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Consequentia ‘formalis’ vocatur quae in omnibus
terminis valet retenta forma consimili. Vel si vis
expresse loqui de vi sermonis, consequentia formalis est
cui omnis propositio similis in forma quae formaretur
esset bona consequentia [. . . ]

John Buridan, Tractatus de Consequentiis
(Hubien 1976, i.3, p.22f)

A substitutional account of logical validity for formal �rst-order languages is developed
and defended against competing accounts such as the model-theoretic de�nition of validity.
Roughly, a substitution instance of a sentence is de�ned as the result of uniformly substituting
nonlogical expressions in the sentence with expressions of the same grammatical category
and possibly relativizing quanti�ers. In particular, predicate symbols can be replaced
with formulae possibly containing additional free variables. A sentence is de�ned to be
logically true i� all its substitution instances are satis�ed by all variable assignments. Logical
consequence is de�ned analogously. Satisfaction is taken to be a primitive notion and
axiomatized.
For every set-theoretic model in the sense of model theory there exists a corresponding

substitutional interpretation in a sense to be speci�ed. Conversely, however, there are
substitutional interpretations – in particular the ‘intended’ interpretation – that lack a
model-theoretic counterpart.�e substitutional de�nition of logical validity overcomes the
weaknesses of more restrictive accounts of substitutional validity; unlike model-theoretic
logical consequence, the substitutional notion is trivially and provably truth preserving. In
Kreisel’s squeezing argument the formal notion of substitutional validity naturally slots into
the place of intuitive validity.
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formal validity and semantic definitions of logical consequence

At the origin of logic is the observation that arguments sharing certain forms never have
true premisses and a false conclusion. Similarly, all sentences of certain forms are always
true. Traditionally, in order to show that an argument is not valid, logicians replaced
nonlogical or categorematic terms in an argument with terms of the same respective
grammatical category so that the premisses become true and the conclusion false. For
instance, the following argument is not valid:

Some horses are animals.�erefore all horses are animals.

Its validity is refuted by the following substitution instance with a true premiss and a false
conclusion:

Some horses are white.�erefore all horses are white.

From this practice medieval logicians extracted a de�nition of formal validity: An ar-
gument is de�ned to be formally valid if and only if it has no such substitutional coun-
terexamples. Arguably, Buridan was the �rst to separate this notion of validity explicitly
from other notions of validity and to de�ne formal validity explicitly as truth preservation
under reinterpretations of nonlogical or categorematic terms.1
It is still the case that introductory logic courses o�en start with a characterization of

logical validity as truth preservation under the substitution of nonlogical terms. Together
with the informal characterization two properties of logical validity are stressed as essential
to logic validity: First, logic is universal.�at is, premisses and conclusions can be any
declarative sentences of our language and there are no restrictions to a sublanguage.2
Secondly, logical consequence preserves truth. �at is, in a logically valid argument
either a premiss is false or the conclusion is true. �is property follows directly from
the substitutional characterization, because the argument itself, as it stands, would be

1Even a�er the notion of formal validity had been introduced, most logicians followedAristotle in de�ning
an argument as valid or ‘good’ if and only if the conclusion follows from the premisses by necessity.
Arguments we would call analytically valid were classi�ed as ‘good’ arguments by logicians, including
Buridan. At least from Buridan onwards logicians became clear about the distinction between formal
validity and other kinds of validity, although others, including Ockham, used the term formal before
Buridan, but with a di�erent meaning. See (Read 2012) and (Aho and Yrjönsuuri 2009, §6.3). For the
development leading up to Buridan’s de�nition see (Dutilh Novaes 2012). More recently, philosophers
have usually relegated the analysis of analytic, metaphysical and other kinds of ‘material’ validity to
philosophy of language and other branches of philosophy. Logical validity has come to be understood
as formal validity. See (Asmus and Restall 2012) for a brief historical synopsis. Historically erudite
logicians, among them (Read 1994), have argued against the identi�cation of formal and logical validity
and the narrowing of the scope of logic to formal validity.�ose who prefer this terminology can read
‘formal’ for my term ‘logical’ in the rest of the paper.

2Of course there may be worries about sentences containing context sensitive vocabulary or anti-realist
theories according to which certain declarative sentences are neither true nor false.

2



a substitutional counterexample, if the premisses were true and the conclusion false.
Truth preservation follows from the existence of an intended interpretation; and on the
substitutional account, the intended interpretation is the trivial homophonic interpretation
that does not modify the argument.
While substitutional elements can still be found in conceptions of logical validity in

the Hilbert school, for instance, in (Behmann 1922) and by Hilbert himself, substitutional
de�nitions of validity have been considered obsolete from the middle of the 20th century
on by most logicians.3
Tarski’s work on truth had opened the way to new mathematically precise, nonsubstitu-

tional semantic analyses of logical consequence.�ese de�nitions of logical validity follow
the same pattern as the substitutional de�nition in de�ning validity as truth preservation
under all interpretations:4

Semantic Analysis of Logical Consequence ⋅ An argument is logically valid i�
the conclusion is true under all interpretations under which its premisses are
true.5

In his �rst attemptOn the Concept of Logical Consequence (1936b) to de�ne logical validity,
Tarski applied the theory of satisfaction and truth developed in�e Concept of Truth
3Tarski explicitly rejected such a substitutional analysis of logical consequence as inadequate, because the
object language might not provide su�ciently many substitution instances.To take a dramatic example,
consider the language of dense linear order without end points.�is is a �rst-order language with one
binary predicate symbol R. Now an absolute notion of truth for this language is de�ned in a language
that extends this language by adding a syntax theory and the machinery for carrying out the de�nition
of truth. A sentence ϕ would be de�ned to follow from a �nite set Γ of sentences substitutionally if
and only if whenever a way of uniformly substituting Rxy with a formula σ(x , y) in Γ and ϕ either
makes ϕ true or a sentence in Γ false. By merely using the symbol for the dense linear ordering one
cannot obtain countermodels to some invalid arguments. In fact, if the consequence relation were
de�ned this way, the consequence relation would become decidable.�erefore it cannot coincide with
the usual consequence relation of predicate logic by Church’s theorem. Using the method of quanti�er
elimination it can be shown that each substitution instance of the argument from Γ to ϕ it is decidable
whether all premisses are true and the conclusion false. Again using quanti�er elimination, it can be
shown that only �nitely many substitution instances have to be considered. Hence the substitutional
consequence relation de�ned in this way would be decidable.�us it cannot coincide with the usual
de�nition of logical consequence for a �rst-order language with a binary predicate symbol as its only
nonlogical symbol.

4�ere are theories of logical consequence that completely deviate from this schema. In the modern
era these are mainly the proof-theoretic accounts; but they come from a di�erent lineage, not to be
discussed here.

5Beall and Restall (2006) called this Generalized Tarski�esis, although they prefer the more general
and less speci�c sounding term case over interpretation.�ey credited Je�rey (1992) with the formula-
tion. Since Tarski has so many achievements to his credit already, I prefer the label above, especially
because Tarski himself acknowledged that Bolzano had given a similar de�nition a century before
his work. Tarski added to his (1936b) in the English translation in (1956, fn. †). See (Rusnock and
Burke 2010) for a comparison of modern accounts of logical consequence and Bolzano’s with respect
to Etchemendy’s (1990) criticism of Tarski’s theory.
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(1936a) to the analysis of logical consequence.6 �e modern model-theoretic de�nition
appeared only in in (Tarski and Vaught 1956) or around that time.
�e notion of truth (and satisfaction) needed for one of Tarski’s semantic analyses of

validity is de�ned in purely mathematical terms; interpretations are also explained in
purely mathematical terms. In this sense both theories are reductionist: All semantic
notions are reduced to mathematical notions.
�e aim to show that truth is reducible to mathematical terms was one of Tarski’s

main aims in�e Concept of Truth. Of course, his theorem on the unde�nability of
truth imposes restrictions on possible reductions. In his paper on truth, Tarski de�ned
satisfaction and truth in an ‘essentially richer’ metalanguage.�is approach also underlies
his analysis of validity in On the Concept of Logical Consequence (1936b).�ere, logical
consequence is de�ned for a given object language in an essentially richer metalanguage –
or metatheory in modern parlance. As a consequence, logic is no longer universal: Logical
consequence is only de�ned for a fragment of the metalanguage at best (if the object
language is contained in the metalanguage). �is is the price Tarski had to pay for his
reductionist approach to semantics.7
�e model-theoretic de�nition of validity has the advantage that universality is re-

tained: �e notion of logical consequence is de�ned for all �rst-order language in set
theory – including the language of set theory itself.�ere is no need to ascend to a richer
metalanguage or stronger theory. However, something else is sacri�ced for reduction-
ism: If validity is de�ned in set theory for the language of set theory, there is no longer
an intended interpretation. �e interpretations we quantify over in the de�nition of
logical consequence are certain sets with a set-sized domain.8 No interpretation that
interprets the quanti�ers as ranging over a set is the intended interpretation.�erefore
truth preservation, which is a trivial consequence of the substitutional characterization, is
lost.

back to buridan

On both of Tarski’s reductionist accounts of logical validity, either the universality of logic
or truth preservation of logical consequence is lost. Consequently both de�nitions have

6In (1936b) Tarski de�ned logical truth by �rst replacing (predicate and individual) constants with
variables of the appropriate kind in a sentence of the �xed object language and then de�ning a sentence
as logically valid if and only if is satis�ed by all variable assignments for these variables. Tarski called
these variable assignments also ‘models’. Tarski probably used a �xed domain for all models, although
this is at least contentious. See (Bays 2001) and the references therein.

7Recently, (Williamson 1999a, 2013) defended an analysis of validity in the style of Tarski’s (1936b) account,
although many philosophers remain sceptical, especially a�er Etchemendy’s (Etchemendy 1990) attack
on Tarski’s On the Concept of Logical Consequence.

8�e reason for the restriction to sets as ranges of quanti�ers is again reductionism: �e inductive
de�nition of satisfaction can only be shown ot have a �xed point if the domain is a set.
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come under attack as adequate analyses of logical validity.9 Since both, universality and
truth preservation, are so central to our concept of logical validity, it may be promising to
revisit the old substitutional characterization.
I start from the general form of Semantic Analysis of Logical Consequence given

above.�e reductivist approach forced Tarski either to relativize the notion of truth – and,
consequently, logical consequence – to an object language or to set-theoretic models. To
avoid these restrictions, I abandon reductivism and employ a primitive axiomatized notion
of satisfaction.10 Using the primitive notion of satisfaction, a sentence will be de�ned as
logically valid if and only if all its substitution instances are satis�ed. Logical consequence
is de�ned analogously. In what follows I will o�en just talk about logical validity of single
sentences, because this makes the presentation slightly easier; but everything is intended
to apply to logical consequencemutatis mutandis.

�ere are various reasons why I expect a substitutional de�nition of logical validity de-
�ned from a primitive notion of satisfaction to be preferable to the usual model-theoretic
de�nition. First, the substitutional de�nition of validity is closer to traditional informal
characterizations of validity as they are given in introductory logic courses and used
in philosophy outside logic. It is also closer to how logicians over the centuries speci-
�ed counterexamples and established validity before the model-theoretic account �nally
became prevalent. In this sense it is more direct and deviates less from the traditional
notion.
Secondly, on a substitutional account it is obvious why logical truth implies truth

simpliciter and why logical consequence is truth preserving: If a sentence is logically valid,
it is true under all substitutional interpretations.�e ‘intended interpretation’ is one of
these interpretations, and thus logical validity implies truth. Moreover, in contrast to the
model-theoretic account, there is nothing mysterious about the intended interpretation
on the substitutional account: It is the homophonic interpretation that takes sentences
at their face value; it does not substitute anything and maps any sentence to itself as a
substitution instance.11

�irdly, the substitutional de�nition of logical consequence is not tied to set theory and

9Etchemendy (1990) has established the analysis of logical consequence again as a widely discussed topic
in philosophy of logic, although many of his points can be found in earlier work, for instance, in
(Kreisel 1967a).

10In this respect the present approach di�ers from earlier mathematically presented substitutional theories
of consequence such as Quine’s (1970). Reductionism causes there problems similar to those discussed
above. For a further discussion of Quine’s theory see (Eder 2016).

11Under Linnebo’s (2012) de�nition logical validity is also obviously truth preserving. Linnebo’s approach
resembles the approach defended here in various aspects. However, he does not employ a primitive
satisfaction predicate but rather a series of property theories. Instead of substitutional interpretations
Linnebo employs interpretations using properties. In many respects this can be taken to be a formal
elaboration of Bolzano’s theory mentioned above.�e substitutional interpretations used in appendix 2
in the proof of substitutional completeness bear a certain resemblance with Linnebo’s interpetations,
just with satisfaction instead of property instantiation.

5



its philosophy. On the model-theoretic account, interpretations are speci�c sets; on the
substitutional account they are merely syntactic and (under certain natural assumptions)
computable functions replacing expressions and perhaps an assignment of objects to the
free variables.�e quest for an adequate model-theoretic conceptual analysis of logical
validity has led philosophers to doubt that quanti�cation ‘over absolutely everything’ is
possible and to speculate about the inde�nite extensibility of the set-theoretic universe.
On a substitutional account it is easier to avoid such speculations. At any rate the direct
link between the most complex metaphysical speculative theory hitherto, set theory, and
the theory of logical consequence is severed.�is does not mean that I reject set theory;
I just would like to avoid making the theory of logical consequence dependent on the
philosophy of set theory
Before discussing the notions of satisfaction and a substitution instance, I �x some

assumptions on the language and themathematical framework in and for which the theory
is going to be developed. It is one of the main aims of this paper to demonstrate how the
substitutional account can overcome the problems of the model-theoretic account. To
facilitate the comparison with model theory, I de�ne substitutional and model-theoretic
consequence in the same background theory. Model theory is usually carried out in
a set theory. Consequently, I de�ne substitutional consequence in a theory extending
�rst-order set theory, that is, Zermelo–Fraenkel or some variant thereof.
�e substitutional account could also be developed in a much weaker account. Only

some syntactic notions are required to de�ne substitution instances. However, it would
be di�cult to compare this substitutional analysis with the model-theoretic de�nition.
Moreover, the goal is to obtain a universal notion of logical consequence that pertains
to a comprehensive language, for instance, an idealized version of our overall language
of mathematics or science. I do not see any good reason to exclude set theory from it.
Investigating the substitutional de�nition of logical consequence in a weak theory of
syntax or arithmetic may be a worthwhile exercise, but is not conducive to the purposes
of this paper.

substitution instances

In this and the next section the two key notions in the substitutional analysis of logical truth
and consequence are made formally precise. First, I turn to the notion of a substitution
instance and in the next section with truth.
A particular substitution instance of a formula or an entire argument is given by a

substitution function. A substitution function uniformly replaces all nonlogical terms with
expressions of the same grammatical category in any given formula. Hence the de�nition
of a substitution function will rely on the distinction between logical and nonlogical
terms. I adopt the usual distinction in �rst-order predicate logic between logical and
nonlogical terms: Connectives, quanti�ers, and identity are taken as logical terms, while
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predicate symbols (and function symbols, including constants, if present) are conceived
as nonlogical. Here I do not provide a justi�cation for making the distinction in this
particular way. Other choices of logical constants could be accommodated. For instance,
it would not be a problem to treat identity as a nonlogical symbol or another predicate
symbol as a logical constant.
Even once the logical terms are �xed, it may not be clear what counts as a suitable

substitution instance. To motivate the de�nition for formalized languages, I look at
examples in natural language. What would count as a substitutional counterexample to
the following argument?

Some horses are animals.�erefore all horses are animals.

Clearly, a general term such as ‘is an animal’ can be replaced not only with another general
term but also with a complex general term such as ‘is a European country adjacent to
Austria’. Similarly, it is permissible to replace atomic singular terms with complex ones.
Replacing proper names with de�nite descriptions may cause problems; and this requires
some care. I omit the elaboration of the formal details.

�ere aremore singular terms than only proper names and de�nite descriptions. Should
personal or demonstrative pronouns be admitted as substitution instances of proper
names? As an example I consider the following invalid argument:

Some horses are animals. Bucephalus is a horse.�erefore Bucephalus is an
animal.

Would the following be a substitution instance and a counterexample, assuming the
speaker points at some unnamed spider?

Some animals are horses.�at is an animal.�erefore that is a horse.

‘Horse’ is replaced with ‘animal’ and vice versa; the pronoun name ‘that’ is substituted for
the name ‘Bucephalus’. I cannot see any reason to reject this counterexample; it is also in
line with counterexamples in traditional logic.12 Of course, the reference of pronounsmust
be kept �xed between premisses and the conclusion. In the example both occurrences of
‘that’ must refer to the same object. With that proviso pronouns can be substituted for
singular terms.�is applies at least to personal and demonstrative pronouns.
Pronouns can also be introduced via complex predicate expressions. For instance, the

predicate expression ‘is a horse’ may be substituted with ‘is smaller than this but bigger
than that’. Since occurrences of pronouns in substitution instances are going to be allowed,
the de�nition of logical truth in natural language would require a reference to the way the
pronouns are interpreted:

12Already Aristotle used demonstrative pronouns in syllogisms, for instance, in the Nichomachian Ethics
VII . Many further examples can be found throughout history.
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A sentence is logically true i� all substitution instances are true for any
reference of the pronouns.

�e use of demonstrative or personal pronouns makes it possible to formulate counterex-
amples or interpretations involving a singular term referring to an object for which we
lack a name or de�nite description. In the formal language free variables will play the role
of these pronouns.�us a substitution instance of a sentence may contain free variables.
Now assume some �rst-order language is �xed. In a nutshell, a substitution function

uniformly replaces each predicate symbol with some formula and possibly relativizes
quanti�ers.13 More precisely, the notion of a substitution function is de�ned inductively.
To keep the presentation simple, I assume that the language does not contain any individual
constants or function symbols.�ey can be dealt with in well-known ways.�e clauses of
the inductive de�nition can be sketched as follows: If I is a substitution function and ϕ an
atomic formula, then I(ϕ) is some formula containing at least the same free variables as ϕ
itself.�is holds even if ϕ contains the satisfaction predicate. Only for identity we domake
an exception, as it is to be treated as a logical constant:�e identity symbol is not replaced
by any substitution function. Substitution functions commute with the connectives, that
is, I(¬ϕ) is ¬I(ϕ) and I(ϕ ∧ ψ) is I(ϕ) ∧ I(ψ) for any formulae ϕ and ψ, and similarly
for further connectives. Substitution functions can treat quanti�ers in two di�erent ways.
A substitution function is unrelativized if I(∀x ϕ) is ∀x I(ϕ). A substitution is relativized
if there is a formula δ(x) such that I(∀x ϕ) is ∀x (δ(x)→ I(ϕ)) for all formulae ϕ.�e
formula δ(x) serves the purpose of the domain on the model-theoretic account. For the
moment being, both, relativized and unrelativized substitution function are taken into
account.14 �e clauses of the de�nition are not quite correct: Variables may be bound
inadvertently in δ(x) or the translation of atomic formulae. To avoid these variable clashes
variables have to be renamed in a suitably way. I skip the cumbersome details.

satisfaction as a primitive notion

For the analysis of logical validity advocated here, semantic reductionism has to be
abandoned. SinceDavidson’s work on truth in the 1960s, philosophers have slowlywarmed
to the idea of taking truth or satisfaction as a primitive notion.15 In this paper the axioms

13Substitution functions resemble relative interpretations as introduced by Tarski et al. (1953). Substitution
functions are de�ned like relative interpretations with the same theory as source and target theory;
only the requirement that provability is preserved is dropped.

14It may be objected that relativized substitution function do not treat quanti�ers as logical constants. Of
course a similar objection can be made against the use of a domain in model-theoretic semantics. In
contrast to model-theoretic semantics, quanti�ers can easily be treated as strict logical constants by
ruling out relativized substitution functions. I admit them here in order to facilitate a comparison with
the model-theoretic de�nition of logical consequence.

15Tarski (1936a) already considered axiomatic approaches. Davidson advocated an axiomatic approach in
various papers (see his 1984) with satisfaction as a primitive notion. Asay (2013) provided a defence

8



for satisfaction will be added to an extension of Zermelo–Fraenkel set theory possibly
with urelements as the ‘base theory’.�e base theory can be enriched with further de�ned
notions; also further axioms may be added. �e base theory can be taken our overall
theory. Starting from a comprehensive theory is important for the universality of logic. It
is not needed from the technical point.
�e binary satisfaction predicate Sat(x , y) is intended to apply to formulae x and

variable assignments y. Variable assignments are functions from the set of variables (or
their indices); there is no restriction on the range of variable assignment.�e schemata of
Zermelo–Fraenkel are expanded to the full language including the satisfaction predicate.
�e entire theory including formulae involving Sat is governed by classical logic.

�e substitutional theory of logical validity requires only weak axioms for satisfaction.
In appendix 1 the axioms needed are listed as ‘mandatory’ axioms. Here in the main
body of the paper I merely sketch these mandatory axioms. For atomic formulae of set
theory the following axiom is stipulated: A variable assignment a satis�es the formula
x ∈ y if and only if a(x) ∈ a(y), where a(v) is the value of a given variable v under
the variable assignment a. Similar axioms are added for all predicate symbols other
than Sat. If individual constants and function symbols are present, suitable axioms have
to be speci�ed. Compositional axioms are added stating that the satisfaction predicate
commutes with connectives and quanti�ers. Hence there is an axiom expressing that a
variable assignment satis�es a formula ϕ ∧ ψ if and only if it satis�es ϕ and ψ; a variable
assignment satis�es a formula ¬ϕ if and only if it does not satisfy ϕ; and so on for other
connectives. A variable assignment satis�es a formula ∀x ϕ if and only if all its x-variants
satisfy ϕ. As usual, an x-variant of a variable assignment is any variable assignment that
di�ers from it only in the value of x.�e formulae and sentences ϕ and ψ may contain
the satisfaction predicate.
I use the name Ω for the overall theory with axioms for set membership and satisfaction.

�e theory Ω resembles the usual ‘Tarskian’ theory of truth – with the exception that the
compositional clauses apply also to formulae containing the satisfaction predicate.
Since schemata (separation and replacement) are also expanded to the language with

the satisfaction predicate, Ω is properly stronger than the base theory. Its consistency
cannot be proved relative to Zermelo–Fraenkel set theory. However, it is equiconsistent
with a typed Tarskian theory and thus there are good reasons to believe in its consistency
if the base theory is assumed to be consistent. Moreover, adding analogous axioms to
reasonably behaved weaker theories such as Peano arithmetic yields provably consistent
extensions of these theories.�e truth axioms act as a re�ection principle.16 �erefore it
is at least plausible to assume the consistency of Ω.

�e axioms for satisfaction describe a notion of truth based on classical logic: Satisfac-

of primitivism about truth. Halbach (2014) gave a survey of axiomatic theories of truth mainly for
arithmetical languages; Fujimoto (2012) investigated truth theories over set theory.

16See (Halbach 2014, sec. 22).
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tion commutes with all connectives and quanti�ers.17 It re�ects the axioms for classical
logic in which the base theory is formulated. In principle the substitutional theory of
logical consequence is also compatible with nonclassical logic. If a nonclassical theory
were used as base theory and if a theory of validity in some nonclassical logic were the
goal, the axioms for satisfaction would have to be adjusted accordingly.

substitutional definitions of logical truth & consequence

A formula ϕ is said to be satis�ed under a substitution function I and a variable assignment
i� the substitution instance I(ϕ) of that formula is satis�ed under that variable assignment.
Using the notions of satisfaction and substitution function, logical truth and consequence
are de�ned in the theory Ω:

Substitutional De�nition of Logical Consequence ⋅ A sentence ϕ is a logical
consequence of a premiss set Γ i� ϕ is satis�ed under all substitution functions
and all variable assignments under which all formulae in Γ ∪ {∃x x=x} are
satis�ed.

�e variable assignments are needed in the de�nition, because a substitution instance of a
formula may contain free variables, even if the premisses and the conclusion do not.
Logical truth is de�ned from the substitutional notion of consequence in the usual way:

A sentence is logically true if and only if it is a logical consequence of the empty premiss
set.�erefore, a sentence is logically true i� it is satis�ed under all substitution functions
and variable assignments that satisfy ∃x x=x.
If the extra premiss ∃x x=x were dropped in the de�nition of logical consequence, a

notion of logical consequence would be obtained that is ontologically neutral and the claim
that there is at least one object would not be logically true.�e reason is that a substitution
function may relativize all quanti�ers to a formula δ(x) that is not satis�ed by any object.
For instance, nothing in the de�nition of a relativized substitution function rules out
x /=x as relativizing formula. In order to force the extensional equivalence with the usual
model-theoretic de�nition, I add the extra premiss in the substitutional de�nition. If the
substitution function I is relativizing quanti�ers to δ(x), then the substitution instance of
∃x x=x is ∃x (δ(x) ∧ x=x), which is not satis�ed if δ(x) is not satis�ed by anything.18

17Some popular type-free theories of truth such as the Kripke–Feferman theory (Reinhardt 1986, Feferman
1991) are not based on classical logic: although they are formulated in classical logic, they describe a
nonclassical concept of truth. Typically, truth doe snot commute with negation in these theories.

18Here I consider only languages without individual constants or function terms. If they are admitted, the
de�nition of a substitution function can be modi�ed in various ways so that a consequence relation
in some version of free logic is obtained. �e substitutional account of logical consequence yields
a smooth treatment of free logic. Here I do not go into details and concentrate on the variety that
coincides with classical consequence.
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�is does not mean that the de�nition with the additional premiss ∃x x=x is superior.
In fact, there are good reasons to omit it. Here it is only included because it facilitates
the comparison with the model-theoretic account. It merely accommodates a quirk of
the classical model-theoretic de�nition, where domains of models are not allowed to be
empty. I suspect that the reason for this restriction in model theory is mainly technical:
If the domain of a model is empty, then, trivially, there is no variable assignment over
that domain. Hence, if truth is de�ned as satisfaction by all variable assignments, every
sentence is true over the empty domain, even propositional contradictions.19 On the
model-theoretic account it is awkward to stay ontologically neutral; on the substitutional
account it is natural and straightforward to omit the extra premiss ∃x x=x.
�ere are no restrictions on the sentences in the de�nition of logical consequence. In

particular, the sentence ϕ and the sentences in Γ may contain the satisfaction predicate.
Like the model-theoretic concept of consequence and unlike Tarski’s (1936b) analysis, the
substitutional de�nition does not require the ascent to a stronger metatheory. Logical
consequence is de�ned in Ω for the language of Ω. In this sense the substitutional con-
ception of logical consequence is universal in the same way the modern model-theoretic
conception is universal. It is also absolute – like Tarski’s (1936b) and unlike the model-
theoretic analysis – because the notion of satisfaction is absolute and not relativized to a
model or interpretation.
With this de�nition it is trivial that logical validity implies truth. If a sentence is logically

valid, it is satis�ed under all substitution functions and variable assignments.�e identity
function, that is, the function that maps every formula to itself is a substitution function.
Hence, if a sentence is valid on the substitutional de�nition, it is satis�ed under all variable
assignments, that is, it is true simpliciter. Similarly, logical consequence preserves truth.
�e argument for the claim that logical consequence preserves truth follows the traditional
‘naive’ informal argument that is also given in introductory logic classes.�is is in contrast
with the model-theoretic account.

�e argument that logical truth implies truth can be explained more formally as follows.
Assume that Val(x) is the formula in Ω de�ning logical truth in the substitutional sense.
�en the claim that logical validity implies truth becomes ∀x (Val(x) → ∀a Sat(x , a)),
where ∀a expresses quanti�cation over all variable assignments (the restriction of the
quanti�er ∀x to sentences is not necessary). �is principle is not even expressible on
the model-theoretic account, because there is no absolute set-theoretically de�nable
satisfaction predicate Sat.
It might be objected that ∀x (Val(x) → ∀a Sat(x , a)) does not express what was in-

tended by saying that logical validity implies truth. What was really meant, so it might

19As Schneider (1958) observed, if a sentence is de�ned to be true i� it is satis�ed by all variable assignments,
then all sentences will be true in the model with the empty domain, because there are no variable
assignments over the empty domain. Of course, the problems can be solved in the model-theoretic
framework. Williamson (1999b) discussed some workarounds; but for most purposes it is much more
convenient just to exclude the empty domain.
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be claimed, is the schema Val(⌜ϕ⌝)→ ϕ for all sentences ϕ, where ⌜ϕ⌝ is some canonical
name for the sentence ϕ. In the absence of an absolute truth or satisfaction predicate as on
the model theoretic account, this may be the best approximation; but it is at best only an
approximation. It is not only a problem that the principle that validity implies truth has to
be expressed by an in�nite set of sentence; there is also a deeper hidden problem, if this
schema is employed.�e reasoning for showing that validity implies truth should proceed
in the ‘naive’ way as follows: If a sentence is true under all interpretations (whatever they
might be), then it is true under the intended interpretation and therefore true simpliciter.
Whether the truth of the sentence implies the sentence itself, is then another matter: In the
case of sentences without the truth or satisfaction predicate and for many other sentences,
this step is sound; but in the case of liar sentences and the like this is far from obvious. In
fact, it is not licensed by many popular truth theories and my preferred theory sketched
in appendix 1.20

the squeezing argument

�e model-theoretic and the substitutional de�nition of logical truth have the same
extension. I sketch a proof for this claim. In fact, I show something much stronger: I show
that the notion of substitutional validity naturally slots into the place of Kreisel’s (1967a)
‘intuitive validity’ in his squeezing argument.21
Kreisel (1967a) distinguished intuitive validity from truth in all set-theoretic structures,

that is, model-theoretic validity. ‘Intuitive validity’ is not to be understood as some kind of
pre-theoretic notion of logical truth or the like. In fact, I doubt that there is a pre-theoretic
notion of logical validity. Logical validity is a highly theoretical notion, even though
the theorizing began in antiquity. Kreisel thought that intuitive validity is a rigorous but
informal notion. By ‘informal’, it seems, he meant ‘not mathematically de�ned’ (see Smith
2011).
According to the squeezing argument, provability of a sentence in a suitable deductive

system such as Natural Deduction (‘⊢PC ϕ’ in the diagram below) implies its intuitive
validity because of the ‘intuitive’ soundness of the chosen calculus.�e intuitive validity of

20It can still be asked whether the schema Val(⌜ϕ⌝) → ϕ is provable in Ω. In fact it is, but perhaps, the
critical reader might object, for the wrong reasons. �e proof is somewhat convoluted. First it can
be shown that Val(⌜ϕ⌝) implies truth in all set-theoretic models and hence provability in predicate
logic by the formalized completeness theorem.�e theory of satisfaction is essentially re�exive and
thus proves the local re�ection principle for any �nite subtheory, and thus for logic. A proof via the
satisfaction predicate is not feasible, even if the theory of satisfaction is (consistently) strengthened.
�e schema ∀a Sat(⌜ϕ⌝, a) → ϕ is inconsistent, as Sat commutes with negation. Only the rule that
licenses the step from a proof of ∀a Sat(⌜ϕ⌝, a) to ϕ can consistently be added. (Kreisel 1965, p. 117)
gave a similar argument, pointing out that it does not apply to �nitely axiomatized theories.

21Kreisel presented the squeezing argument in a number of places with variations. (Kreisel 1967a, p. 152–
157) is the standard reference. I am indebted to Göran Sundholm for making me aware of (1965, p. 116f.)
and (1967b, p. 253�.). Beau Mount brought the relevant paragraph in (1980, p. 177) to my attention.
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a sentence in turn implies its model-theoretic validity (symbolized as ‘⊧’ below), because
any model-theoretic counterexample is also an ‘intuitive’ counterexample and thus refutes
the intuitive logical truth of a sentence.�ese two implications – both straight arrows in
the diagram below – cannot be proved formally, because the notion of intuitive validity
is not formal. However, there is a formal theorem, Gödel’s completeness theorem for
�rst-order logic, that shows that the model-theoretic validity of a sentence implies its
provability in the chosen logical calculus.�e implications are shown in the following
diagram:

⊢PC ϕ
intuitive
soundness

//
ϕ is
intuitively
valid

every countermodel

is a counterexample
// ⊧ ϕ

completeness theorem

dd

If the two informal implications visualized by the two straight arrows in the diagram
hold, all three notions have the same extension. For the mathematical logician, �xing the
extension of logical validity is usually good enough. But the squeezing argument does not
establish that either of the two formal de�nitions is an adequate conceptual analysis of
logical validity.
If intuitive validity is replaced with substitutional validity, all implications become

formally provable and a formally rigorous version of the squeezing argument is obtained:

⊢PC ϕ
formal

soundness
//
ϕ is
substitutionally
valid

substitutional
completeness

// ⊧ ϕ

completeness theorem

ee

�e arrow labelled ‘formal soundness’ is provable using the axioms for satisfaction.�e
proof now resembles the kind of justi�cation for the rules and axioms of the chosen
calculus given in introductory logic courses. For instance, we may say that the rule of
‘or’-introduction in Natural Deduction is sound, because, whenever a sentence is true, the
disjunction of that sentence with a sentence is true as well.�is holds for all substitution
instances of that rule.
To establish the implication marked ‘substitutional completeness’ I show a much

stronger result resembling the informal argument given for the corresponding implication
in the original squeezing argument. For any given set-theoretic model an equivalent sub-
stitutional interpretation, that is a pair consisting in a substitution function and a variable
assignment, will be speci�ed in a straightforward way.�us, any model-theoretic coun-
terexample is also a substitutional counterexample (modulo the trivial transformation).
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�e point of this observation is not only that it establishes the formally rigorous squeezing
argument, but also that the main worry about the substitutional approach does not apply
to the version in this paper: By passing from set-theoretic validity to substitutional validity
no interpretations are lost. In fact, there are ‘more’ substitutional interpretations than
there are set-theoretic models: For any given set-theoretic model there is a corresponding
substitutional interpretation, but there are substitutional interpretations that do not have
a model-theoretic counterpart, the intended interpretation being an example.

�e completeness result can be stated in the following form:

Substitutional Completeness ⋅ In Ω the following statement is provable: For
any modelM there is a substitution function I and a variable assignment a
such that the following equivalence holds for all sentences ϕ :

M ⊧ ϕ i� Sat(I(ϕ), a)

�e proof is sketched in appendix 2. �e claim can be strengthened in various ways.
As will be obvious from the proof, the same substitution function I can be used for all
models; only the variable assignment has to be varied.�e claim can also be generalized
to formulae ϕ with free variables.22 Moreover, not all axioms for satisfaction are needed
in the proof.23
With the Substitutional Completeness theorem all implications in the formally rigorous

squeezing argument have been established. �e theorem shows that all three notions,
provability, model-theoretic validity, and substitutional validity coincide in their exten-
sions. Hence the Substitutional Completeness theorem can be taken as an extensional
reduction of the semantic concept of logical consequence to the purely mathematically
de�ned notion of model-theoretic validity and the purely syntactic concept of provability.

robustness

I will now address some objections that have been made against versions of the substitu-
tional account. Many of them are founded in the suspicion that substitutional de�nitions
make the notion of logical validity highly language-dependent. As I mentioned above,
Tarski (1936b) rejected a substitutional de�nition because it can be extensionally inad-
equate if the object language is expressively weak.24 However, this objection is based
22�e generalization can be formulated in the following way: ϕ holds inM under the variable assignment

a over M i� Sat(I(ϕ), a). Variables in ϕ′ may have to be renamed and a be adjusted accordingly to
avoid variable clashes.�is generalization shows that the substitutional interpretation ⟨I, a⟩ is in a way
really the ‘same model’ asM:�ey are elementarily equivalent even with all parameters fromM added.

23First, the uniform typed disquotation schema is needed; that is, the satisfaction predicate needs to be
applied only to formulae not containing the satisfaction predicate. Secondly, the satisfaction predicate
needs to commute with the connectives schematically. �e universally quanti�ed versions of the
mandatory axioms listed in appendix 1 are not needed.

24Etchemendy discussed a closely related problem, the persistence problem, in various places in his (1990).
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on a strict distinction between object and metatheory, which in turn has its origin in
Tarski’s reductive approach to semantics. In fact, my substitutional de�nition can be
applied to highly restricted languages, for instance, the language of dense linear order
without end points, which has been mentioned above in footnote. 3. Of course, Tarski was
right that the substitutional approach yields an incorrect de�nition if only substitution
instances from such a restricted language are admitted in the de�nition of logical truth
and consequence. But if this restriction is li�ed and arbitrary substitution instances are
admitted, the problems identi�ed by Tarski disappear.�is requires a type-free notion
of truth that is not restricted to some weak object language. Such a notion of truth or
satisfaction is unavailable to the semantic reductionist, including Tarski.
A related worry is that the de�nition of logical validity is crucially dependent on the

chosen base language, that is, the language from which substitution instances are taken.
�e de�nition advanced here, however, is highly stable under variations of the language.
�e formally rigorous squeezing argument and the Substitutional Completeness theorem
go through with only one binary predicate symbol for set membership.
One might now suspect that the substitutional analysis is too sensitive to the base

theory rather than the language. A�er all, I advertized my substitutional de�nition as a
precise version of the traditional account dating back at least to Buridan, but then used
set theory as a base theory, although that was hardly the background on which traditional
logicians worked. As I explained above, I chose set theory mainly because it facilitates
the comparison with the model-theoretic analysis.�e substitutional theory could also
be developed in a much weaker base theory. What will be needed is a theory of syntax.
Without syntax theory it is not possible to de�ne the notion of a substitution function and,
in fact, to state the substitutional de�nition of validity. It also supplies countably many
objects that can be assigned to variables. Hence. as soon as a decent theory of syntax is
assumed, the Gödel completeness theorem and the formally rigorous squeezing argument
will become provable, although the Substitutional Completeness theorem with respect to
model theory will not be provable in the form given above.25 At any rate, the substitutional
theory is highly independent of the chosen base theory and can be developed using only
a basic theory of syntax.�e model-theoretic approach, in contrast, is much more reliant
on set theory, even though analogies of model-theoretic results can be formulated and
proved in much weaker theories.
For the substitutional theory, I had to invoke a primitive notion of satisfaction given

by axioms. If the substitutional account were highly sensitive to the speci�c axioms of a
type-free theory of truth or satisfaction, any worries about the solution of the paradoxes in

25If the base theory is a syntax theory or some arithmetical theory, the axioms for satisfaction will have
to be modi�ed, because variable assignments cannot be treated any longer as in�nite sequences. In
the traditional account more than mere syntax theory was available. I suspect that analogues of the
Substitutional Completeness theorem may be available within a framework of traditional metaphysics.
A notion of property instantiation or the theory of satisfaction will always interpret a theory of higher-
order objects.
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the chosen axiomatic theory of satisfaction would also a�ect the theory of logical validity.
As pointed out before, the axioms needed for satisfaction are very weak. When it comes to
applications of the satisfaction predicate to formulae containing the satisfaction predicate,
I merely require that satisfaction commutes with connectives and quanti�ers. Beyond
these axioms, only a disquotation principle for satisfaction for formulae without the satis-
faction predicate is needed. No further assumptions on the treatment of formulae with the
satisfaction predicate have to be made. Even if a typed theory of satisfaction were chosen,
much of the above would not be a�ected.�e notion of validity could still be universal and
apply to sentences containing the satisfaction predicate; but a sentence would be de�ned
as logically valid i� all its substitution instances in the language without the satisfaction
predicate were satis�ed by all assignments.�e formally rigorous squeezing argument
could still be proved. However, the intended interpretation conceived as the substitution
function that maps any formula to itself, would no longer be a substitution function in
the new sense, because substitution functions would not be allowed to have formulae
containing the Sat-predicate as outputs.�is restriction strikes me as unmotivated and
unnecessary; moreover one would require a squeezing argument showing that the ex-
clusion of formulae with Sat does not a�ect the extension of the notion of substitutional
logical validity.
Why should one employ a primitive notion of satisfaction at all? Why should one

not directly use a primitive notion of logical validity, if set-theoretic reductionism is
abandoned and semantic notions including satisfaction and logical consequence do not
have to be reduced to purely mathematical notions?26 �ere are good reasons against
taking logical consequence rather than satisfaction (or both notions) as primitive. First,
we cannot easily appeal to a intuitive pretheoretic notion of logical consequence. �e
notion of logical consequence is theoretical, as remarked above, and usually introduced
by a characterization in the style of the Semantic Analysis of Logical Consequence above.
Truth and satisfaction are usually taken to be conceptually prior to logical consequence.
Secondly, as logical truth and consequence can be de�ned from a theory of satisfaction
using only syntactic notions, we should minimize the number of primitive notions by
de�ning validity from satisfaction. Conversely, satisfaction cannot be de�ned in terms of
logical validity and set theory. If logical validity is treated as a primitive notion, truth or
satisfaction still would have to be added as a primitive notion, in order to show truth preser-
vation and other desired properties of logical validity.�at satisfaction and truth are not
de�nable for �rst-order languages in terms of logical validity is due to recursion-theoretic
grounds: Logical validity will be extensionally equivalent to �rst-order provability and
thus be recursively enumerable, while truth is not even elementarily de�nable.�erefore

26Recently Field (2015) argued that validity should be taken as a primitive.�ere are much earlier examples
of the treatment of validity as a primitive axiomatized notion. In particular, (Kreisel 1965, 1.83) pursued
such an approach, but then uses his squeezing argument to show that the axiomatized notion of validity
is reducible to set theory. He also considers a variant in 1.84 with a validity predicate that is not reducible
to set theory if the underlying theory is �nitely axiomatizable.
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primitivism about satisfaction is preferable to primitivism about logical validity (or both,
validity and satisfaction).

inexpressible interpretations

On the model-theoretic account of logical validity, the quanti�cation over interpretations
in the de�nition omits the intended interpretation; in the substitutional de�nition, the
intended interpretation it is included. However, it may be suspected that, still, the sub-
stitutional de�nition su�ers in the end from similar problems as the model-theoretic
de�nition, because there are ‘intuitive interpretations’ that do not correspond to any sub-
stitutional interpretation. ‘Intuitive interpretations’ would be di�erent from substitutional
and model-theoretic interpretations. If there are such elusive intuitive interpretations,
then the substitutional analysis of logical validity shares the fate of the model-theoretic
de�nition: It is at best extensionally correct, but not an intensionally adequate analysis.
How could one argue for the existence of such intuitive interpretations that cannot be

viewed as substitutional interpretations and do not have a substitutional counterparts?
�ey could be understood as structures similar to model-theoretic structures, but not nec-
essarily limited by any cardinality restrictions; they could be proper classes or pluralities
of some sort.27 Of course, all set-sized models can be rewritten as substitutional interpre-
tations by the Substitutional Completeness theorem. Hence these intuitive interpretations
would have to be properly class-sized. One could try to prove the existence by showing the
existence of such structures in a class theory. However, von Neumann–Gödel–Bernays set
theory will not su�ce.�is theory only proves the existence of all predicatively de�nable
classes; but all predicatively de�nable structures can be substitutionally expressed.28 An
impredicative class theory such as Morse–Kelley set theory will su�ce.
However, if Morse–Kelley is accepted and used to demonstrate a problem for the sub-

stitutional theory, then the base theory should be revised.�e base theory should now
contain our overall mathematical theory. �us, if Morse–Kelley is accepted, Zermelo–
Fraenkel should be replaced with Morse–Kelley as base theory. It is no problem to adapt
the axioms for satisfaction to a theory like Morse–Kelley. If one claims that there is a
class, a set, a pluralityM of some kind that is an interpretation that cannot be expressed
substitutionally, then that plurality can be used again to construct a substitutional inter-
pretation plus a variable assignment that corresponds to thisM in the extended theory
Ω over the new base theory. �e Substitutional Completeness theorem can be proved
for a class theory as base theory, and thus there is a substitutional interpretation for any

27I thank an anonymous referee and some colleagues for pressing that point.
28To see this, one can relatively interpret von Neumann–Gödel–Bernays set theory in Ω by making use of
the satisfaction axioms.�is interpetation is very similar to the interpretation of the theory ACA of
arithmetical comprehension in the Tarskian theory CT of truth over Peano arithmetic. For details see
(Halbach 2014, 8.6).
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structure in Morse–Kelley. Something similar may also be possible for plural quanti�ers
of similar devices.
In an attempt to salvage the criticism by going modal, it could be claimed that there

could be further sets and structures that do not actually exist. I �nd it very hard to make
sense of the modality if pure sets are concerned, even though some philosophers working
on the inde�nite extensibility of the set-theoretic universe are more optimistic. But, again,
if one were serious about possible but not actual intuitive interpretations, one would have
to inject the modal principles into the base theory. It is then not trivial to formulate the
axioms for satisfaction for such a contingentist modal language.29 I would expect that
an argument analogous to proof of the Substitutional Completeness theorem still can be
proved.

conclusion

For �rst-order logic, the notions of provability, model-theoretic, and substitutional validity
coincide. For the purposes of mathematical logic one can use whatever notion comes
in handy. As a conceptual analysis of logical consequence, the substitutional notion has
some advantages: First, it is a notion of consequence that is universal, just like the model-
theoretic notion, in the sense that it applies to the entire language and is not con�ned
to some sublanguage. Secondly, unlike the model-theoretic de�nition, it makes truth
preservation a trivial property of logical consequence. �is shows that the pre-model-
theoretic ‘naive’ reasoning about logical consequence can be made formally precise and
that there is nothing wrong with accepting that logical consequence is truth preserving
and universal at the same time.�e price that has to be paid is the rejection of semantic
reductionism:�e substitutional account requires a primitive notion of satisfaction that
cannot be eliminated by purely mathematical concepts such as set membership.

appendix 1: the axioms for satisfaction

�e following axioms on Sat are used in the proof of Substitutional Completeness.�ey
are also needed to prove the soundness of the chosen calculus, that is, for the proof that
ϕ follows substitutionally from Γ if Γ ⊢ ϕ. t1 is the schema of ‘uniform’ disquotation
for Sat-free instances.�e axioms t2–t4 state that Sat commutes with connectives and
quanti�ers for all sentences, including those with Sat.�e axiom schemata of set theory
are extended to the language with Sat.
I introduce some abbreviations.�e quanti�ers ∀ϕ and ∀ψ range over (the codes of)

all formulae of the full language with Sat.�is can be expressed using a suitable formula
de�ning the set of formulae in the language of set theory. �e quanti�ers ∀v and ∀w
range over all variables.�e quanti�ers ∀a and ∀b range over variable assignments, that

29�is point is related to Etchemendy’s contingency problem see (Etchemendy 1990) and (McGee 1992).
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is, arbitrary functions from the set of variables. a(v) is the value of v under a. Of course
all these operations and syntactic operations such as the function that yields applied to
a formula its negation need to be expressed in the language of set theory. �e reader
is referred to (Halbach 2014) for details. For truth theories over Zermelo–Fraenkel in
general set theory see (Fujimoto 2012).

Mandatory Axioms

�e following axioms for the satisfaction predicate are required:

t1 ∀a∀v ∀w (Sat(⌜Rvw⌝, a)↔ Ra(v)a(w))

and similarly for predicate symbols other than Sat
t2 ∀a∀ϕ (Sat(⌜¬ϕ⌝, a)↔ ¬Sat(⌜ϕ⌝, a))
t3 ∀a∀ϕ∀ψ (Sat(⌜ϕ ∧ ψ⌝, a)↔ (Sat(⌜ϕ⌝, a) ∧ Sat(⌜ψ⌝, a)))
t4 ∀a∀v∀ϕ (Sat(⌜∀v ϕ⌝, a)↔ ∀b (‘b is v-variant of a’→ (Sat(⌜ϕ⌝, b))

�e theory is equiconsistent with a Tarskian theory of truth, that is, with the theory
with the same axioms but the quanti�ers ∀ϕ and ∀ψ restricted to formulae without Sat.
As the theory proves the consistency of Zermelo Fraenkel, it cannot be proved to be
outright consistent in ZF, but of course a weakly inaccessible cardinal would su�ce.�e
corresponding theory over arithmetic is investigated under the name FSN in (Halbach
2014, p. 145).

Optional Axioms

Although the theory sketched above is su�cient to prove the results in this paper, the
theory is still very weak in the sense that it does not prove any interesting theorems with
iterations of the Sat predicate. A theory in the style of the Friedman–Sheard theory is an
option (see Halbach 2014). However, for various reasons, I prefer a di�erent approach.
Basically I would like to add t1 for Sat as R as long as the formulae to which Sat is applied
are grounded.�is is expressed by the following axiom:

t6 ∀a∀ϕ∀v (G(⌜ϕ⌝, a(v))→ (Sat(⌜Sat(⌜ϕ⌝, v)⌝, a)↔ Sat(⌜ϕ⌝, a(v))))

Using the truth axioms, one can show the disquotation schema for all grounded sentences.
It remains to specify the axioms for groundedness. I assume that the predicate symbol

G is contained as a primitive symbol in the base language, but without any speci�c axioms
(other than in logical axioms and schemata such as replacement); but there is a t1-axiom
for G. with the axioms below. All quanti�ers (also in the axioms above) are understood to
range over all formulae in the language with Sat and G.

d1 ∀a∀v ∀w (G(⌜Rvw⌝, a))
and similarly for all predicate symbols including Sat, and G
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d2 ∀a∀ϕ∀v (G(⌜P(⌜ϕ⌝, v)⌝, a)↔ G(⌜ϕ⌝, a(v))), where P is G or Sat
d3 ∀a∀ϕ (G(⌜¬ϕ⌝, a)↔ G(⌜ϕ⌝, a))
d4 ∀a∀ϕ∀ψ (G(⌜ϕ ∧ ψ⌝, a)↔ (G(⌜ϕ⌝, a) ∧G(⌜ψ⌝, a)))
d5 ∀a∀v∀ϕ (G(⌜∀v ϕ⌝, a)↔ ∀b (‘b is v-variant of a’→ (G(⌜ϕ⌝, b))

A full analysis of the corresponding theory over arithmetic is given by Fujimoto and
Halbach (2018).�ey show that the theory is ω-consistent.�e model construction can
be li�ed to to set theory if some weak large cardinal axiom is assumed (or even much
less).

appendix 2: proof of substitutional completeness

In this appendix I sketch a proof of the following claim:

Substitutional Completeness ⋅ In Ω the following statement is provable: For
any modelM there is a substitution function I and a variable assignment a
such that the following equivalence holds for all sentences ϕ :

M ⊧ ϕ i� Sat(I(ϕ), a)

I assume the language contains only predicate symbols, but no function symbols. Let a
model M be given. First I de�ne the substitution function.�e function I replaces an
atomic formula Pxy where P is a binary predicate symbols with ⟨x , y⟩ ∈ v where v is a
variable associated with the predicate symbol P. Other atomic formulae are dealt with in
the same way. With each predicate symbol a new variable is associated.�e substitution
function relativizes every occurrence of a quanti�er ∀x with x ∈ z, where z is again a new
variable. As was mentioned above in the de�nition of substitution functions, variables
may have to be renamed to ensure that the variables are really ‘new’. I skip the tedious
details.

�e de�nition of the substitution function does not depend on the modelM. It remains
to de�ne the variable assignment. a assigns the domain of the modelM to the ‘relativizing’
variable z. �e e�ect is that quanti�ers in I(ϕ) now range only over the domain of
M under the variable assignment thus de�ned. If v is the variable associated with the
predicate symbol P, a assigns the extension of P inM to the variable v. An induction on
the complexity of ϕ establishes the claim.30

30I am grateful to Walter Dean, Kentaro Fujimoto, Øystein Linnebo, Beau Mount, Carlo Nicolai, Lavinia
Picollo, Ian Rum�tt,�omas Schindler, Göran Sundholm, Albert Visser, Paul Weingartner, Philip
Welch, Timothy Williamson, and anonymous referees for discussions about the themes of this paper
and for comments on dra�s. I also thank the audiences of my talks about this material for their valuable
hints and questions.
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