löb’s
theorem.

In particular, the incompleteness theorems yield more
information on weakenings of the T-scheme and ways to block
Montague’s paradox.



Weaker reflection

Theorem

The scheme TTϕ→ ϕ is inconsistent with NEC. The same holds for

TTTϕ→ ϕ etc.

Proof.

A `γ ↔ ¬TTγ
A `TTγ → γ assumption

A `¬TTγ two preceding lines
A `γ first line
A `Tγ NEC

A `TTγ 4

a



Internal inconsistency

Plain inconsistency is not the only way a system can fail to
acceptable. “Internal” inconsistency is almost as startling. Let ⊥
be some fixed logical contradiction, e.g., ¬ 6= ¬. A theory is said
to be internally inconsistent (with respect to T ) if and only if
A ` T⊥.

Theorem (Thomason [8])

The schema TTϕ→ ϕ is internally inconsistent with NEC.

Proof.
One runs the proof of Montague’s theorem in the scope of T . a



The Löb derivability conditions

Let K be the following scheme:

(K) Tϕ→ ψ → (Tϕ→ Tψ)

4 is the following scheme:

(4) Tϕ→ TTϕ

K4 contains NEC, K, 4 and all axioms of A.K4 has been thought
to be adequate for necessity and, in some cases, for truth.

Remark
One can show that Gödel’s provability predicate satisfies K4.
NEC, K, 4 formulated for the provability predicate are known
as Löb’s derivability conditions. See [1] for more information.



Löb’s theorem

Now I want to generalise the question: for which sentences can
we have Tϕ→ ϕ?

Theorem (Löb’s theorem)

K4 ` TTϕ→ ϕ→ Tϕ

The corresponding rule follows as well:

Theorem
If K4 ` Tϕ→ ϕ, then K4 ` ϕ

Thus in the context of K4 adding Tϕ→ ϕ makes ϕ itself
provable.



Löb’s theorem: the proof

Proof.

γ ↔ (Tγ → ϕ) diagonalization

Tγ → TTγ → ϕ K

Tγ → TTγ → Tϕ K and NEC
Tγ → Tϕ 4

(Tϕ→ ϕ)→ (Tγ → ϕ)

(Tϕ→ ϕ)→ γ first line

T(Tϕ→ ϕ)→ γ NEC

T(Tϕ→ ϕ)→ Tγ K

T(Tϕ→ ϕ)→ Tϕ line 4

a



Gödel’s second theorem

Now fix a contradiction, for instance 0 6= 0 and call it ⊥.

Theorem (Gödel’s second theorem)

K4 is inconsistent with ¬T⊥. Thus K4 6` ¬T⊥ if K4 is consistent.

There is also a formalized version of Gödel’s second
incompleteness theorem, which can easily be derived from
Löb’s theorem.

Theorem (Gödel’s second theorem formalized)

K4 ` T⊥ ∨ ¬T¬T⊥.



The dark side again

Now here is another paradox. I didn’t know where else it
should be put.

Very much like the paradox on how not to formalise the
T-sentences is arises from the interaction of two predicates, viz
two truth predicates: future and past truth.

Horsten and Leitgeb call it the ‘no future’ paradox.



No future: the language

Assume L contains four predicates G, H, F and P. The intended
reading of Gx is “x always will be the case”, while Hx should
be read as “x always has been the case”. Similarly Fx is to be
read as “x will be the case at some point (in the future)”; finally
Px stands for “x has been the case at some point (in the past)”.
G and H can easily be defined from F and P, respectively (or
also vice versa). The four predicates correspond to the well
known operators from temporal logic, the difference being that
G and H are here predicates rather than operators.



No future: the axioms

The system K∗t is given by the following axiom schemes for all
sentences ϕ and ψ of the language L. This means in particular
that ϕ and ψ may contain the predicates G and H.
G1 Gϕ→ ψ → (Gϕ→ Gψ)
H1 Hϕ→ ψ → (Hϕ→ Hψ)1

G2 ϕ→ HFϕ

H2 ϕ→ GPϕ
G3 Gϕ↔ ¬F¬ϕ
H3 Hϕ↔ ¬P¬ϕ

N
ϕ

Gϕ
and

ϕ

Hϕ
for all sentences ϕ.

1In [3] there is a typo in the formulation of this axiom: the last occurrence
of H is a G in the original paper.



No future: the inconcistency

These axioms are analogues of axioms from temporal logic.

K∗t is consistent (see [3]), but “internally” inconsistent, i.e., K∗t
proves that there is no future and no past.

Theorem (no future paradox, [3])

K∗t ` H⊥ ∧G⊥.

Thus K∗t claims that at all moments in the future ⊥ will hold.
Since ⊥ is a contradiction, there cannot be any moment in the
future. Therefore there is no future. Analogously, but less
dramatically, there also has never been a moment in the past.



No future: the proof

I shall only prove that there is no future, i.e., K∗t ` G⊥.

K∗t ` γ ↔ GP¬γ diagonalisation(11)

K∗t ` ¬γ ↔ ¬GP¬γ
K∗t ` ¬γ → γ H2

K∗t ` γ(12)

K∗t ` GP¬γ from (??) and previous line(13)
K∗t ` Hγ N and (12)
K∗t ` ¬P¬γ H3

K∗t ` G¬P¬γ N(14)

K∗t ` G⊥ (13), (14) and G1(15)

The last line follows because we have Gϕ→ (¬ϕ→ ⊥) for all ϕ
and, in particular, for P¬γ , by N.



No future: an inconsistency

In this framework one can assert that there is a future by saying
that if ϕ will always be the case then ϕ will be the case at some
time:



No future: an inconsistency

(FUT) Gϕ→ Fϕ

Corollary ([3])

H2, G3, H3, N and FUT together are inconsistent.

Proof.
One proves (13) and (14) as in he preceding Theorem and
applies FUT to the latter in order to obtain F¬P¬γ , which
implies in turn ¬GP¬γ by G3 and is therefore inconsistent with
(13). a

Actually Horsten and Leitgeb [3] have proved the dual of this
corollary.
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