
Notes, Definitions and Comments on
Logic for Prelims

for students in their first year before 2008/2009

N O T E S O N H O D G E S ’ S
L O G I C

extended version

Volker Halbach
New College, Oxford

version of
24th July, 2008

This text is to be used only by candidates sitting
Moderations in their second year, that is, Literae

Humaniores students, who have studied logic from
Hodges’s Logic. This text is not be used by candidates who

are in their first year in 2008/2009.

C O N T E N T

1 Preliminaries 7
1.1 Sets† . 7
1.2 Ordered pairs and relations . 8
1.3 Arguments, validity and contradiction 9
1.4 Syntax, semantics, and pragmatics 10

2 Propositional logic 12
2.1 The syntax of the language of propositional logic 12
2.2 The semantics of propositional logic 13
2.3 Proofs . 17
2.4 Formalisation . 26

2.4.1 Truth-functionality . 26
2.4.2 Logical form . 27
2.4.3 From logical form to formal language 30

3 Predicate logic 32
3.1 The syntax of the language of predicate logic 32
3.2 Formalisation . 34

3.2.1 Atomic sentences . 34
3.2.2 Quantification . 36
3.2.3 Identity and definite descriptions 41

3.3 Proofs . 44
3.4 Interpretations and counterexamples 50
3.5 The semantics of predicate logic . 54

Appendix A: Rules for dropping brackets 55

Appendix B: tableaux rules 57

Appendix C: Quotation 58

version of 24th July, 2008 2

3

Preface

In these notes I aim to collect essential definitions and conventions as they
are used in (Hodges, 2001). I have tried to stick as closely as possible to this
book. I have also included material that goes slightly beyond Hodges’ book,
but which is usually treated in lectures and classes. In this case I have made
an attempt to stick to Hodges’ general approach and to follow widely accepted
conventions.

In the margin I have given numbers such has ‘H22’ that refer to the
corresponding page in (Hodges, 2001).

I am indebted to Stephen Blamey, Dave Leal and Hugh Rice for explaining
to me Hodges’ terminology and for suggesting numerous clarifications and
improvements. I also thank Stephen Blamey for making the tableaux proofs
more bearable by helping me with the macros.

Sebastian Sequoiah-Grayson (and some others) spotted several mistakes.
I thank them for the corrections.

This pdf file contains internal links. A click on text in a red or green frame
will send you to the corresponding definition or reference. These features get
lost when the Manual is printed on paper.

Text typeset in grey does not form part of the official Logic Manual. This
text is only found in the extended version of the Logic Manual. Usually the
additional text provides only examples, further explanations and personal
remarks.

version of 24th July, 2008 3

4

Motivation

Praktischen Nutzen wird die Logik, wenigstens für
das eigene Denken, nicht leicht haben.

Arthur Schopenhauer, Die Welt als Wille und
Vorstellung II, first book, chapter 9

The following remarks are quite idiosyncratic. I could not resist the temptation
to use the opportunity for some ideological comments. They do not contribute
much to the elucidation of the Manual, so they may be skipped without any
detrimental effect for the understanding of the Manual. Actually this section
might only become understandable once one has mastered the remaining
content of the Manual.

One reason to write this section was that I am uncomfortable with the
introductory remarks in many elementary logic books. In many of them one
can read that the study of logic helps to clarify one’s thinking. While this may
be true to some extent, I do not think that the main point of teaching logic
is to teach you how to think or how to think in a more lucid way. Learning
logic will teach you how to think as little as learning the physical theory of
bicycling will teach you how to ride a bicycle. The theory may help you in some
extraordinary situations, which are admittedly numerous in philosophy, but
the real attraction of logic lies elsewhere.

Here I shall not try to say what logic is. Rather I shall sketch some reasons
for thinking that logic might be important in philosophy.

If one tries to make general statements about natural languages like
English, one is confronted with the bewildering complexity of these languages.
Natural languages offer a enormous variety of stylistic variants for expressing
something. The style in which some argument is presented may help the
understanding, but the validity of an argument does not depend on the style
of its presentation. Therefore since antiquity logicians have tried to abstract
from the particular style in which an argument is presented and to regiment
the style of presentation. This regimentation of style has been carried forward
until the natural languages under consideration had become purely formal
artificial languages. Of course, it still hoped that English sentences can be
translated into sentences of these formal languages, but on the loss of the
stylistic richness of the English language.

The sheer complexity of the grammar of natural languages drives linguists
to despair. Text processing programmes can check the spelling, but they
still come without a grammar checker. In contrast, the description of the
grammar of the formal language L2 in section 3.1 below fits on a single page,
although expressively rich enough to carry out all kinds of mathematics in
it. Of course, L2 is not as flexible, concise, subtle, potentially elegant and
rich in stylistic variants as natural languages, but L2 has not been devised

version of 24th July, 2008 4

5

to be used in the same as natural languages are used. One can view L2 as
English stripped from all stylistic adornment and ambiguities to the bare
bones that are relevant for reasoning. Whether some essential feature has
been stripped away together with the adornment, is a matter of dispute, but
even if something had been lost, another formal language could be proposed.

Once language has been simplified and regimented, certain of its aspects
can be scrutinised that are much less accessible without regimentation and
simplification. Here I shall give only some examples.

First example. In order to show that a conclusion follows from a certain
theory, one will usually try to give an argument for the conclusion from the
assumptions in the theory. Some sort of regimentation may be useful, but it
comes in its own when it comes to show that the conclusion does not follow
from he theory. It will hardly be possible to browse through all potential argu-
ments and check whether they really arguments for the conclusion from the
assumptions of the theory. Logicians have devised many ingenious methods
for showing that certain sentences do not follow from certain assumptions.
This is especially important when neither the sentence nor its negation are
consequences of the theory, that is, when the sentence is independent from
the theory. A mathematician, for instance, may first try to prove a hunch from
certain assumptions. Then he gets stuck and starts to doubt his first hunch.
Thus he starts to disprove his hunch by proving its negation. If the sentence
is independent from the theory, neither strategy can be successful. Actually
some problems in mathematics turned out to be of this kind and logicians
were able to show that certain conjectures were simply not decidable on the
basis of the available assumptions.

A very special kind of conclusion are contradictions. If a sentence and
its negation can be derived from a theory, the theory called ‘inconsistent’.
Obviously, its bad for a theory to be inconsistent, so often people try to show
that their theory is safe from contradiction. Again they may avail themselves
of the tools of logic.

Second example. Philosophers have tried to provide semantics for language.
They have tried to develop theories about the meanings of sentences and
certain words. This may sound like a problem for linguists, but we are also
at the core of metaphysics. For some philosophers have claimed that abstract
or universal objects like properties are required as meanings. Others, the
nominalists, have denied the need for such objects.

One can try the semantical theories first on the highly regimented lan-
guages of logic: any semantical theory that does not work for these simply
languages will also fail to work for the more complex natural languages.

The semantics of formal languages belongs to logic itself. In the Manual
only the semantics of propositional logic will be covered in section 2.2. I
consider it a major shortcoming of this course that semantics for predicate

version of 24th July, 2008 5

6

logic is not included, because this is where things become really interesting.
Semantics usually also yields a theory of truth. Logicians have developed

precise formal semantics for formal languages including precise theories of
truth. Many philosophers have been so overwhelmed by these discoveries that
they thought that a solution to the age-old problem of truth has been found.

Third example. So far it may seem that logicians have done everything to
chop down language into pieces in order to trivialise language and reasoning.
But logic has helped to bring out those complexities of language that cannot
be eliminated.

version of 24th July, 2008 6

1 Preliminaries

1.1 Sets†

A set is a collection of arbitrary objects. Sets are identical if and only if they
have the same members. Therefore the set of all animals having kidneys
and the set of all animals having a heart are identical, because exactly those
animals that have kidneys also have a heart and vice versa.1 In contrast, the
property of having a heart is distinguished from he property of having kidneys.
Here we are only interested in sets, but not in properties.

The objects belonging to a set are its elements. a ∈ M expresses that a is
an element of the set M. If a is an element of M, one also says that a is in M.

There is only one set that contains no elements, namely the empty set Ø.
There are various ways to denote special sets. The set {New College,

Merton College} has exactly the two colleges as its elements. The set {Merton
College, New College} has the same elements. Therefore the sets are identical,
that is, we have:

{New College, Merton College}= {Merton College, New College}

Thus if a set is specified by including names for the elements in curly brackets,
the order of the names does not matter. The set {New College, Merton College,
St. Mary of Winchester College} is again the same set because ‘St. Mary of
Winchester’ is just another name for New College, and the set has therefore
the same elements as {New College, Merton College}.

Above I have been talking about the set of all animals with a heart. This
can be written more formally as:2

{x : x is an animal with a heart}

†Even readers who dislike mathematics may not omit this section.
1I have added this footnote because there are regularly protests with respect to this exam-

ple. For the example only complete and healthy animals are considered. I was told that
planarians are an exception, so we would have to exclude them for the sake of the example.

2One must exercise some caution here. Certain natural assumption on the existence of sets,
lead to the mathematician’s hell: inconsistency. This footnote is for those who have heard
about Russell’s paradox; those who haven’t shouldn’t worry and ignore this footnote.

version of 24th July, 2008 7

8

1.2 Ordered pairs and relations

As pointed out above, the elements of a set are not ordered by the set. {Tony
Blair, George W. Bush} is the same set as´{George W. Bush, Tony Blair}.
Ordered pairs, in contrast, have an order on their components. One writes
〈George W. Bush, Tony Blair 〉 for the ordered pair with George W. Bush as
the first and Tony Blair as the second component. 〈George W. Bush, Tony
Blair 〉 and 〈Tony Blair, George W. Bush〉 are different ordered pairs, because
the former has George W. Bush as first component, the latter Tony Blair (the
second components are also different).3

A set is a binary relation if and only if it contains only ordered pairs.4 In
particular, the empty set Ø is a relation, because it does not contain anything
but ordered pairs.

The relation that is satisfied by objects x and y if and only if x is smaller
than y is the following set:

{〈Munich, London 〉,〈 Oxford, London〉,〈Oxford, Munich〉,〈Munich,
Paris〉,. . . }

Here and in the following I’ll use ‘iff’ as an abbreviation for ‘if and only if ’.
In the following definition D is an arbitrary set. D may be empty.

Definition 1.1. A relation R is H146

(i) reflexive on D iff for all a in D 〈a,a〉 ∈ R.

(ii) irreflexive iff for no a 〈a,a〉 ∈ R.

(iii) non-reflexive iff R is neither reflexive nor irreflexive.
H147

(iv) symmetric iff for all a,b: if 〈a,b〉 ∈ R then 〈b,a〉 ∈ R.

(v) asymmetric iff for no a,b: 〈a,b〉 ∈ R and 〈b,a〉 ∈ R.

(vi) non-symmetric iff R is neither symmetric nor asymmetric.
H149

(vii) transitive iff for all a,b, c: if 〈a,b〉 ∈ R and 〈b, c〉 ∈ R, then 〈a, c〉 ∈ R.

(viii) intransitive iff for all a,b, c: if 〈a,b〉 ∈ R and 〈b, c〉 ∈ R, then not 〈a, c〉 ∈ R.

(ix) non-transitive iff R is neither transitive nor intransitive.
H150

(x) connected on D iff for all a,b in D either 〈a,b〉 ∈ R or 〈b,a〉 ∈ R or a = b.

version of 24th July, 2008 8

9

H155
(xi) an equivalence relation on D iff it is reflexive on D, symmetric and tran-

sitive.

Note. Hodges (2001) does not refer explicitly to the domain in his definition
of reflexivity. If the domain is empty, for instance, the empty relation Ø is
reflexive; if the domain is not empty, then the empty relation Ø is not reflexive,
because by the definition on p. 146 every dot must have a loop. Here I have
made the reference to the underlying set explicit. The set D is Hodges’ domain.
The definition of connectedness suffers from a similar problem.

Definition 1.2. A relation is a function iff for all a,b, c: if 〈a,b〉 ∈ R and
〈a, c〉 ∈ R then b = c.

For instance the relation that is satisfied by those pairs 〈a,b〉 such that b
is the mother of a is a function, because nobody has two (different) mothers.

There are also three-place relations. These are sets of triples 〈a,b, c〉. Four-
place relations are sets of quadruples and so on. Unary (one-place) relations
are simply sets.

1.3 Arguments, validity and contradiction

In logic usually sentences are the objects that can be true or false. Of course
not every sentence of English can be true: a question like ‘Are there any
crisps with fish flavour?’ is neither true nor false. The following focuses on
declarative sentences, that is, sentences that can be true or false.

A sentence can be true in one possible situation and false in others.
An argument consists in premisses and one conclusion. Premisses and

conclusion are declarative sentences. The following is an example of an
argument:

There is no German who does not like crisps with paprika flavour.
Rebecca and Johannes are German.
Therefore Johannes likes crisps with paprika flavour.

The two sentences ‘There is no German who does not like crisps with paprika
flavour.’ and ‘Rebecca and Johannes are German.’ are the premisses of the
argument, while ‘Johannes likes crisps with paprika flavour.’ is its conclusion.

3Using a nice trick one can dispense with ordered pairs. One can define the ordered pair 〈a,b〉
as {{a}, {a,b}}. I don’t show here that this definition does the trick. The trick will not be used
here.

4There are also other notions of relations. According to another use of the term binary
relations relate to sets of ordered pairs in the same way as properties are related to sets.
Here a relation is identified with the corresponding set of ordered pairs. This is common
practice in mathematics.

version of 24th July, 2008 9

10

Usually the conclusion is marked by a phrase like ‘therefore’ or ‘it follows that’,
but it need not be. Sometimes the conclusion precedes the premisses:

Johannes likes crisps with paprika flavour. For there is no German
who does not like crisps with paprika flavour, and Rebecca and
Johannes are German.

An argument may feature just one premiss or, as a degenerate case, no premiss
at all. H38

An argument is valid if and only if there is no possible situation in which
all the premisses of the argument are true and the conclusion is false. The
arguments above are valid.

An argument is invalid if and only if there is at least one possible situation
where all the premisses are true and the conclusion is false.

An argument with no premisses will be valid if and only if the conclusion
is true in all possible situations. A sentence is a necessary truth if and only if
it is true in all possible situations.

A sentence is consistent if and only if it is true in at least one possible
situation. A set of sentences is consistent if there is at least one possible
situation where all its elements are true. H1

A sentence is a contradiction, inconsistent or self-contradictory if and
only if there is no possible situation where it is true. A set of sentences
is inconsistent if and only if there is no possible situation in which all its
elements are true.

A sentence is contingent if and only if it is true in at least one possible
situation and false in at least one possible situation.

1.4 Syntax, semantics, and pragmatics

In the following formal languages will be studied. They are in many respects
much less complicated that natural languages like English or German, but
they are intended to mirror certain properties of natural languages. Some
philosophers conceive these formal languages as models for natural languages.

Traditionally three aspects in the analysis of languages are distinguished:
syntax, semantics and pragmatics. In order to use a language competently,
one must master all three aspects of a language.

Syntax is exclusively concerned with the expressions of a language bare of
any meaning. For instance, in the syntax of a language it is specified which
expressions are words or sentences of the language. In general, grammar
belongs to the syntax of a language (and often syntax is identified with gram-
mar). In order to use the language competently, one must know the grammar
of the language. In particular, one must know how to form sentences in the

version of 24th July, 2008 10

11

language.
Semantics may be described as the study of the meaning of the expressions

of a language. It is of little use to know the grammar of a language without
knowing anything about the meaning of the words and sentences of a language.

A competent speaker of German will realise that ‘Im Mondschein hockt
auf den Gräbern eine wild gespenstische Gestalt.’ is a well formed German
declarative sentence. In a syntactic analysis of that sentence one may remark
that ‘den Gräbern’ is in the dative case, ‘hockt’ is a verb in present tense and
the singular and so on. All this does not tell you anything about the meaning
of that sentence. In order to understand the sentence, you need information
about meaning. For instance, it is a semantic fact of German that ‘Gräbern’
refers to graves, and ‘hockt’ means ‘crouches’.

Syntax and semantics are intertwined and the distinction is not completely
sharp. In the following the syntax and the semantics of the formal languages
will be introduced. First I shall exhibit the grammar of a language and then
specify the meaning of (some of) the expressions of the language.

The third component, pragmatics, will not be studied. Pragmatics is,
roughly speaking, the study of language in use. Assume John calls Mary and
asks her to come along to the cinema. Now she replies ‘I am ill.’. Obviously,
John should not expect Mary to come along, but that information is not
contained in the meaning of the sentence ‘I am ill.’; this sentence says merely
something on Mary’s health. The sentence ‘I am ill.’ does not imply that
I am not going to the cinema. But this sentence spoken by Mary in this
situation conveys the information that she will not join John. Thus John
needs pragmatics in order to understand that Mary is not coming along. Pure
semantics would not tell him that he is not coming along.

version of 24th July, 2008 11

2 Propositional logic

2.1 The syntax of the language of propositional logic
H97

This exposition deviates from section 26 in (Hodges, 2001) in taking ‘P ’,
‘Q’ and so on as sentence letters right from the beginning instead of ‘P0’,
‘P00’,. . . Hodges says later on that he uses ‘P ’, ‘Q’,. . . instead of ‘P0’, ‘P00’,. . . 1.

Definition 2.1 (sentence letters). ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘P1’, ‘Q1’, ‘R1’, ‘S1’,
‘T1’, ‘P2’ and so on are sentence letters (or, as some authors say, propositional
variables, parameters or constants).

Definition 2.2 (formula of L1).

(i) All sentence letters are formulae of L1.

(ii) If φ and ψ are formulae of L1, then ‘¬φ’, ‘[φ∧ψ]’, ‘[φ∨ψ]’, ‘[φ→ψ]’ and
‘[φ↔ψ]’ are formulae of L1.

Of course, nothing else is a formula. This could be added explicitly as
a further condition in the definition, but I introduce the convention that
the definition above and in the following have to be understood in the most
restrictive way. That is, I ask the reader to add the clause ‘and nothing else is
a formula of L1.’

The Greek letters ‘φ’ and ‘ψ’ in (ii) are not expressions of the language L1.
For instance, ‘[φ∧ψ]’ is not a formula of L1 and it only becomes a formula of
L1 if ‘φ’ and ‘ψ’ are replaced by formulae of L1, respectively.

In Definition 2.1 it would not have been sufficient to say that ‘[P ∧Q]’ etc.
is a formula. (ii) rather implies that ‘[φ∧ψ]’ is a formula even if ‘φ’ and ‘ψ’ are
replaced by very long formulae.

I could have formulated L1 without using the ‘metavariables’ ‘φ’ and ‘ψ’
on the cost of readability by expressing (ii) in the following way.

The negation symbol followed by a formula of L1 is again a for-
mula of L1. The symbol ‘[’ followed by a formula of L1, followed
by the symbol ‘∨’ (or ‘∧’, ‘→’, ‘↔’), followed by a formula (not nec-
essarily distinct from the first one), followed by the symbol ‘]’ is a
formula of L1.

1For the use of quotation marks see Appendix C

version of 24th July, 2008 12

13

I hope that (ii) is not only shorter but also easier to grasp.

Example 2.3. By (i), ‘P ’ is a formula of L1. Thus by (ii) ‘¬P ’ is also a formula
of L1. By (i) again ‘T4’ is a formula of L1. By (ii) and what has been said so
far, ‘[¬P∧T4]’ is a formula, and by (ii) again also ‘[[¬P∧T4]→ P]’ is a formula
of L1.

Hodges (2001) calls the symbols ‘¬’, ‘∧’, ‘∨’, ‘→’, ‘↔’ truth-functor symbols.
Most other authors call them connectives.

name in English symbol alternative symbols
conjunction and ∧ ., &
disjunction or ∨ +
negation it is not the case that ¬ -, ∼
arrow if—then— → ⊃
(material implication,
conditional)
biconditional if and only if ↔ ≡
(material equivalence)

The names in brackets and the symbols in the right column are used by other
authors; they will not be used in exams. But it is useful to know them when
you are reading other authors.

The expressions in the ‘in English’ column indicate how the connectives
are commonly read, rather than their precise meanings.

2.2 The semantics of propositional logic

We could forget about philosophy. Settle down and
maybe get into semantics.

Woody Allen Mr. Big, in Complete Prose,
Basingstoke: Picador, 1997, 283–292

H99ff

Definition 2.4. A L1-structure is a function that assigns a truth value (T or
F) to some sentence letters.

Definition 2.5. Let A be some structure that assigns either T or F to every
sentence letter in φ and ψ.

(i) If A assigns T to a sentence letter, then the sentence letter is true in A.

(ii) If φ is not true in A, then ‘¬φ’ is true in A.

(iii) If φ and ψ are true in A, then ‘[φ∧ψ]’ is true in A.

version of 24th July, 2008 13

14

(iv) If φ or ψ (or both) is true in A, then ‘[φ∨ψ]’ is true in A.

(v) If φ is not true in A or ψ is true in A, then ‘[φ→ψ]’ is true in A.

(vi) If φ and ψ are both true or if φ and ψ are both false, then ‘[φ↔ψ]’ is true
in A.

(vii) If φ is not true in A, then φ is false.

The assumption that A assigns T or F to all sentence letters in φ is
important. If this condition is not satisfied, φ is neither true nor false in A.2

The definition can be summarised in truth tables. These tables allow one
to calculate whether a sentence is true or false in a structure. For instance,
the first line of the table for ∧ tells you that ‘[φ∧ψ]’ is true in the structure iff
φ is true and ψ is true in this structure.

φ ¬φ
T F
F T

φ ψ [φ∧ψ]
T T T
T F F
F T F
F F F

φ ψ [φ∨ψ]
T T T
T F T
F T T
F F F

φ ψ [φ→ψ]
T T T
T F F
F T T
F F T

φ ψ [φ↔ψ]
T T T
T F F
F T F
F F T

Definition 2.5 determines whether a formula is true or false in a structure,
if the structure assigns T or F to every sentence letter in the sentence. I
explain this by an example.

A structure A assigns T to the sentence letter ‘P ’ and F to the sentence
letter ‘Q’; and it is to be determined whether the formula ‘[¬[P →Q]→ [P∧Q]]’
is true in this structure or not.

Since A assigns T to ‘P ’, ‘P ’ is true in A; and since A assigns F to ‘Q’,
‘Q’ is false in A by Definition 2.5 (i). By Definition 2.5 (v), ‘[P → Q]’ is false
in A and thus ‘¬[P → Q]’ is true in A by Definition 2.5 (ii). By Definition
2.5 (ii) the formula ‘[P ∧Q]’ is false in A, and therefore the entire formula
‘[¬[P →Q]→ [P ∧Q]]’ is false in A according to Definition 2.5 (v) again.

2Here Hodges deviates again from the usual definition. The definition would become smoother
if it were assumed that the structure assigns truth values to every sentence letter.

version of 24th July, 2008 14

15

This way of writing down the calculation is awkward. It becomes much
more perspicuous if written down in the following way:

P Q [¬ [P → Q] → [P ∧ Q]]
T F T T F F F T F F

The boldface F is the final value.
One can calculate the truth and falsehood of a formula for all possible

structures that assign T or F to all sentence letters of the formula in a single
truth table:

P Q [¬ [P → Q] → [P ∧ Q]]
T T F T T T T T T T
T F T T F F F T F F
F T F F T T T F F T
F F F F T F T F F F

Again the column that indicates the truth and falsehood of the entire formula
is in boldface letters. In the following definition I call this column the main
column.

Definition 2.6.

• A formula is a tautology if and only if there are only Ts in the main
column of its truth table.

• A formula is semantically inconsistent if and only if there are only Fs in
the main column of its truth table.

• A formula is a propositionally contingent if and only if there are Ts and
Fs in the main column of its truth table.

Some authors call tautologies ‘logically necessary’ or ‘valid’ formulae.

Definition 2.7. Let X be a finite set of formulae of L1 and ψ be a formula of
L1.

(i) X Íφ iff there is no structure such that all formulae in X are true in the
structure and φ is false in it.

(ii) X Í iff there is no structure such that all formulae in X are true in it.

Hodges calls expressions of the form ‘X Í’ and ‘X Íφ’ ‘semantic sequents’.
These formal expressions are read in English in the following way:

Definition 2.8. (i) A set X of formulae is (semantically) inconsistent iff X Í. H102

(ii) An inference from the formulae in X to φ is valid iff X Íφ.

(iii) X semantically entails φ iff X Íφ.

version of 24th July, 2008 15

16

More precisely, one should talk about inconsistency etc. in propositional
logic. When there is a danger of confusion this specification should be added.

Lemma 2.9. X Íφ iff X ,¬φÍ.

Here X ,¬φ is the set with φ and all elements of X as elements.

Proof. Assume X Íφ. Then there is no structure A such that all formulae in
X are true in the structure and φ is false in A. Therefore there is no structure
such that all formulae in X are true in the structure and ‘¬φ’ is true in A.
Hence there is no structure that assigns T or F to all sentence letters in X ,¬φ
such that all formulae in X ,¬φ are true in A.

Assume X ,¬φÍ. Then there is no structure A that assigns T or F to all
sentence letters in X ,¬φ such that all formulae in X ,¬φ are true in A. And
thus there is no structure that assigns T or F to all sentence letters in X ,¬φ
such that all formulae in X are true in A and φ is false in A; and therefore
X Íφ.

We have only truth functor symbols for certain truth functors. That is, we
do not have for any possible truth table a corresponding symbol. For instance,
we do not have a truth functor symbol for the exclusive ‘or’ with the following
truth table:

φ ψ [φ∨̇ψ]
T T F
T F T
F T T
F F F

The addition of a new symbol is not really necessary, because the ∨̇ can
be defined with those we already have: [P∨̇Q] has he same truth table as
[[P ∨Q]∧¬[P ∧Q]] or as ¬[P ↔Q]:

P Q ¬ [P ↔ Q]
T T F T T T
T F T T F F
F T T F F T
F F F F T F

By providing suitable formulae for every truth table with two sentence letters
one can prove that there is no need to add a further binary truth functor
symbol. The task is much harder for truth tables with three sentence letters,
because there are much more cases to consider. In order to prove the claim
for arbitrary truth tables, a general procedure for specifying the formula is
required. This can be done, but I skip the proof.

version of 24th July, 2008 16

17

2.3 Proofs

Don’t eliminate cut.
George Boolos, ‘Don’t eliminate cut’ in Logic, Logic,

and Logic

H115ff
A tree (of formula of L1) has some formula at the top and it is branching

to the bottom (it is not allowed that the branches of the tree merge again).
A branch in a tree is a sequence of formulae with a formula on the bottom

as the last element and the topmost formula as the first element and all
formulae in between (in their order) as further elements in between.

Example 2.10. In the following tree the bold-face formulae constitute a
branch in the tree.

X [P↔¬[Q→R]]
X [R→ [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

¬R X [¬Q∧S]

¬Q
S

P
X¬[Q → R]

Q
¬R

¬P
¬¬[Q→R]

�����
aaaa

((((((((((@@

The particular shape of the formulae does not matter at the moment. You
should just check that the sequence of formulae in boldface satisfies the
definition of a branch: ‘¬¬[Q → R]’ is the end point of the branch. Taking
this formula as the last formula and the topmost formula and all formulae in
between yields a branch within the tree.

There are several rules that can be used to extend an existing tree; they
allow one to write something at the end of one or several branches. A branch
is closed if and only if the there is a bar at the bottom of the branch; otherwise
the branch is unclosed (How branches can be closed will be explained below).

version of 24th July, 2008 17

18

I pick one of the rules at random. Assume that a formula of the form
‘¬¬φ’ occurs in a tree and the formula is not yet ticked. Then there is a rule
that allows one to write the formula φ at the end of any unclosed branch that
contains this occurrence of ‘¬¬φ’ and to tick the occurrence of ‘¬¬φ’.

You must write φ at the end of any unclosed branch that contains the oc-
currence of ‘¬¬φ’ in question. It is also mandatory that you tick the occurrence
of ‘¬¬φ’.

I have been talking about occurrences of formulae. The reason is that
a formula may occur several times in a tree. The rule focuses on just one
occurrence of the formula. If there is a second occurrence of ‘¬¬φ’ on another
branch you do not have to add φ to this branch.

In the following I shall abbreviate this rule by writing:

X¬¬φ

φ

Of course, there may be formulae on the branch between ‘¬¬φ’ and φ.
It is a common mistake to apply the rule not to the entire formula in a line,

but only to parts of a formula. For instance, the formula does not allow you to
pass from ‘[P ∧¬¬Q]’ to ‘[P ∧Q]’. The rule cannot be applied to ‘[P ∧¬¬Q]’ at
all, because this formula is of the form ‘[φ∧ψ]’ and not of the form ‘¬¬φ’.

Other rules allow you to add two formulae at the end of branches. Still
others allow you to add two formulae but on two different branches. Here is a
list of all rules:

X¬¬φ

φ

X [φ∧ψ]

φ

ψ

X¬[φ∧ψ]

¬φ ¬ψ
�� @@

X [φ∨ψ]

φ ψ

�
�
S
S

X¬[φ∨ψ]

¬φ
¬ψ

X [φ→ψ]

¬φ ψ

�
�
@
@

X¬[φ→ψ]

φ

¬ψ

X [φ↔ψ]

φ

ψ

¬φ
¬ψ

�
�
\
\

X¬[φ↔ψ]

φ

¬ψ
¬φ
ψ

�
�
@
@

version of 24th July, 2008 18

19

You may draw a line
at the bottom of ev-
ery branch on which a
formula occurs together
with its negation.

Definition 2.11. A tree is a tableau if and only if all its branchings follow one
of the above derivation rules.

A branch is closed if and only if there is a line at the bottom of the branch;
otherwise it is open. A tableau is closed if and only if all its branches are
closed.

Definition 2.12. Assume X is a finite set of formulae of L1. Then X ` if and
only if there is a closed tableau with all formulae in X at the top.

Definition 2.13. X `φ if and only if X ,¬φ`.

Thus we have X ` φ iff there is a closed tableau with all formulae in X
and ‘¬φ’ at the top. The elements of X are called premisses.

Instead of writing ‘{ψ1, . . . ,ψn}`φ’ one may also write ‘ψ1, . . . ,ψn `φ’. That
is, one may drop the set brackets around an enumeration of the premisses.
Below ‘X ,¬φ’ stands for the set of all formulae in X plus the formula φ.

‘X `φ’ is read as ‘X syntactically entails φ’ or as ‘φ is provable from the
premisses in X ’, and ‘`φ’ is read as ‘φ is a (syntactic) theorem’.

X is allowed to be the empty set Ø and the same conventions apply. Thus
`φ if and only if there is a closed tableau with ‘¬φ’ at the top. In this case φ
is called provable.

‘X `φ’ is called a ‘syntactic sequent’. H116
As an example I shall show

Example 2.14. [P ↔¬[Q → R]], [R → [¬Q∧S]]` [[Q∨P]→¬R]

I shall now show how to generate a proof tree step by step.
In the first step one writes down all premisses, that is, all formulae in

front of ` and the negation of the conclusion:

[P ↔¬[Q → R]]
[R → [¬Q∧S]]
¬[[Q∨P]→¬R]

Then one has the choice of applying a rule for one of the three formulae. I
shall apply the rule for the formula at the bottom. The rule for formulae of the
form ‘¬[φ→ψ]’ allows one to add φ and ‘¬ψ’. One also has to tick the original
formula:

version of 24th July, 2008 19

20

[P ↔¬[Q → R]]
[R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
¬¬R

At this stage we could return to the first or second line, but I rather choose to
continue with the last line and apply the rule for ‘¬¬φ’:

[P ↔¬[Q → R]]
[R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

At this point I return to the second line (I could also have proceeded with
‘[Q∨P]’):

[P ↔¬[Q → R]]
X [R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

¬R [¬Q∧S]

((((((((((
@
@

Now we may draw a line at the bottom of the left branch because it contains
both R and ‘¬R’ (also the presence of ‘¬¬R’ and ‘¬R’ would it make possible
to close the branch):

version of 24th July, 2008 20

21

[P ↔¬[Q → R]]
X [R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

¬R [¬Q∧S]

((((((((((@@

We continue with the right branch by applying the rule for ‘[φ∧ψ]’:

[P ↔¬[Q → R]]
X [R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

¬R X [¬Q∧S]

¬Q
S

((((((((((@@

At this stage only two formulae are left to which we can apply a rule, namely
the formula in the first line and ‘[Q∨P]’. I turn to the first line:

version of 24th July, 2008 21

22

X [P ↔¬[Q → R]]
X [R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

¬R X [¬Q∧S]

¬Q
S

P
¬[Q → R]

¬P
¬¬[Q → R]

�����
aaaa

((((((((((@@

I continue with the branch in the middle and its last line:

X [P ↔¬[Q → R]]
X [R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

¬R X [¬Q∧S]

¬Q
S

P
X¬[Q → R]

Q
¬R

¬P
¬¬[Q → R]

�����
aaaa

((((((((((@@

Now obviously the last branch can be closed because the last line is ‘¬R’ and
R occurs on the branch.

version of 24th July, 2008 22

23

X [P ↔¬[Q → R]]
X [R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

¬R X [¬Q∧S]

¬Q
S

P
X¬[Q → R]

Q
¬R

¬P
¬¬[Q → R]

�����
aaaa

((((((((((@@

Now there is only one open branch left. I use the fourth line in the tree:

X [P ↔¬[Q → R]]
X [R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

X [Q∨P]
X¬¬R

R

¬R X [¬Q∧S]

¬Q
S

P
X¬[Q → R]

Q
¬R

¬P
¬¬[Q → R]

Q P
�
�
\
\

�����
aaaa

((((((((((
@
@

Finally one may draw lines at the end of both open branches since both ‘¬Q’
and ‘¬P ’ occur on that branch.

version of 24th July, 2008 23

24

X [P ↔¬[Q → R]]
X [R → [¬Q∧S]]

X¬[[Q∨P]→¬R]

X [Q∨P]
X¬¬R

R

¬R X [¬Q∧S]

¬Q
S

P
X¬[Q → R]

Q
¬R

¬P
¬¬[Q → R]

Q P
�� \\

�����
aaaa

((((((((((@@

Since all branches are now closed, the claim in the example above is estab-
lished.

I give now another example.

Example 2.15. ` [¬[P ↔Q]∨ [P ↔Q]]

Since there is only a conclusion and no premisses, one has to start with
the negation of the conclusion only. The rest should be obvious:

X¬[¬[P ↔Q]∨ [P ↔Q]]

¬¬[P ↔Q]
¬[P ↔Q]

The branch may be closed because both ‘¬¬[P ↔Q]’ and ‘¬[P ↔Q]’ are on the
same branch. There is no need to continue this proof and to decompose the
formulae further.

In general one saves some writing if one tries to avoid branchings as long
as possible. For instance, if you can choose between applying the rule for ‘¬¬φ’
or the rule for ‘[φ∨ψ]’, choosing the first will usually (but not always) produce
a more economical proof.

Example 2.16. [P ∨Q], [P → S], [Q → S]` S

We start again in the obvious way:

version of 24th July, 2008 24

25

[P ∨Q]
[P → S]
[Q → S]
¬S

Now a branching cannot be avoided, so I turn to the first line:

X [P ∨Q]
[P → S]
[Q → S]
¬S

P Q

�������
HHHH

Again the tree has to branch. The second line is used. It is mandatory that
the branching is added to both open branches. If it were allowed to apply the
rule to only one branch and to tick the original formula, then one migt end up
with a tableau with all complex formulae ticked but still with open branches,
although the formula is provable.

X [P ∨Q]
X [P → S]

[Q → S]
¬S

P

¬P S
�
�
@
@

Q

¬P S

����
aaaa

aaaa

Obviously three branches can be closed and the third formula is then used to
add a further branching to the only remaining open branch. In the next step
the two open branches are closed.

X [P ∨Q]
X [P → S]
X [Q → S]

¬S

P

¬P S
�� @@

Q

¬P

¬Q S
�� @@

S

����
aaaa

aaaa

Finally I mention a result without proof that relates Í and `:

version of 24th July, 2008 25

26

H118
Theorem 2.17 (Adequacy). For all sets X of formulae of L1 and formulae φ
the following holds:

X Íφ iff X `φ

The left-to-right direction is called the Completeness Theorem (for proposi-
tional logic); the right-to-left direction is called the Soundness Theorem (for
propositional logic).

2.4 Formalisation

2.4.1 Truth-functionality

A sentence-functor is an expression containing English words and possibly
Greek letters φ, ψ, χ and so on such that substituting the Greek letters by
English declarative sentences yields an English declarative sentence.

‘and’, for instance, can be combined with ‘It’s raining.’ and ‘Oxford is small.’
to ‘It’s raining and Oxford is small.’ Some sentence-functor symbols take only
one sentence, ‘not’ or ‘it’s probable that’, for instance.

In L1 the connectives (truth-functor symbols) are sentence-functors. Ac-
cording to the semantics expounded in section 2.2, The truth or falsity of a
sentence of a formula [φ∧ψ], for instance, in a structure A depends only on
the truth and falsity of φ and ψ; the truth and falsity of φ and ψ in A uniquely
determine the truth value of [φ∧ψ] in A. In L1 the truth and falsity of a
formula in a structure always only on the truth values of the sentence letters
in A occurring in the sentence. Exactly those sentence functors where the
truth value of the compound sentence is uniquely determined by the truth
values of the sentences replacing the Greek letters are truth-functional. The
truth-functional sentence functors are also called truth functor.

In contrast, there are sentence functors in English that yield applied to
sentences another sentence whose truth or falsity does not merely depend on
the truth or falsity of its constituents.

‘φ because ψ’ is an example of a sentence functor where the truth value
of the compound sentence is not fully determined by the truth values of the
sentences substituted for φ and ψ. Whether ‘φ because ψ’ is true after a
substitution does not only depend on whether φ and ψ are true. I shall give
two examples. In both cases φ and ψ (or rather the sentences substituted for
them) are true, but ‘φ because ψ’ is true in the first but false in the second
case.

Imagine that I drop my laptop computer on the street,. The screen is
broken and it is not functional anymore. So it is true, that my laptop computer
does not work. The sentence

My laptop computer does not work, because I dropped it.

version of 24th July, 2008 26

27

is true: the laptop would still be functional if I had not dropped it. Moreover,
it is true that the computer does not work and it is true that I dropped it. So
we have an example where φ and ψ are true and ‘φ because ψ’ is also true.

It is also true that it is not plugged in, but the sentence

My laptop computer does not work, because it is not plugged in.

is false. For the computer would not work even if it were plugged in, because
the battery is fully charged. It does not work, because it is broken, not because
it is plugged in. Thus we have a case where φ and ψ are true and ‘φ because
ψ’ is false. Therefore the sentence functor ‘because’ is not truth-functional.

Nevertheless we can determine a partial truth table for ‘because’. We have
already seen that in the first line of the following table, we do not have a
unique truth value. But for the remaining lines the sentence ‘φ because ψ’ is
always false. If φ is false, ‘φ because ψ’ can never be true, because ‘φ because
ψ’ implies that φ is the case. Also if ψ is false, ‘φ because ψ’ must be false,
because something that is false cannot be a reason for φ. So we arrive at the
following partial truth table:

φ ψ φ because ψ
T T ?
T F F
F T F
F F F

There might be a certain temptation to formalise ‘because’ by ∧, but
obviously this is not correct. Sometimes, however, one is more generous and
formalises sentence functor that are not truth-functional by the connectives
(or ‘truth-functor symbols’ of propositional logic. ‘if—,then—’, for instance, is
usually formalised by →, but it is usually not truth-functional.

Thus exactly those sentence functors with complete truth tables are truth-
functional.

2.4.2 Logical form

In this section I show how to translate a given sentence of English into a
formula of L1. Translation into a formal language is in general a highly
nontrivial task. Here I shall give a practical procedure, which is far from being
a precise account.

In the first step the English sentence is brought into a certain form. This
is the difficult step.

The following procedure takes an English sentences and proceeds deeper
and deeper into the structure of the sentence until propositional logic cannot
be used anymore to provide a further analysis of the subsentences.

version of 24th July, 2008 27

28

1. Check if the sentence can be reformulated as a sentence composed by a
truth-functional sentence-functor in a natural way. If this is not possible
the sentence is put in square brackets and not further analysed.

2. If the sentence can be reformulated as a sentence composed by a truth-
functional sentence-functor in a natural way, rewrite the sentence in
this way.

3. Given a sentence composed by a truth-functional sentence-functor, re-
formulate it with standard truth-functors. The standard truth functors
are:

name standard truth-functor some other formulations
conjunction and but, although

a komma
between sentences

disjunction or
negation it is not true that not, none

never etc.
arrow truth-functor if—then— given that—,—

biconditional if and only if exactly if

4. Surround the whole sentence by square brackets, unless it is a negated
sentence, that is, a sentence starting with ‘it is not true that’.

5. Apply the procedure starting at 1. again to the sentences that are sur-
rounded by square brackets but do not contain further square brackets.

I illustrate the procedure with several examples:

Example 2.18. Rob and Tim will laugh, if the tutor can’t pronounce Siobhan’s
name.

Leaving the paradoxes of material implications aside, the sentence is
composed by the truth-functional sentence functor ‘—, if—’. There is no need
for a reformulation according to 2. But ‘—, if—’ is not a standard truth-functor.
The standard truth-functor is ‘if—then—’. I reformulate in accordance with 3.
the sentence with this standard truth-functor:

If the tutor can’t pronounce Siobhan’s name, then Rob and Tim
will laugh.

In step 4. I surround the whole sentence by square brackets:

[If the tutor can’t pronounce Siobhan’s name, then Rob and Tim
will laugh]

version of 24th July, 2008 28

29

Step 5. sends me back again to 1. There are 2 sentences left that are sur-
rounded by square brackets and that do not contain square brackets, namely:

• the tutor can’t pronounce Siobhan’s name

• Rob and Tim will laugh

The first sentence contains a negation and I reformulate it with the standard
truth-functor ‘it is not true that—’:

it is not true that the tutor can pronounce Siobhan’s name

Since the sentence starts with ‘it is not true that’, no brackets are inserted
according to 4.

We still have to apply the procedure to the second sentence. ‘Rob and
Tim will laugh’ is not a sentence composed by a truth-functional sentence-
functor, but it can be reformulated as a sentence with a truth-functional
sentence-functor as:

Rob will laugh and Tim will laugh

This was step 2. ‘and’ is already in standard formulation, so I can skip step 3.
By 4. I still need to put the direct subclauses in brackets:

[Rob will laugh and Tim will laugh]

Thus the whole sentence reads now as follows:

[If it is not true that the tutor can pronounce Siobhan’s name, then
[Rob will laugh and Tim will laugh]]

Now I have to start again with 1. The sentence ‘the tutor can pronounce
Siobhan’s name’ can be reformulated as a sentence composed by a truth-
functional sentence-functor in a natural way. Thus it is put in square brackets
according to 1.:

[If it is not true that [the tutor can pronounce Siobhan’s name],
then [Rob will laugh and Tim will laugh]]

Also ‘Rob will laugh’ and ‘Tim will laugh’ cannot be reformulated as a sentence
composed by a truth-functional sentence-functor. So they are also put into
square brackets as required by 1.:

[If it is not true that [the tutor can pronounce Siobhan’s name],
then [[Rob will laugh] and [Tim will laugh]]]

This is now the logical form of the sentence (in propositional logic).

version of 24th July, 2008 29

30

Example 2.19. Unless the ignition is turned on and the fuels taps are opened,
the engine will not start and I’ll not be able to arrive in time.

For this example I shall give only the steps without commenting them. The
numbers indicate which step of the procedure is applied. If there is nothing to
do, e.g. because in 2. the sentence is already composed by a truth-functional
sentence-functor, I shall skip it. In the first step I reformulate according to 3.
‘unless’ as ‘if it is not true that—, then—’.

(3.) If it is not true that the ignition is turned on and the fuels taps are
opened, then the engine will not start and I’ll not be able to arrive in
time.

(4.) [If it is not true that the ignition is turned on and the fuels taps are
opened, then the engine will not start and I’ll not be able to arrive in
time]

(4.) [If it is not true that the ignition is turned on and the fuels taps are
opened then [the engine will not start and I’ll not be able to arrive in
time]]

(3.) [If it is not true that the ignition is turned on and the fuels taps are
opened then [it is not true that the engine will start and it is not true
that I’ll be able to arrive in time]]

(4.) [If it is not true that [the ignition is turned on and the fuels taps are
opened] then [it is not true that the engine will start and it is not true
that I’ll be able to arrive in time]]

(1.) [If it is not true that [the ignition is turned on] and [the fuels taps are
opened] then [it is not true that [the engine will start] and it is not true
that [I’ll be able to arrive in time]]]

It is not necessary to treat all all subclauses simultaneously, as I have
done it here. You could first analyse the first part in full detail and then turn
to the second. The result ought to be the same.

2.4.3 From logical form to formal language

Once the logical form of a sentence has been determined, the translation into
the language L1 of propositional logic is purely mechanical.

In order to translate the logical form of an English sentence into L1 apply
the following procedure:

1. Replace standard truth functors by their respective symbols according
to the following list:

version of 24th July, 2008 30

31

standard truth-functor symbol
and ∧
or ∨

it is not true that ¬
if—then— →

if and only if ↔

2. Replace every (English) sentence including its brackets by a sentence
letter. Use different sentence letters for distinct sentences and the same
sentence letter for multiple occurrences of the same sentence.

3. give a list of all sentence letters in the resulting formula with the
respective sentences they have replaced.

I shall carry out this procedure on Example 2.18. Its logical form has been
determined as:

[If it is not true that [the tutor can pronounce Siobhan’s name],
then [[Rob will laugh] and [Tim will laugh]]]

First I replace all standard truth functors by the respective symbols, as
required by 1.:

[¬ [the tutor can pronounce Siobhan’s name] → [[Rob will laugh]
∧ [Tim will laugh]]]

In step 2. the sentences are replace by sentence letters:

[¬P → [Q∧R]]

Here is the list of step 3.:

P: the tutor can pronounce Siobhan’s name

Q: Rob will laugh

R: Tim will laugh

version of 24th July, 2008 31

3 Predicate logic

3.1 The syntax of the language of predicate logic

Hodges (2001) does not specify the syntax of predicate logic. There are some
snags in Hodges’ approach. For instance, one would expect that P in Pxy and
in Px are the same predicate letter. However, they are not.

In general Hodges does not carefully distinguish between the formal and
the natural language.

Definition 3.1 (predicate letters). All upper case Latin letters ‘A0’, ‘B0’, ‘C0’,
‘A0’, ‘B0

0’, ‘C0
0’,. . . ,‘A24

8 ’,. . . with an arbitrary natural number or no number as
subscript and with some number as superscript are predicate letters.

The value of the upper index of a predicate letter is called its arity. The
predicate letter ‘P3

4 ’, for example, has arity 3. A predicate letter of arity 3, for
example, is sometimes called a 3-place predicate letter.

Definition 3.2 (variables). ‘x’, ‘y’, ‘z’, ‘x1’, ‘y1’, ‘z1’, ‘x2’,. . . are variables.

Definition 3.3 (individual constants). ‘a’, ‘b’, ‘c’, ‘d’, ‘a1’, ‘b1’, ‘c4’, ‘d1’, ‘a2’,. . . are
individual constants.

Hodges calls the individual constants ‘designators’ and ‘proper names’ if
I understand him correctly. This is very unfortunate, because he also calls
certain expressions of the natural language ‘designators’.

Definition 3.4 (atomic formulae). If P is a predicate letter of arity n and
t1,. . . ,tn are variables or individual constants, then ‘Pt1 . . . tn’ is an atomic
formula. If t1 and t2 are variables or individual constants, then ‘t1 = t2’ is also
an atomic formula.

‘G3
5xd4 y’, ‘x = a’ and ‘G2xx’, for instance, are atomic formulae.

In an atomic formula the arity of a predicate letter is obvious: it is the
numbers of variables and individual constants following the predicate letter.
Therefore we adopt the following convention:

Superscripts of predicate letters may be dropped in atomic formu-
lae.

Definition 3.5. A quantifier is an expression ‘∀v’ or ‘∃v’ where v is a variable.

version of 24th July, 2008 32

33

There are alternative symbols for ‘∀’ and ‘∃’ (which will not be used here or in
examinations). ‘

∧
v’, ‘Πv’ and ‘(v)’ are sometimes used instead of ‘∀v’, and ‘

∨
v’

and ‘Σv’ instead of ‘∃v’.
L1 was used for the language of propositional logic; the language of predi-

cate logic is labelled L2.

Definition 3.6 (formula of L2).

(i) All atomic formulae are formulae of L2.

(ii) If φ and ψ are formulae of L2, then ‘¬φ’, ‘[φ∧ψ]’, ‘[φ∨ψ]’, ‘[φ→ψ]’ and
‘[φ↔ψ]’ are formulae of L2.

(iii) If v is a variable and φ is a formula with an occurrence of v but without
an occurrence of a quantifier ‘∀v’ or ‘∃v’, then ‘∀vφ’ and ‘∃vφ’ are formulae
of L2.

Examples of formulae of the language L2 of predicate logic are:

• ∀x[P2xa →Q1x]

• ¬[∀x∀y[P3
2 axx∧∃zP3

2 zyc]∧P0]

• P3xya

• [[∀z∃yRzy↔∃zRzz]∧∀zPz] This is a formula in accordance with Def-
inition 3.6 (iii), although there are three occurrences of quantifiers
involving z.

Do not try to understand these expressions, just check that these expressions
are formulae of L2 according to the definition above.

The following two displayed formulae are not formulae of L2:

∀x[P y→Q y]

This is not a formula, because the variable x has no occurrence in ‘[P y→Q y]’.

∃x[Pxa∧∀x[¬Gx∨Qx]]

This is not a formula, because the quantifier ‘∀x’ occurs in ‘[Pxa∧∀x[¬Gx∨
Qx]]’, which is excluded in Definition 3.6 (iii).

Many other authors use a slightly different definition of a formula accord-
ing to which the two expressions above would be formulae.

Again superscripts of predicate letters may be skipped. So for the first
formula one would usually write ‘∀x[Pxa →Qx]’.

version of 24th July, 2008 33

34

H176ff
Definition 3.7 (scope of a quantifier). The scope of a quantifier within a given
formula φ is the smallest formula within φ that contains this quantifier.1

Definition 3.8 (bound occurrence of a variable). An occurrence of a variable
v is bound if and only if it is in the scope of a quantifier ‘∀v’ or ‘∃v’.

An occurrence of a variable is free if and only if it is not bound.

Definition 3.9 (closed formulae). A formula is closed if and only if all occur-
rences of variables are bound in the formula.

It is convenient to stipulate that all occurrences of individual constants in
formulae are also free.

I list some examples. The underlined occurrences of variables are free in
the respective formulae.

• [∀x[Pxy→Qax]↔ Pxy]

• ∃z¬[Pax∧¬[∃xPx∨Qzx]]

• [[Px∧ Axy]∧Rxy]

The occurrences of variables that immediately follow the quantifier symbols
‘∀’ and ‘∃’ are usually not considered. One can take all of them as bound
occurrences or as neither bound nor free.

3.2 Formalisation

3.2.1 Atomic sentences

Simple sentences like ‘Michael Schumacher is fast.’ cannot be further analysed
in propositional logic; they are formalised as sentence letters.

In predicate logic these sentence can be further analysed. Proper names
like ‘Michael Schumacher’ denoting a fixed singular object (or at least intended
to denote a single object) are formalised as individual constants. We shall look
at the exceptions below and concentrate for the moment on the straightforward
cases.

So ‘Michael Schumacher’ may be formalised as the individual constant ‘a’.
The expression ‘is fast’ is a predicate and is formalised by a predicate letter
like ‘P1

3 ’. The letter itself and the subscript ‘3’ are not important here, but the

1To be precise, I should talk about occurrences of quantifiers and formulae. In the formula
‘[∃xPx∧∃xQx]’ the quantifier ‘∃x’ occurs twice. The scopes of the two occurrences are
obviously different. However, I shall suppress the reference to particular occurrences if it is
clear which occurrence is discussed.

version of 24th July, 2008 34

35

superscript ‘1’ is important, because ‘is fast’ takes one singular term, so it is a
unary predicate, that requires a unary predicate letter for its formalisation.

The syntax of L2 requires that predicate letters precede the accompanying
terms. Thus

Schumacher is fast.

is formalised as the following sentence of the language L2 of predicate logic:

P1
3 a

The formalisation must also specify the translation of all involved predicate
letters and individual constants:

P1
3 x: x is fast

a: Michael Schumacher

Of course, following the conventions superscripts may be skipped. So one may
also write ‘P3a’.

Another example is ‘Michael Schumacher overtakes Alonso’. This sentence
involves two singular term, ‘Michael Schumacher’ and ‘Alonso’. In this case we
employ a binary predicate letter and formalise the sentence as the following
sentence of L2:

Q2ab

Of course the translation is the following:

Q2xy : x overtakes y

a : Michael Schumacher

b : Alonso

In L2 predicate letters have a fixed arity, while it varies in English. In the
following sentence ‘stabbed’ woul be formalised with a 4-place predicate letter:

In 44 B.C. Brutus stabbed Caesar in Rome.

If ‘in Rome’ were deleted a ternary predicate letter would suffice. We shall
return to the problem of variable arity later.

An example of a complex sentence is the following:

Schumacher is fast and overtakes Alonso.

In a first step towards a formalisation we can reexpress this as:

Schumacher is fast and Schumacher overtakes Alonso.

version of 24th July, 2008 35

36

This gives the formalisation:

[P1
3 a∧Q2ab]

The translations are as above.
Obviously the same method applies also to certain sentences containing

personal pronouns like

Schumacher is fast and he overtakes Alonso.

Here one can replace the personal pronoun ‘he’ by the proper name ‘Schu-
macher’ and then proceed as above with the formalisation. Such (uses of)
pronouns are called ‘lazy’. Using ‘he’ only saves us the effort of repeating the
name ‘Schumacher’.

However, other occurrences of personal pronouns are not as easily elimi-
nated, as will be shown in the next section.

There is a special predicate that is always translated by the same symbol
namely identity. The sentence

New College is the College St. Mary of Wincester.

would be translate into
a = b

a : New College

b : the College St. Mary of Wincester

There is no need to specify the translation of ‘=’, because it is always translated
as identity. The identity symbol is also used in other formalisation:

New College is different from Oriel College.

is simply the negation of

New College is Oriel College.

Later identity will be used for formalising that seem to have nothing to do
with relation.

3.2.2 Quantification

Quantified sentences like ‘All men are mortal’ were scrutinised by logicians
since antiquity. It took over 2000 years to develop the modern theory of
quantification in predicate logic. In this section I shall try to motivate the

version of 24th July, 2008 36

37

modern treatment of quantified sentences and show how quantified sentences
are formalised.

In English quantification can be expressed in various ways. The following
two sentences are equivalent, although the methods of expressing quantifica-
tion are different:

(i) All four-legged vertebrates with gills are amphibians.

(ii) If a vertebrate has four legs and if it has gills, it is an amphibian.

Logicians are seeking a uniform way to express quantification. For a very long
time they took (i) as the pattern after which they modelled the formalisation
of all quantified sentences. In modern predicate logic (ii) is closer to its
formalisation.

Above I have claimed that not all occurrences of personal pronouns can
be eliminated easily: the ‘it’ in (ii) is an example. Obviously, (ii) cannot be
rephrased as ‘If a vertebrate has four legs and if it has gills, a vertebrate is an
amphibian.’, rather we would have to say ‘If a vertebrate has four legs and if
it has gills, then this very same vertebrate is an amphibian.’. But ‘this’ is a
pronoun again that cannot be eliminated by a proper name. So the ‘it’ in the
example is not a lazy pronoun.

In the following example several quantifications are involved and personal
pronouns are employed to express quantification.

If a student borrows a book from the library, he has to show his
university card to Ms Smith. If she approves he may leave the
library with it unless it is expired.

It is hard to rephrase this without using pronouns. The example shows that
pronouns can refer back to phrases that occurred in preceding sentences. In
the example both occurrences of ‘he’ refer back to ‘a student’. Method (i) for
expressing quantification is far less flexible. This is the main reason why
modern predicate logic models quantification along the lines of (ii) and not (i).

The example shows also limits of method (ii): There are two occurrences
of the pronoun ‘it’, and the first occurrence probably refers back to ‘a book’,
the second probably refers back to ‘university card’. This is not clear from the
syntax of the example; one needs to look into the content of the sentence to
determine the references of the two occurrences of ‘it’.

There are other pronouns whose reference is clear from the syntax of
the example alone. The first occurrence of ‘he’ has to refer to the student,
because the other phrases in question, ‘a book’ and ‘he library’, would require
‘it’ rather than ‘he’ as pronouns. Thus in English the cross-referencing can be
disambiguated by the gender and number (singular or plural) of the pronoun.
But the example of ‘it’ shows that this method does not remove all ambiguities,
because we cannot use always ‘new’ pronouns.

version of 24th July, 2008 37

38

The ambiguities of cross-referencing can be removed by attaching indices
to the pronouns. Since ‘she’ is a lazy pronoun, it can be be replaced by ‘Ms
Smith’.

If a student1 borrows a book2 from the library, he1 has to show
his1 university card3 to Ms Smith. If Ms Smith approves he1 may
leave the library with it2 unless it3 is expired.

By convention the pronoun with index n refers back to the phrase where the
index n appeared first. In the presence of indices, there is no longer a need for
indicating the gender of the pronoun. Therefore the pronouns can be replaced
by so called variables without any loss of information:

If a student1 borrows a book2 from the library, x1 has to show x1’s
university card3 to Ms Smith. If Ms Smith approves x1 may leave
the library with x2 unless x3 is expired.

The language L2 of predicate logic contains individual variables (see sec-
tion3.1). Thus by combining the techniques from section 2.4.3 and section
3.2.1, one can formalise the example—except for the phrases ‘a student1’, ‘a
book2’, ‘x1’s’ and ‘university card3’. They cannot be formalised by an individual
constant, because, for instance, ‘a student1’ does not refer to a particular
person or object like ‘Michael Schumacher’ in section 3.2.1. We need some way
to express in the formal language that the variable x1 ranges over students,
x2 over books in the library, x3 over university cards.

In the above example ‘he’ refers back to ‘a student’; therefore the pronoun
‘he’ ranges over students. Using such phrases like ‘a student’ and pronouns
referring back to ‘a student’, one can make claims about all students.

Because of its complexity I leave the example and return to the initial
examples i and ii:

(i) All four-legged vertebrates with gills are amphibians.

(ii) If a vertebrate has four legs and if it has gills, it is an amphibian.

I have argued that expressing quantification with phrases like ‘a student’—
or here ‘a vertebrate’—plus personal pronouns is more flexible and more
amenable to complex quantifications. If we were going to formalise this in a
formal language, we would need expressions corresponding to ‘a vertebrate’,
‘a student’ and so on. This can be done, but there is a further simplification.
In order to express

Every tortoise is a reptile.

we do not need ‘a tortoise’. We could use ‘a vertebrate’ again and say:

version of 24th July, 2008 38

39

If a vertebrate is a tortoise, it is a reptile.

So if we already have a more inclusive quantificational phrase like ‘a verte-
brate’, we do not need the more restrictive phrase ‘a tortoise’, because the
restriction can the expressed with a suitable ‘if ’-sentence.

Therefore in order to restrict the number of quantificational phrases,
we should use more inclusive phrases. ‘something’ is very inclusive. Using
something we can reexpress (ii) as:

If something (whether it is a person, material object or some-
thing else) is a four-legged vertebrate and if it has gills, it is an
amphibian.

We do not need any quantificational phrase beyond ‘something’ because it
is most inclusive. Of course, in order to avoid ambiguitities in some more
complicated examples, ‘something’ must be indexed, although the present
example does not give rise to possible confusions. Here we would simply have
the following:

If something1 is a four-legged vertebrate and if it1 has gills, it1 is
an amphibian.

We are now already fairly close to the way quantification is expressed in the
language L2 of predicate logic. But there is still one problem left, which is
illustrated by the following sentence:

(3.1) Something is close to everything.

The sentence is ambiguous: Does it mean that there is one single object that
is close to every object, or does it mean that everything is close to something,
though not necessarily to the same object. Thus there are the following two
readings of the sentence:

1. There is something1 such that x1 is close to everything.

2. Everything1 is close to something

Once one has decided whether to choose (i) or (ii), one can go further and
analyse the remaining parts of sentences in the following way, respectively:

1. There is something1 such that for everything2 it1 is close to it2.

2. For everything1 there is something2 such that it1 is close to it2

In L2 the same strategy is used: one utilises expressions corresponding to
‘there is something1 such that’ and ‘for everything1:’. These devices are called
the existential and the universal quantifiers and expressed in L2 as ∃x1 and

version of 24th July, 2008 39

40

∀x1, respectively.2 Thus the ambiguity in (3.1) arises because the order of the
quantifiers is unclear, that is, whether the existential quantifier precedes the
universal quantifier or vice versa.

Now we can formalise 1. ‘There is something1 such that’ becomes ∃x1,
while ‘for everything2’ becomes ∀x2. ‘it1’ becomes x1 and ‘it2’ becomes x2, so
we have:

∃x1∀x2 x1 is close to x2.

Using the following translation as in section 3.2.1

Pxy : x is close to y

we obtain the following L2-sentence:

∃x1∀x2 Px1x2

It would be equally correct to write:

∃x∀y Pxy or ∃z∀x Pzx

One has only to be careful to make sure that the respective quantifier refers
to the correct variable.

We can also formalise 2. in the following way:

∀x∃yPxy

Obviously merely the order of the quantifiers has been reverted. This way we
can distinguish between 1. and 2.

Here is another example:

Every dog is mortal.

This is a claim about all dogs. Thus one starts with a universal quantifier and
expresses the restriction to dogs by an ‘if ’-clause:

For everything1: if x1 is a dog, x1 is mortal.

First I specify the translation of the predicate letters:

Dx : x is a dog

Mx : x is mortal

‘x1 is a dog’ thus becomes ‘Dx1’ and ‘x1 is mortal’ becomes ‘Mx1’. Using the
techniques of section 2.4.2, ‘if x1 is a dog, x1 is mortal’ becomes ‘[Dx1 →

2The upside down ‘A’ reminds of ‘all’, while ∃ reminds of ‘there exists’.

version of 24th July, 2008 40

41

Mx1]’. Formalising ‘For everything1’ as the universal quantifier ‘∀x1’ yields
the following translation of the whole sentence:

∀x1[Dx1 → Mx1]

Thus the conditional is used to restrict the quantification to certain objects,
here dogs. One says: ‘for everything: if it is a dog it is mortal.’ Conjunction
serves the same purpose in the case of existential quantification. The sentence

There is a mortal dog.

would be formalised by ∃x1[Dx1 ∧Mx1], that is, ‘there is something that is a
dog and that is mortal.’ The formula ∃x1[Dx1 → Mx1], in contrast, would say:
‘There is something that is mortal, if it is a dog.’ This is clearly something else.
The sentence would already be true if there were a single stone and no dogs at
all, because the sentence ‘if the stone is a dog, it would be mortal’ is true; thus
there would exist something (namely the stone) that is mortal, if it is a dog.
Thus one cannot use the conditional for restricting the quantification in the
case of existentially quantified sentences. Similarly one cannot use conjunction
for restricting quantification in the case of universal quantification.

3.2.3 Identity and definite descriptions

‘is’ can play various rôles. It can be used to express predication such as in
‘Snow is white’ or ‘Jane is a classicist’. In these cases ‘is’ forms part of the
predicate. ‘is a classicist’ will be formalised as a single predicate letter.

In other cases ‘is’ is used to express identity such as in ‘Ratzinger is
Benedict XVI.’ or ‘St. Mary’s of Winchester college is New College’. Sentences
of this kind are formalised as a = b or other individual constants.

Identity is not only useful for formalising overt identity statements as in
the above examples. Using identity we can also express that there is a certain
number of objects. Assume the following interpretation:

Cx: x is a college

Then the claim that there is at least one college can be expressed by existential
quantification as ∃xPx. If we want to say that there are at least two colleges, it
does not suffice to say ∃x∃y[Cx∧Cy], because this says merely that something
is a college and something is a college; it does not say that something is a
college and something else is a college. But the latter can be expressed with
identity:3

∃x∃y [Cx∧Cy∧¬x = y]

3I am using the bracket conventions in he following, because these brackets drive me crazy.

version of 24th July, 2008 41

42

So this formula actually expressed that there are at least two colleges. Of
course the trick works also with three:

∃x∃y∃z [Cx∧Cy∧Cz∧¬x = y∧¬x = z∧¬y= z]

Obviously the formulae become very long, because one must express that all
the objects are mutually different.

By using identity we can also express that there is at most one college by
saying that if x and y are colleges, then x and y are identical:

∀x∀y[[Cx∧Cy]→ x = y]

Again this works also for ‘at most two’, ‘at most three’ and so on. ‘There are at
most two colleges’ can be formalised as

∀x∀y∀z[[Cx∧Cy∧Cz]→ [x = y∨ y= z∨ x = z]]

Combining both, ‘at least’ and ‘at most’, using a conjunction we can say
that there are exactly three colleges. ‘There is exactly one college’ becomes

∃x Cx∧∀x∀y[[Cx∧Cy]→ x = y]

This can be also expressed by the following logically equivalent formula:

∃x∀y[Cy↔ x = y]

With these tricks at our disposal we can tackle a problem that arises from
the formalisation of so called definite descriptions.4 ‘the king of France’, ‘the
tallest tutor of New College’ are examples of definite descriptions. Definite
description cannot be adequately formalised by an individual constant. For
instance, if ‘the king of France’ were the interpretation of the constant a and
‘is bald’ were the interpretation of P, then the formula:

¬Pa

appears to the formalisation of the English sentence

It is not the case that the king of France is bald.

Below we shall see that ¬Pa ` ∃x¬Px is a correct sequent. But in English
the sentence ‘Something is not bald’ does not follow from ‘It is not the case
that the king of France is bald.’ The latter sentence does not say that there is
actually a king of France; it only says that he bald if there is a king of France.

In general individual constant should only be used for designator that are
‘guaranteed’ to refer to a single object. There is no such restriction on definite
descriptions. We could now introduce a new symbol for definite description; the
Greek letter iota ι is commonly used for that purpose. Assume the following
interpretation:

4This analysis of definite descriptions is due to Bertrand Russel in On denoting.

version of 24th July, 2008 42

43

K xy: x is the king of y

f : France5

‘the king of France’ would then be formalised as ιx Kxf .

It is not the case that the king of France is bald.

This sentence would then be formalised by

¬P ιx Kxf

Russell observed that we do not really need a new device for expressing this
sentence: we do not need the expression ιx Kxf . Russell took the sentence

The king of France is bald.

to say:

(i) There is exactly one king of France.

(ii) All kings of France are bald.

From the discussion above we know how to express (i) and (ii) does not cause
any problems at all. So the formalisation of ‘The king of France is bald’ is the
following formula:

∃x∀y[K yf ↔ x = y] ∧ ∀x[K xf → Px]

Note that Russell does not say that the definite description ιxKxf corresponds
to a certain expression of the language of predicate logic: there is no such
expression. Rather Russell shows how to eliminate ιx K xf from a whole
sentence. This makes Russell definition of the definite description operator ι a
so called context definition.

The whole sentence

It is not the case that the king of France is bald.

is then formalised as

¬[∃x∀y[K yf ↔ x = y] ∧ ∀x[K xf → Px]]

Now we return to the discussion of ‘is’ at the beginning. In the following
sentence ‘is’ expresses identity:

Louis is the king of France.

5France probably deserves an individual constant.

version of 24th July, 2008 43

44

This may be formalised as follows:

b = ιx Kxf

Here b stands for ‘Louis’, of course. This formula can then by paraphrased by
Russell’s technique as the following sentence without a ι-operator:

∃x∀y[K yf ↔ x = y]∧∀x[K xf → x = b]

This can also be written much shorter in the following way:6

∀x[x = b ↔ K xf]

Especially identity statements involving definite descriptions may be con-
fusing. Consider the following two sentences:

(i) Jane is a classicist.

(ii) Jane is the classicist.

In the first sentence ‘is’ does not express identity. As remarked above, it
expresses predication. (ii), however, is an identity statement: ‘Jane’ is a proper
name, while ‘the classicist’ is a definite description. If Qx is interpreted as ‘x
is a classicist’ and c by ‘Jane’, sentence (i) becomes Qc, while (ii) becomes the
following formula:

∀x[x = c ↔Qx]

This says that there is exactly one classicist, and he or she is identical with
Jane.

3.3 Proofs

Von einer logisch vollkommenen Sprache [. . .] is zu
verlangen, daß jeder Ausdruck, der [. . .] als
Eigenname gebildet ist, auch in der Tat einen
Gegenstand bezeichne [. . .].

Gottlob Frege, Über Sinn und Bedeutung

Most definitions of section 2.3 carry over from propositional logic. Formulae H190ff
of L1 are replaced by closed formulae of the language L2 of predicate logic.
Moreover, the formulae are not ticked and it is not necessary to extend every
branch containing the occurrence of the formula in question.

The rules for quantifiers look as follows:

6This method for simplifying sentences involving definite descriptions works only if an identity
is claimed that has an individual constant on one side and a definite description on the
other.

version of 24th July, 2008 44

45

¬¬φ

φ

[φ∧ψ]

φ

ψ

¬[φ∧ψ]

¬φ ¬ψ
�� @@

[φ∨ψ]

φ ψ

�
�
S
S

¬[φ∨ψ]

¬φ
¬ψ

[φ→ψ]

¬φ ψ

�
�
@
@

¬[φ→ψ]

φ

¬ψ

[φ↔ψ]

φ

ψ

¬φ
¬ψ

�
�
\
\

¬[φ↔ψ]

φ

¬ψ
¬φ
ψ

�
�
@
@

There are additional rules for identity:
φ

D = E

ψ

provided that the individual constant
D occurs in φ, and ψ is the result of
replacing one or more occurrences of D
in φ by occurrences of E.

Here it is only required that φ and ‘D = E’ occur on the branch; it is not
required that ‘D = E’ has φ directly above it. It is also allowed that ‘D = E’
occurs before φ on the branch.

The following rule differs from the first only in the order of the individual
constants D and E.

φ

E = D

ψ

provided that the individual constant
D occurs in φ, and ψ is the result of
replacing one or more occurrences of D
in φ by occurrences of E.

The remaining rules concern the quantifiers:

∀vφ

ψ

provided that there is an individual con-
stant D which has already occurred in
the branch above ψ, and ψ is the result
of replacing every free occurrence of the
variable v in φ by D.

∃vφ

ψ

provided that ψ is the result of replacing
every free occurrence of v in φ by the
individual constant D and D has not
occurred anywhere in the branch above
ψ.

version of 24th July, 2008 45

46

¬∀vφ

∃v¬φ

¬∃vφ

∀v¬φ

Hodges (2001) mentions a rule VII, but he does not allow it to be used. This
rule must not be used according to the examination regulations, unless you
are explicitly allowed to do so.

The rule for drawing bars at the end of branches is as follows:

You may draw a line at the bottom of every
branch on which a formula occurs together
with its negation or on which ‘¬D = D’ oc-
curs for some individual constant D.

The definition of a tableau, a closed tree and so on are as in section section
2.3.

Definition 3.10. Assume X is a finite set of formulae of L2 and φ is a formula
of L2.

(i) X ` if and only if there is a closed tableau with all formulae in X at the
top.

(ii) X `φ if and only if X ,¬φ`.

Thus X `φ if and only if there is a closed branch with all formulae in X
and ‘¬φ’ at the top. The elements of X are called premisses. ‘X `φ’ is read as
‘φ is provable from the premisses in X ’.

As above I shall give a sample proof.

Example 3.11. `∀x∀y[x = y→ y= x]

We start as always with the negation of the conclusion (usually we would
also write down all the premisses, but in the present example there are not
any premisses):

¬∀x∀y[x = y→ y= x]

There is only one rule that applies to negated existential formulae. So we
arrive at the following:

¬∀x∀y[x = y→ y= x]

∃x¬∀y[x = y→ y= x]

Now the existential quantifier ‘∃x’ is dropped and the variable ‘x’ is replaced
by the individual constant a. This is only allowed because the individual
constant a has not occurred so far in the branch so far.

version of 24th July, 2008 46

47

¬∀x∀y[x = y→ y= x]

∃x¬∀y[x = y→ y= x]

¬∀y[a = y→ y= a]

The next quantifier is treated similarly:

¬∀x∀y[x = y→ y= x]

∃x¬∀y[x = y→ y= x]

¬∀y[a = y→ y= a]

∃y¬[a = y→ y= a]

¬[a = b → b = a]

Here a new individual constant must be used. It would not have been ad-
missible to add ‘¬[a = a → a = a]’. In the next step we apply the rule for
‘¬[φ→ψ]’:

¬∀x∀y[x = y→ y= x]

∃x¬∀y[x = y→ y= x]

¬∀y[a = y→ y= a]

∃y¬[a = y→ y= a]

¬[a = b → b = a]

a = b

¬b = a

Next we apply the first rule for identity. It allows to replace the occurrence of
b in ‘¬b = a’ by an occurrence of a.

¬∀x∀y[x = y→ y= x]

version of 24th July, 2008 47

48

∃x¬∀y[x = y→ y= x]

¬∀y[a = y→ y= a]

∃y¬[a = y→ y= a]

¬[a = b → b = a]

a = b

¬b = a

¬a = a

The last rule allows to draw a line at the end of the branch. Thus the claim is
established.

Example 3.12. ` [∃x¬Gx∨∀xGx]

The beginning of the proof should be obvious:

¬[∃x¬Gx∨∀xGx]

¬∃x¬Gx
¬∀xGx

∀x¬¬Gx

∃x¬Gx

At this point one cannot proceed with ‘∀x¬¬Gx’ and add, say, ‘¬¬Gc’, because
no individual constant has appeared so far on the branch. Therefore I continue
with ‘∃x¬Gx’ and turn then to ‘∀x¬¬Gx’:

¬[∃x¬Gx∨∀xGx]

¬∃x¬Gx
¬∀xGx

∀x¬¬Gx

version of 24th July, 2008 48

49

∃x¬Gx

¬Gc

¬¬Gc

Gc

In the following example we need to use a formula twice. This is also
the reason why the tableau system does not provide a decision procedure for
predicate logic. Even if ticked formulae as in propositional logic, we could
not be sure that the tree cannot be closed even if we had ricked all formulae,
because it might be necessary to use a formula twice.

Example 3.13. ∀x∀y∀z[¬Gxy→G yz],a = a `∃x∀yGxy

First we start the proof in a straightforward way:

∀x∀y∀z[¬Gxy→G yz]
a = a

¬∃x∀yGxy

∀x¬∀yGxy

¬∀yGay

∃y¬Gay

¬Gab

But now we go back to ∀x¬∀yGxy and replace x by b this time. The rest of
the proof should not be surprising.

∀x∀y∀z[¬Gxy→G yz]
a = a

¬∃x∀yGxy

∀x¬∀yGxy

¬∀yGay

version of 24th July, 2008 49

50

∃y¬Gay

¬Gab

¬∀yGby

∃y¬Gby

¬Gbc

∀y∀z[¬Gay→G yz]

∀z[¬Gab →Gbz]

[¬Gab →Gbc]

¬¬Gab Gbc

,
,
bbb

3.4 Interpretations and counterexamples

In propositional logic the tableau method yields a decision procedure for
deciding whether a syntactic sequent is correct or not, that is, for deciding
whether a formula is provable from a finite set of formulae.7 If all complex
formulae are ticked and the tableau is not yet closed, we have done everything
we can do. Therefore the sequent cannot shown to be correct in this case. And
from Theorem 2.17 we know that the corresponding semantic sequent is also
not correct.

If a tree does not close in predicate logic, that doesn’t show anything (apart
from some special cases). It could still close within the next 100 steps. The
reason is that we could still try another individual constant.

For predicate logic Hodges does not define correctness for semantic se-
quents, that is, ‘X Í φ’ is not defined where φ and all elements of X are
sentences of L2.8 Counterexamples appeal to validity of arguments in En-
glish. The idea is that a syntactic sequent ‘X `φ’ (X a set of formulae of L2,

7Here it is important that Hodges allows only finitely many premisses in a sequent.
8I have given the basic definitions in section 3.5, but this material does not form part of the

syllabus.

version of 24th July, 2008 50

51

φ a formula of L2) is not correct if there is a translation of all the formulae
into English such that the resulting argument in English is not valid.

In Hodges’ terminology a (predicate) interpretation is a translation of some H187
predicate letters and individual constants into corresponding expressions in
English. Thus, e.g., a binary predicate letter will be translated as binary pred-
icate expressions of English (and similarly for predicate letters of arbitrary
arity), and individual constants will be translated as designators of English.
An interpretation is an interpretation for a particular formula if and only if the
interpretation comprises translations for all predicate letters and individual
constants occurring in the formula.

An interpretation specifies translations for the predicate letters and indi-
vidual constants, but not for the identity symbol because the identity symbol
is always translated in the usual way:

x = y : x is (identical with) y

I give an example of an interpretation.

Example 3.14. The following is an interpretation for the formula ∀x[Px →
Rxa]:

Px : x is a tree on Christ Church meadow
Rxy : x is in y
a : Oxford

This example shows that a predicate letter might receive a fairly complex
predicate expression of English as translation.

Given the above interpretation one can translate the entire formula
‘∀x[Px → Rxa]’ into English as

All trees on Christ Church meadow are in Oxford.

Thus under the interpretation of Example 3.14 the formula ‘∀x[Px → Rxa]’
becomes a true English sentence. It is not hard to think of an interpretation
that renders ‘∀x[Px → Rxa]’ a false sentence.

A domain is some arbitrary set. An English sentence is true in a domain, if
and only if the sentence is true if only elements in the domain are considered.
For instance, in the domain {2,4} the sentence ‘All numbers are even’ is
true. If the domain is the set of all integers the sentence is false. However,
we must presuppose that the English sentence contains only designators
designating objects in the domain. For instance, you may not specify ‘Brazil’
as the translation of the individual constant c and then take the set of all
European countries as the domain of quantification. Thus the objects denoted
by the translations of the individual constants must be in the domain of
quantification. In the following it is always assumed that the interpretations
respect this restriction.

version of 24th July, 2008 51

52

In order to refute X `φ, one can specify a domain D plus an interpretation
for φ and all formulae in X , such that all formulae in X are true under this
interpretation in D and φ is false under this interpretation in D.

A counterexample to the claim that X ` φ (or, for short, a coun-
terexample to ‘X `φ’) consists in a specification of the following:

• a domain of quantification (any set is allowed as domain of
quantification; in particular the domain can be the empty
set)

• translations of all predicate letters involved in the argument
to English predicates of the same arity.

• translations of all individual constants involved in the argu-
ment (the translations must designate only objects in D)

where all formulae in X are true under this interpretation in the
domain and φ is false under this interpretation in the domain.

Of course some sort of justification is required for the claim that a coun-
terexample can be used to refute a claim like X ` φ. The claim cannot be
proved formally because it involves informal notions like the truth of English
sentences in a given domain. But an inspection of the tableau system should
show that the if all the translations of elements of X are true, then φ cannot
be false, if X `φ.

Example 3.15. The following is a counterexample to ‘∀x∃yGxy`∃y∀xGxy’:

Gxy : x is separated by the sea from y
domain: : {Canada, U.S.A., Germany, France}

The translation of the premiss ‘∀x∃yGxy’ is then ‘Everything is separated
by the sea from something’, which is true if we focus on the countries in the
domain: Canada is separated by the sea, e.g., from France. The translation
of the conclusion ‘∃y∀xGxy’ is ‘Something is separated by the sea from every-
thing.’ is clearly false, because, e.g., France is not separated from Germany by
the sea.

There are also simpler counterexamples like the following:

Gxy : x is identical to y
domain: : {1,2}

This is a counterexample because 1 and 2 are both identical to something
in the domain, respectively (namely to themselves); but neither 1 nor 2 are
identical to everything in the domain.

version of 24th July, 2008 52

53

If there is a counterexample to a sequence, then the sequence is not correct
(i.e., there is not a corresponding closed tableau).9 This gives a method for
refuting that X `φ. If one gives a counterexample to the argument with all
the elements of X as premisses and φ as conclusion, then X `φ is refuted.

This means in practice that if one wonders whether an argument is valid
in predicate logic, one can try to prove X `φ by the tableau method in order
to prove that the argument is valid or one can try to find a counterexample in
order to show that the argument is not valid.

Example 3.16. There is a counterexample to

∀x[Px →∃yRxy],∀x[Rxa →Qx]`∀x[Px →Qx].

Px : is a European capital city
Rxy : x is the capital of y
a : Italy
Qx : is in Italy
domain: : the set of all capital cities and all European countries

The translations of the two premisses and the conclusion are then:

1. Every European capital is the capital of something.

2. Every capital of Italy is in Italy.

3. Every European capital is in Italy.

Sometimes it may be easier to specify a structure rather than a translation
in order to refute the validity of an argument. I shall explain this in some
detail in section 3.5. For those who do not want to read the next section
(because it does not belong to the syllabus), I give here only an example,
because it is permissible to use this approach instead of the above translation
based approach.

Basically one assigns a relation in the set-theoretic (see 9) to each predicate
letter occurring in the sequent. That is, instead of giving a translation for each
predicate letter, one specifies a n-place relation for every n-place predicate
letter. Basically the idea is this. Instead of providing a translation for each
predicate letter, one assigns a truth value to each 0-place predicate letter, a
set of objects to each 1-place predicate letter, and a set of ordered n-tuples to
each n-place predicate letter, where n > 1.

In the case of Example 3.16 one could write:

9This cannot be proved in the formal sense because the notion of a counterexample is not
precise. In the next section, however, the informal notion of a counterexample is replaced
by the mathematically precise notion of a countermodel and then one can prove that an
argument in predicate logic is provable if and only if there is no countermodel.

version of 24th July, 2008 53

54

P : {Rome, Berlin}
R : {〈Rome, Italy〉}, {〈Berlin, Germany〉}
a : Italy
Q : {Rome}
domain: : {Rome, Berlin, Italy, Germany}

All the objects (Rome, Berlin, Italy, Germany) in the relations must be in
the domain. The structure follows the idea of the above translation with the
restriction to two capitals and two countries.

This approach is allowed and sometimes sensible. But only in section 3.5 I
shall show how an assignment of relations to predicate letter determines the
truth an falsity of a closed formula.

It is possible to assign a predicate letter the empty relation (i.e., the empty
set). It is also possible to assign the same relation to two different predicate
letters of the same arity.

Note. In counterexamples you should not presuppose any particular knowl-
edge only you have. For instance, taking the set of the objects on your desk as
domain is not a good idea. It is unlikely that the examiner knows the objects
on your desk. Usually it is also sensible to choose a simple counterexample if
possible.

3.5 The semantics of predicate logic

This section does not form part of the syllabus, because it is relatively technical
and advanced. But it is a philosophically important part of logic and it clarifies
the section on counterexamples.

version of 24th July, 2008 54

Appendix A: Rules for dropping brackets

Most logicians employ certain rules for dropping brackets. For instance, they
do not write ‘[[P ∧Q]∧R]’, but rather simply ‘P ∧Q ∧R’. The conventions
explained here do not form part of the syllabus, but they should be useful
when reading texts not following Hodges’ somewhat idiosyncratic notation.

It is not recommended that you use these conventions. The bracketing
conventions introduce more possibilities for mistakes. If brackets are missing
from your formulae, the conventions below will be applied.

The conventions below concern the language L1 of propositional logic and
the language L2 of predicate logic.

The expression that is obtained from dropping brackets is not itself a
formula but rather a mere abbreviation of the original formula.

Bracketing Convention 1. Brackets surrounding the whole formula may be
dropped.

For instance, one may write ‘P → [Q∨P]’ instead of ‘[P → [Q∨P]]’. However,
this convention does not allow to drop any brackets from ‘¬[P → [Q ∨P]]’,
because only a part and not the whole formula is surrounded by the brackets.

This convention is a possible source for errors. Assume the formula ‘P ∧Q’
is to be negated. Then it seems natural to write ‘¬P ∧Q’. But the latter
formula is not the negation of the first. By Convention 1, ‘P ∧Q’ is short for
‘[P ∧Q]’ and thus its negation is ‘¬[P ∧Q]’. From the last formula no brackets
can be dropped.

Bracketing Convention 2. If ‘[φ∧ψ]∧χ’ is a part of a formula, the occur-
rences of the brackets may be dropped and ‘φ∧ψ∧χ’ may be written. An
analogous convention applies to ‘∨’.

According to this convention one may write ‘[Ga∧Gb∧Gc]’ instead of
‘[[Ga∧Gb]∧Gc]’, for instance. Using the Convention 1 this may even be
shortened to ‘Ga∧Gb ∧Gc’. Convention 2 also allows to write ‘∀x[Px →
[Qx∨Rx∨Sxa]]’ instead of ‘∀x[Px → [[Qx∨Rx]∨Sxa]]’.

In mathematics one may write ‘3 ·5+4’ instead of ‘(3 ·5)+4’, because ‘·’
binds more strongly that ‘+’. Similar conventions are adopted in logic.

We first fix which truth-functor symbol (connective) binds more strongly.
A connective ◦ binds more strongly than another connective • if and only if ◦

version of 24th July, 2008 55

56

stands further to the left than • in the following line:

∧ ∨ → ↔

The last bracketing convention allows one to drop brackets where the grouping
of the symbols is already clear from the above list.

Bracketing Convention 3. Assume ◦ and • are truth-functor symbols (con-
nectives). If a formula contains an expression of the form ‘[φ◦ψ]•χ’ (or ‘φ•[ψ◦χ]’)
and ◦ binds more strongly than •, one may write ‘φ◦ψ•χ’ (or ‘φ•ψ◦χ’ in the
latter case).

‘[P ∧Q]→ R’ (Convention 1 has already been used) may be shortened to
‘P ∧Q → R’ because ‘∧’ binds more strongly than ‘→’.

version of 24th July, 2008 56

Appendix B: tableaux rules

¬¬φ

φ

[φ∧ψ]

φ

ψ

¬[φ∧ψ]

¬φ ¬ψ
�
�
@
@

[φ∨ψ]

φ ψ

�
�
S
S

¬[φ∨ψ]

¬φ
¬ψ

[φ→ψ]

¬φ ψ

�
�
@
@

¬[φ→ψ]

φ

¬ψ

[φ↔ψ]

φ

ψ

¬φ
¬ψ

�
�
\
\

¬[φ↔ψ]

φ

¬ψ
¬φ
ψ

�
�
@
@

¬∀vφ

∃v¬φ

¬∃vφ

∀v¬φ

φ

D = E

ψ

provided that the individual constant D occurs
in φ, and ψ is the result of replacing one or more
occurrences of D in φ by occurrences of E.

φ

E = D

ψ

provided that the individual constant D occurs
in φ, and ψ is the result of replacing one or more
occurrences of D in φ by occurrences of E.

∀vφ

ψ

provided that there is an individual constant D
which has already occurred in the branch above
ψ, and ψ is the result of replacing every free oc-
currence of the variable v in φ by D.

∃vφ

ψ

provided that ψ is the result of replacing every
free occurrence of v in φ by the individual con-
stant D and D has not occurred anywhere in the
branch above ψ.

You may draw a line at the bottom of every branch on which a
formula occurs together with its negation or on which ‘¬D = D’
occurs for some individual constant D.

version of 24th July, 2008 57

Appendix C: Quotation

In logic one talks about expressions in natural and formal languages. By
enclosing an expression in quotation marks one obtains a term designating
that expression. For instance, the expression

‘Italy’

refers to the word that begins with an ‘I’ followed by ‘t’, ‘a’, ‘l’ and ‘y’.
When expressions are displayed, quotation marks are usually skipped.
Often in logic one does not only intend to talk about a single expression,

but about many expressions of a certain form simultaneously. For instance,
one tries to affirm the followiong claim:

A conjunction of two sentences is true if and only if both sentences
are true.

This can be more formally expressed in the following way:

(K1) If φ and ψ are sentences, then the expression beginning with φ followed
by ‘∧’ and ψ is true if and only if φ and ψ are true .

Here we do not talk about ‘φ’ and ‘ψ’, rather ‘φ’ and ‘ψ’ are used as variables
ranging over sentences. These variables belong to the language we are actually
using, that is, in English enriched by some symbols. Therefore there is no
need for quotation marks enclosing ‘φ’ and ‘ψ’, respectively. But we talk about
the conjunction symbol ‘∧’, so it has to be enclosed in quotation marks.

We adopt a convention for abbreviating claims like (K1). According to this
convention (K1) can be rephrased in the following way:

(K2) If φ and ψ are sentences, then ‘φ∧ψ’ is true if and only if φ and ψ are
true .

We still do not intend to talk about the Greek letters ‘φ’ and ‘ψ’, but rather
about sentences of a language that obtained by replacing sentences for the
Greek letters ‘φ’ and ‘ψ’ in ‘φ∧ψ’.

The convention has been introduced here only by way of example, and this
should be sufficient for the understanding of the text here and Hodges’ book.
The details of this convention are tricky and quotation has puzzled logicians
and philosophers. There are ways to avoid quotation marks altogether, but
this is usually on he cost of readability.

version of 24th July, 2008 58

B I B L I O G R A P H Y

Hodges, Wilfrid (2001), Logic: An Introduction to Elementary Logic, second
edn, Penguin Books, London.

version of 24th July, 2008 59

	1 Preliminaries
	1.1 Sets
	1.2 Ordered pairs and relations
	1.3 Arguments, validity and contradiction
	1.4 Syntax, semantics, and pragmatics

	2 Propositional logic
	2.1 The syntax of the language of propositional logic
	2.2 The semantics of propositional logic
	2.3 Proofs
	2.4 Formalisation
	2.4.1 Truth-functionality
	2.4.2 Logical form
	2.4.3 From logical form to formal language

	3 Predicate logic
	3.1 The syntax of the language of predicate logic
	3.2 Formalisation
	3.2.1 Atomic sentences
	3.2.2 Quantification
	3.2.3 Identity and definite descriptions

	3.3 Proofs
	3.4 Interpretations and counterexamples
	3.5 The semantics of predicate logic

	Appendix A: Rules for dropping brackets
	Appendix B: tableaux rules
	Appendix C: Quotation

